A short introduction to cosmological formulae

Alberto Cappi
INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127, Bologna, Italy, E-Mail: cappi@bo.astro.it

February 20, 2006

This short introduction is extracted from a paper on cosmological models with a dark energy component (Cappi 2001). For an on-line implementation of cosmological formulae see www.bo.astro.it/~cappi/cosmotools.

The basic equations for calculating distances in relativistic cosmology are briefly resumed (e.g. Peebles 1993; Coles \& Lucchin 1996, Peacock 1999; see also Hogg 1999). Assuming that the universe is homogeneous and isotropic, we have the Robertson-Walker metric:

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-R^{2}(t)\left[d r^{2}+S_{k}^{2}(r)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{1}
\end{equation*}
$$

where $S_{k}(r)=r$ for $k=0, S_{k}(r)=\sin (r)$ for $k=1$ and $S_{k}(r)=\sinh (r)$ for $k=-1$, and from Einstein's field equations the Friedmann equations are obtained:

$$
\begin{align*}
\left(\frac{\dot{R}}{R}\right)^{2} & =H^{2}=\frac{8 \pi G}{3} \sum_{i} \rho_{i}-\frac{k c^{2}}{R^{2}} \tag{2}\\
\frac{\ddot{R}}{R} & =-\frac{4 \pi G}{3} \sum_{i} \rho_{i}\left(1+3 w_{i}\right) \tag{3}
\end{align*}
$$

where ρ_{i} is the energy density of component i and $w_{i}=P_{i} / \rho_{i} c^{2}$ is the corresponding equation of state.

The equation of state of matter is $w=0$ while for radiation (and relativistic matter) $w=1 / 3$. For a dark energy component $w<0$: $w=-1$ for the cosmological constant, $-1<w<0$ for "quintessence" and $w<-1$ for "phantom" energy.

Defining the ratios $\Omega_{i} \equiv \rho_{i} / \rho_{c}$, where $\rho_{c} \equiv 3 H^{2} / 8 \pi G$ and $\Omega_{k} \equiv-k c^{2} /(H R)^{2}$, we can rewrite equation (2) as: $\Omega_{t o t}=\sum_{i} \Omega_{i}=1-\Omega_{k}$.

Moreover, dividing equation (3) by equation (2) we obtain the general expression for Sandage's deceleration parameter $q=-\ddot{R} R / \dot{R^{2}}=\frac{1}{2}\left(1-\Omega_{k}\right)+$ $\frac{3}{2} \sum_{i} \Omega_{i} w_{i}$.

The comoving coordinate r can be written as a function of Ω_{i} :

$$
\begin{equation*}
r=\sqrt{\left|\Omega_{k}\right|} \int_{0}^{z} \frac{d z^{\prime}}{E\left(z^{\prime}\right)} \tag{4}
\end{equation*}
$$

where:

$$
\begin{equation*}
E(z)=\sqrt{\Omega_{k}(1+z)^{2}+\sum_{i} \Omega_{i}(1+z)^{3\left(1+w_{i}\right)}} \tag{5}
\end{equation*}
$$

The comoving distance ${ }^{1}$ is therefore given by:

$$
\begin{equation*}
d_{c}(z)=R_{0} S_{k}(r)=\frac{c}{H_{0}} \frac{1}{\left|\Omega_{k}\right|^{1 / 2}} S_{k}(r) \tag{6}
\end{equation*}
$$

where, as usual, the subscript 0 indicates the value at the present epoch. The luminosity distance d_{L} is simply given by $d_{L}=d_{c}(1+z)$, while the angular distance is $d_{A}(z)=d_{c} /(1+z)$.

The lookback time is also given by an analogous integral:

$$
\begin{equation*}
t(z)=\frac{1}{H_{0}} \int_{0}^{z} \frac{1}{\left(1+z^{\prime}\right) E\left(z^{\prime}\right)} \tag{7}
\end{equation*}
$$

[^0]
References

[1] Cappi A., 2001, ApL\&C 40, 161 (astro-ph/0105382)
[2] Coles P., Lucchin F., 1996, Cosmology: The Origin and Evolution of Cosmic Structure, John Wiley \& Sons, New York
[3] Hogg D.W., 1999, astro-ph/9905116
[4] Peacock J.A., 1999, Cosmological Physics, Cambridge University Press, Cambridge
[5] Peebles P.J.E., 1993, Principles of Physical Cosmology, Princeton University Press, Princeton

[^0]: ${ }^{1} d_{c}(z)$ corresponds to the transverse comoving distance D_{M} as defined by Hogg (1999).

