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Course outline (tentative)

Lecture 1: Fundamental aspects of half-mass radius evolution.
References.
The globular clusters of the Milky Way
Evolution of the half-mass radius
Effects of the Galactic tide

Lecture 2: Fundamental aspects of core radius evolution
The core radius
Energy generation by stellar evolution
Hénon’s Principle
The dynamical role of binary stars
Isothermal models and their stability

Lecture 3: Modelling globular clusters and their long-term evolution
Dynamical evolutionary models: N-body methods
Monte Carlo method
A case study: M4
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Lecture 1: Fundamental aspects of half-mass radius evoluti on

Figure: 47 Tuc (image credit T.V. Davis)
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The globular clusters of the Milky Way

◮ 157 listed at
http://physwww.physics.mcmaster.ca/∼harris/mwgc.dat

◮ Typical radius: a few pc

◮ Distance from Galactic Centre 0.5 – 125 kpc

◮ Almost all have ages ∼ 12Gyr

◮ Typical internal velocities: a few – 20 km/s (Mclaughlin & van
der Marel, 2005, ApJS, 161, 304)

◮ Typical M/LV ≃ 1.45M⊙/L⊙ (McLaughlin, 2000, ApJ, 539, 618)

◮ Median mass ∼ 3 × 105M⊙
◮ Fraction of binaries in the “core” almost all <∼ 10%, with outliers

(Milone et al, 2008, MmSAI, 79, 623)

◮ Low rotation speed and ellipticity (White & Shawl, 1987, ApJ,
317, 246)
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Why globular clusters are important

◮ Size of the Galaxy (Shapley 1918)

◮ Age of the universe (Sandage 1950s)

◮ Accretion onto the Galaxy (e.g. clusters associated with the
Sagittarius dwarf)

◮ Stellar evolution

◮ Stellar initial mass function and binarity

◮ Stellar collisions - blue stragglers (lectures by M. Davies, F.
Ferraro)

◮ High-energy astrophysics: X-ray binaries, millisecond pulsars
(lectures by M. Davies, F. Ferraro)
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The two time scales of star cluster dynamics

1. The crossing time tcr
◮ ∼ 1Myr for the globular star clusters of the Milky Way
◮ ∼ “period” of orbital motions of stars
◮ ∼ time scale of virialisation

2. The relaxation time trh

◮ ∼ N
log N

tcr

◮ ≫ tcr
◮ A fraction of the age of the universe for the globular clusters
◮ The time scale of evolution of a virialised cluster
◮ Escape rate is ∼ 100trh1

1Binney & Tremaine, p.556
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The three length scales of a globular cluster

Figure: Surface brightness profile of 47 Tuc (McLaughlin et al, 2006)

◮ Core radius rc = 22′′

◮ Half-mass radius rh = 190′′ (half-light radius)
◮ Tidal radius rt = 2500′′
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The half-mass radius

Definition : The radius of a sphere, centred at the centre of the
cluster, which encloses half of the mass of the cluster.

Example: M15 (van Leeuwen & Stappers, 2010, A&A, 509, A7)
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The star-star cluster analogy

Stars Star Clusters
Temperature decreases with radius Velocity dispersion

decreases with radius
Outward flow of energy Outward flow of energy
(radiative or convective) (via two-body encounters)
from hot to cold from fast to slow-moving stars
Central energy source Central energy source
(thermonuclear) (see Lecture 2)
Surface flux of energy Surface is nearly insulated
(radiation) (mass-loss too slow: 2)
Equilibrium Expansion

(central source balances Energy E ∼ −
GM
rh

flux at surface) Ė > 0, Ṁ ≃ 0⇒ rh increases
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Expansion of the half-mass radius

Expansion of the half-mass radius caused by a flow of energy,
which is caused by two-body relaxation, with time scale trh . Hence

ṙh

rh
=
ζ

trh
,

where ζ ≃ constant. (Actually ζ depends on the stellar mass
function.) Also

trh = 0.138
N1/2r3/2

h

m1/2G1/2 lnΛ
,

(Spitzer 1987, p.40), where
◮ N = number of stars
◮ m = (average) mass
◮ G = gravitational constant
◮ Λ ≃ λN, where λ is constant.

See also talk by Poul Alexander



13

Expansion of the half-mass radius (continued)

If we neglect escape, trh ∝ r3/2
h , and so

trh(t)
trh(0)

≃
(

rh(t)
rh(0)

)3/2

,

where t = 0 is some arbitrary reference time. Since ṙh/rh = ζ/trh(t),

ṙh

rh
=

ζ

trh(0)

(

rh(0)
rh

)3/2

⇒ r1/2
h ṙh =

ζ

trh(0)
rh(0)3/2

⇒
2
3

(

r3/2
h − rh(0)3/2

)

=
ζ

trh(0)
rh(0)3/2t

⇒ rh(t) = rh(0)

(

1 +
3
2
ζ

trh(0)
t

)2/3

(1)

⇒ trh(t) = trh(0)

(

1 +
3
2
ζ

trh(0)
t

)

(2)

At large times, trh(t) ≃ 3ζt/2 .



14

Hénon’s model
A numerical solution of the Fokker-Planck equation.

M. Henon, 1965, Sur l’évolution dynamique des amas globulaires.
II. Amas isolé, Annales d’Astrophysique, 28, 62 (transl. by F.
Renaud in arXiv:1103.3498).

(a) Evolution of rh (b) Density profile (upper
curve)

g
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N-body models showing expansion

Baumgardt et al, 2002, MNRAS, 336, 1069

Figure: rh (middle series of curves) in systems with N = 512–8192
equal-mass stars

In the early evolution there is no balance between the energy flow
across rh and the production of energy at the centre (see Lec 2).
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The tidal radius

Indefinite expansion limited by the environment. Eventually, forces
due to the Galaxy become important.
Notation:

MG mass of Galaxy (approximated as point mass)
RG galactocentric distance
MC cluster mass
r distance of outlying cluster member from cluster centre

(approximate cluster as point mass)
Force (per unit mass) due to galaxy dominates force due to cluster
if

GMG

R2
G

>
GMC

r2

⇒ r > RG

(

MC

MG

)1/2

This is a wrong estimate of the size of a star cluster.
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The tidal force

If the galactic force (per unit mass) is taken as
GMG

R2
G

, all stars in

the cluster have the same galactic acceleration, and internal
motion of the cluster is unaffected. We must estimate the variation
of the galactic force between the position of the star and the
position of the cluster centre, i.e.

r
d

dRG















GMG

R2
G















= −2r
GMG

R3
G

.

This differential force is called the tidal force (per unit mass).
Hence effect of galaxy dominates if

rGMG

R3
G

>∼
GMC

r2

⇒ r > RG

(

MC

MG

)1/3
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The tidal radius (corrected)

The limiting radius (beyond which acceleration due to Galaxy
dominates) is the tidal radius, estimated by

rt ≃ RG

(

MC

MG

)1/3

.

If a star cluster is born much smaller than its tidal radius (rh ≪ rt ) it
will expand as in eq.(1) until rh , rt are comparable. At that point the
cluster becomes tidally limited.
A tidally-limited cluster in a given galactic environment has
constant density:

MC

r3
t

≃
MG

R3
G
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Evolution of a tidally limited cluster

The cluster still tries to expand on a time scale trh , which causes
escape across the tidal boundary:

Ṁ
M
≃ −
ξ

trh
,

where ξ is some constant.
Since trh ∝ M1/2r3/2

h and M ∝ r3
h (constant density),

trh(t)
trh(t1)

≃ M(t)
M(t1)

,

where t1 is some other reference time,

Ṁ
M(t)

≃ −
ξ

trh(t1)
M(t1)
M(t)

.
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Evolution of a tidally limited cluster (continued)

Ṁ ≃ −
ξM(t1)
trh(t1)

⇒ M(t) ≃ M(t1)

(

1 − ξ
t − t1
trh(t1)

)

.

The cluster “evaporates” at a finite time t = t1 +
trh(t1)
ξ

. Because

density is constant, rh also vanishes at that time; also trh :

rh(t) ≃ rh(t1)

(

1 − ξ t − t1
trh(t1)

)1/3

Similarly trh(t) ≃ trh(t1)

(

1 − ξ t − t1
trh(t1)

)
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Hénon’s model
A numerical solution of the Fokker-Planck equation.

M. Henon, 1961, Sur l’évolution dynamique des amas globulaires,
Annales d’Astrophysique, 24, 369 (transl. by F. Renaud in
arXiv:1103.3499).
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The entire life history

Combining these results gives an approximate picture of the entire
evolution (Gieles et al, 2011, arXiv:1101.1821)
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A Monte Carlo model of M4
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Figure: Evolution of the half-mass radius in a Monte Carlo model of M4
(Heggie & Giersz, 2008, MNRAS, 389, 1858), compared with simple
theory.

The effect of the changing mass function, which is important in the
early evolution, is ignored in the simplest version of the theory
presented here.
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Application to the Milky Way system of globular clusters

Destruction mechanisms

◮ escape by dynamical interactions; time scale ∼ trh
◮ unsteady tides (“shocks”) when a cluster traverses the

Galactic plane, or passes the bulge

◮ dynamical friction, which causes a massive cluster to spiral
towards the Galactic Centre

Theoretical estimates of the time scales, expressed in terms of rh

and M, lead to a “survival triangle” inside which the time scales
exceed a Hubble time (Fall & Rees, 1977, MNRAS, 181P, 37;
Gnedin & Ostriker, 1997, ApJ, 474, 223).
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The survival triangle

R<3 kpc

R<5 kpc

R<8 kpc

R<12 kpc

In fact, clusters which are not tidally limited lie on the line trh ≃
3
2
ζt

(eq.2)
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External Forces - the Galactic Tide

◮ Consider a cluster moving on a circular orbit about the
Galactic Centre

◮ Use a rotating, accelerating frame of reference with origin at
the centre of the cluster, and x-axis pointing to the Galactic
Centre.

Galactic Centre

x

y

Cluster centre

Galactic orbit of cluster

◮ This introduces centrifugal and Coriolis accelerations.
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External Forces - the Galactic Tide (continued)

r

R

Centre of the Galaxy

Star

Centre of Mass
of the Cluster

Position vector of the star is R + r, where
◮ R is the position of the centre of mass of the cluster with

respect to the centre of the Galaxy.
◮ r is the position of a star relative to the centre of mass of the

cluster



28

External Forces - the Galactic Tide (continued)

Position vector of the star is R + r
Velocity of the star is ω × (R + r) + ṙ, where
◮ ω is the angular velocity of the cluster about the centre of the

Galaxy
◮ ṙ is the vector whose components are the time derivatives of

the components of r in the rotating frame
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External Forces - the Galactic Tide (continued)

Position vector of the star is R + r
Velocity of the star is ω × (R + r) + ṙ, where
◮ ω is the angular velocity of the cluster about the centre of the

Galaxy
◮ ṙ is the vector whose components are the time derivatives of

the components of r in the rotating frame
Similarly the acceleration is

ω × (ω × (R + r) + ṙ) +
∂

∂t
(ω × (R + r) + ṙ)

= ω × (ω × (R + r) + ṙ) + (ω × ṙ) + r̈)

= ω × (ω × (R + r)) + 2ω × ṙ + r̈

= −∇φC − ∇φG(R + r)

where
◮ φC is the gravitational potential due to the other stars in the

cluster
◮ φG is the gravitational potential due to the Galaxy
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External Forces - the Galactic Tide (continued)

Equation of motion of star:
ω × (ω × (R + r)) + 2ω × ṙ + r̈ = −∇φC − ∇φG(R + r)
Equation of motion of (centre of mass of) cluster:
ω × (ω × R) = −∇φG(R)
Subtracting,

ω × (ω × r) + 2ω × ṙ + r̈ = −∇φC − ∇φG(R + r) + ∇φG(R)

≃ −∇φC − r.∇∇φG(R)

⇒ r̈ + 2ω × ṙ + [ω × (ω × r) + r.∇∇φG(R)] = −∇φC



29

External Forces - the Galactic Tide (continued)

Equation of motion of star:
ω × (ω × (R + r)) + 2ω × ṙ + r̈ = −∇φC − ∇φG(R + r)
Equation of motion of (centre of mass of) cluster:
ω × (ω × R) = −∇φG(R)
Subtracting,

ω × (ω × r) + 2ω × ṙ + r̈ = −∇φC − ∇φG(R + r) + ∇φG(R)

≃ −∇φC − r.∇∇φG(R)

⇒ r̈ + 2ω × ṙ + [ω × (ω × r) + r.∇∇φG(R)] = −∇φC

Interpretation:
2ω × ṙ Coriolis acceleration
ω × (ω × r) centrifugal acceleration
r.∇∇φG(R) Galactic tidal acceleration
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External Forces - the Galactic Tide (continued)

Centrifugal and tidal accelerations derivable from a potential:

ω × (ω × r) + r.∇∇φG(R) = ∇
{

1
2

(ω.r)2 −
1
2
ω2r2

+
1
2

xi
∂2φG

∂xi∂xj
xj

}

,

where r = (x1, x2, x3), r = |r|.
If φG is the potential of an axisymmetric galaxy with a plane of
symmetry, the tidal potential reduces to two terms.
Example: point-mass galaxy:

ẍ + 2ωẏ − 3ω2x = −
∂φC

∂x

ÿ − 2ωẋ = −∂φC

∂y

z̈ + ω2z = −
∂φC

∂z

For isothermal galaxy model −3ω2x → −2ω2x, etc.
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External Forces - the Galactic Tide (continued)

◮ Potential and equipotentials in the plane of motion of the
cluster
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Potential here defines escape energy Ee .
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Tidal effects

Neglect acceleration due to cluster (e.g. distant star or escaper):

ẍ + 2ωẏ − 3ω2x = 0

ÿ − 2ωẋ = 0

if z = 0 (star moving in orbital plane of cluster). Motion on an
ellipse is possible:

x = a cosωt

y = 2a sinωt

In fact this family of motions (including the cluster field) persists
inside the tidal radius, and have energy above the escape energy
Ee. In simulations, a few percent of stars inside the tidal radius
have energies > Ee (“potential escapers”).
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Effect of Potential Escapers

Velocity dispersion profile in N-body model and some observed
clusters

(a) N-body model (Kuepper et al,
2010, MNRAS, 407, 2241)

(b) ω Cen (Scarpa & Falomo, 2010,
A&A, 523A, 43
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Tidal tails

Equations of motion far from the cluster:

ẍ + 2ωẏ − 3ω2x = 0

ÿ − 2ωẋ = 0

have solutions

x = c (constant)

y =
3
2

cωt .

These straight-line motions are followed by escapers in N-body
simulations. (Movie - starlab)
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Tidal tails

The example of Pal 5 (Source: Odenkirchen et al, AJ, 126.2385)
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The structure of tidal tails

The general solution of the equations in a tidal field (neglecting
cluster acceleration) is superposition of elliptic and straight-line
motion, called “epicyclic motion”.

Speed decreases near “loops”, particles accummulate there,
leading to density enhancements.



37

The structure of tidal tails (simulations)

(c) (d)

Kuepper et al, 2010, MNRAS, 401, 105
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Effect of potential escapers on the escape time scale

Stars inside the tidal radius with E > Ec (potential escapers) may
remain inside rt indefinitely, or at least for a long time:
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Effect of potential escapers on the escape time scale (cont)

Time it takes a potential escaper of energy E > Ee to escape is
tE ∝ (E − Ee)−2

(Fukushige & Heggie 2000, MNRAS, 318, 753).
In this time, relaxation changes the energy of a star by

∆E ∝
(

tE
trh

)1/2

(since relaxation is diffusive).

Set E − Ee = ∆E. Thus t−1/2
E ∝ t1/2

E t−1/2
rh ,⇒ tE ∝ t1/2

rh . Hence

∆E ∝ t−1/4
rh .

The fraction of mass escaping in time tE is proportional to ∆E, and
so the time scale of escape is proportional to

tE
∆E
∝

t1/2
rh

t−1/4
rh

= t3/4
rh

(Baumgardt, 2001, MNRAS, 325, 1323)
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Summary of Lecture 1

◮ The half-mass radius rh is the radius of a sphere containing
half the mass (theoretical equivalent of observer’s half-light
radius)

◮ rh evolves on the half-mass relaxation time scale

◮ For a compact cluster (tide can be neglected) rh expands as
t2/3

◮ For a tidally limited cluster, M/r3
h ≃ constant; rh varies as

(tdiss − t)1/3, where tdiss is time of dissolution

◮ For a tidally limited cluster, dissolution time ∝ t3/4
rh

◮ Stars escape along tidal tails (which follow the orbit of the
cluster through the Galaxy)

◮ Tidal tails may be clumpy through purely gravitational effects.
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Lecture 2: Fundamental aspects of core radius evolution

Figure: Surface brightness profile of 47 Tuc (McLaughlin et al, 2006)

◮ Core radius rc = 22′′

◮ Half-mass radius rh = 190′′ (half-light radius)
◮ Tidal radius rt = 2500′′
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The core radius

◮ Traditional observer’s definition: radius where surface
brightness falls to half its central value.

◮ Theorist’s value:

rc =

(

9σ2
c

4πGρc

)1/2

(King, 1966, AJ, 71, 64)2, where
◮ σc is the rms random velocity in one coordinate, at the centre
◮ ρc is the central mass density

◮ note some ambiguities:
◮ ρ may be dominated by dim stars (white dwarfs, neutron stars),

and so the observer’s core radius may be substantially different
◮ is σ mass-weighted?

◮ note: three-dimensional velocity dispersion is 3σ2 if the
distribution of velocities is isotropic

21463 citations on 30/4/11
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What determines the core radius?
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44

Energy generation by stellar evolution

Stars lose considerable mass in late stages of evolution, e.g. in
supernovae.
Suppose a star loses mass δm > 0, which escapes rapidly and
isotropically. Then change in energy of the cluster is

δE = −
1
2

(δm)v2
+ G

′
∑

i

(δm)mi

ri
,

where
◮ v is the speed of the star
◮

∑′ is a sum over all other stars i
◮ mi , ri are mass and distance to ith star

First term generally considerably smaller, hence

δE ≃ −(δm)φ

where φ < 0 is potential (per unit mass)
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Energy generation by stellar evolution (cont)

Rate of change of energy is

Ė = Ṁ〈φ〉,

where 〈φ〉 is the mean potential of the stars which are losing mass.
These are the most massive unevolved stars, which are
concentrated near the centre, because of mass segregation. |φ|
largest at centre, and value depends on size of core.
Energy is flowing across the half-mass radius at a rate of order
ζ |E |/trh (slide 2).

Hénon’s Principle (Hénon, 1975, IAUS, 69, 133)
..the rate of flow of the energy is controlled by the system as a
whole, not by the singularity...
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Application of H énon’s Principle to stellar evolution

◮ The system as a whole requires energy flow Ė ≃ ζ |E |
trh

.

◮ The core produces energy at a rate Ṁ〈φ〉.
◮ If the core is producing too much energy, it adjusts so as to

reduce Ė, i.e. |〈φ〉| reduces, i.e. the core radius expands.

◮ If the core is producing too little energy, then the core is losing
energy, and the core radius decreases.

◮ If the core can adjust to make Ṁ〈φ〉 ≃ ζ
|E |
trh

, we have

“balanced evolution” (Lecture 1).
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Binary formation

◮ If there is no energy generating mechanism, the core will
contract (core collapse)

◮ Eventually the density becomes so high that 3-body
interactions become significant. Then a binary will form. This
process is exothermic, and provides the required energy.
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Two movies illustrating core collapse (no energy generation)
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An illustrative N-body model

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  10  20  30  40  50  60

C
or

e 
ra

di
us

Time (Myr)

Radius of the core

◮ No mass loss up to 5Myr – core collapse
◮ Mass loss after 5Myr, but efficiency decreases; initial core

expansion, then recollapse. Most massive component is black
holes, which mass-segregate, but lose no further mass.

◮ black holes core-collapse, create BH binaries, and reverse cc
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Energy generation by hypothetical IMBH

◮ IMBH – intermediate-mass black hole (a few thousand M⊙;
see talk by Marzieh Bahmani)

◮ for high probabity of capture by the IMBH (coallescence), a
star must be strongly bound to it (large negative energy).
Stars reach large negative energy by relaxation, and the
scattered stars gain energy.

◮ Near the black hole σ2 ∼ GM•/r
◮ Energy of matter near radius r is ∼ ρr3σ2

◮ Relaxation time ∼ σ3/(G2mρ lnΛ)
◮ Energy flux Ė ∼ ρ2r3G2m lnΛ/σ ∼ ρ2r7/2G2m lnΛ/

√
GM•

◮ For constant flux ρ ∝ r−7/4 (Bahcall & Wolf , 1976, ApJ,
209,214) – a cuspy density distribution

◮ Evaluate at the edge of the cusp, where ρ, σ approach values
in the core: Ė ∼ ρ2

cG5M3
•m lnΛ/σ7

◮ For given flux (Hénon’s Principle) large BH mass requires low
ρc , i.e. large core radius (Heggie et al, 2007, PASJ, 59L, 11)
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Dynamical ejection of binary stars

Figure: Runaway stars from the Orion star forming region
(http://www.weasner.com/etx/ref guides/auriga.html)

This can be interpreted as a result of a dynamical binary-binary
interaction (Gualandris et al, MNRAS, 2004, 350, 615). The loss of
mass from a cluster is another heating mechanism.
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Escape by energetic three-body interactions

◮ Assume all masses equal. Binary star with semi-major axis a

has binding energy
Gm2

2a
. Typical orbital speed is of order

√
Gm/a. Suppose

√
Gm/a ≫ σ (rms 1-dimensional speed of

single stars in a cluster); i.e. a hard binary

◮ If binary and a single star, initially moving with speed ∼ σ,
interact within a distance ∼ a, star will typically leave with a
speed ∼

√
Gm/a ≫ σ.

◮ By conservation of momentum, binary must also leave with
comparable high speed.

◮ We suppose a small enough that the three objects escape
from the cluster, and estimate the cross section
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Estimate of reaction and heating rates

◮ Cross section Σ ∼ πa2

(

1 +
6Gm

aV2
∞

)

(lectures by M. Davies)

◮ Since we assumed Gm/a ≫ σ2 ∼ V2
∞, cross section much

greater than “size” of binary (πa2), and Σ ≃ 6πGma/V2
∞.

◮ The binary sweeps out a cylinder of cross-sectional area Σ at
speed V∞. Hence number of close encounters per unit time is

Ṅenc ≃ nΣV∞,

where n is the number density of single stars.
◮ If all three stars escape after the encounter, heating rate is

Ė ≃ 3m|φ|nΣV∞

≃ 3m|φ|n
6πGma

V2
∞

V∞

∼ −
Gm2anφ
σ
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Binary heating

For a single binary
Ė ∼ −Gm2naφ/σ (3)

◮ Heating also occurs in encounters even if there is no escape.
Changes only the numerical coefficient. (movie)

◮ Suppose there are many binaries, with binary fraction f .
(observations imply f <∼ 0.1; see slide 2). Total number of
binaries in the core is ∼ fnr3

c , and energy generation rate is

Ė ∼ fGm2n2a |φ|r3
c /σ

∼ fGm2n2a |φ|
σ

σ3

(Gnm)3/2
by eq.(2)

∼ fa |φ|σ2
√

mn/G

Again Ė increases if the core contracts (as n and |φ| increase)
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Core evolution by mass segregation

◮ As massive stars segregate to the centre, they lose energy.
◮ This energy is gained by stars of lower mass.
◮ If the massive stars have low luminosity (e.g. black holes), the

visible core of luminous stars expands. (Merritt et al, ApJ,
2004, 608L, 25; Mackey et al, 2008, MNRAS, 386, 65)

◮ May relate to trend of increasing core radius with age in star
clusters of the Magellanic Clouds

◮ Formation and evolution of black hole binaries also important
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The stability of balanced evolution: The spatial structure

◮ Balanced evolution: the core is producing energy at the rate
determined by conditions at (say) the half-mass radius.

◮ Spatial structure is like Hénon’s models (Lecture 1), except for
the presence of a core:
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Isothermal models

◮ Except at large r , Hénon’s model is nearly isothermal (σ
constant, i.e. independent of r)

◮ Hydrostatic equation (also one of Jeans’ equations of stellar
dynamics)

dp
dr

= −dφ
dr
ρ

where
◮ p = ρσ2 is the (kinetic) pressure
◮ φ is the gravitational potential per unit mass

Hence

σ2

ρ

dρ
dr

= −
dφ
dr

⇒ σ2 ln

(

ρ

ρ0

)

= −φ

where ρ0 is the central density, and we assume φ = 0 there.
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The isothermal equation

σ2 ln

(

ρ

ρ0

)

= −φ

⇒ ρ = ρ0 exp
(

− φ
σ2

)

Potential gradient given by “Newton’s Second Theorem”

dφ
dr

=
GM(r)

r2
(M(r) is mass within radius r)

⇒ M(r) =
r2

G
dφ
dr

⇒ 4πr2ρ =
1
G

d
dr

(

r2 dφ
dr

)

(differentiating with respect to r)

⇒ 4πGr2ρ = 2r
dφ
dr
+ r2 d2φ

dr2
(a form of Poisson’s equation)
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The isothermal equation (continued)

d2φ

dr2
+

2
r

dφ
dr

= 4πGρ

= 4πGρ0 exp
(

− φ
σ2

)

Scale φ = yσ2. Thus

d2y
dr2
+

2
r

dy
dr
=

4πGρ0

σ2
exp(−y)

Scale r = rcx =

√

9σ2

4πGρ
(eq.2). Then

d2y
dx2
+

2
x

dy
dx
= 9 exp(−y). (the isothermal equation, except for the 9)
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The isothermal solution

Log-log plot of density against radius
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60

Stability of an isothermal model

◮ Isothermal model has infinite mass and radial extent, and so
we consider a truncated model, enclosed within a rigid,
spherical, adiabatic boundary. No energy or mass can
escape.

◮ Suppose the boundary radius is small; say, comparable with rc
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Stability of an isothermal model (continued)

◮ When the boundary radius is small, the density contrast
between centre and boundary is small.

◮ The effect of gravity is weak
◮ The system behaves like an ordinary gas (though weakly

gravitating) and is stable.
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Stability of an isothermal model (continued)

◮ When the boundary radius is small, the density contrast
between centre and boundary is small.

◮ The effect of gravity is weak
◮ The system behaves like an ordinary gas (though weakly

gravitating) and is stable.

Systems with large density contrast
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Stability of an isothermal model (continued)

◮ imagine some heat shifted from the inside to the outside.

◮ The outside is kept in by the boundary. The temperature rises,
but only slighty, because the outer parts of the model are so
massive (high heat capacity)

◮ The inside is self-gravitating. It loses heat, particles fall closer
to the centre, and gain more kinetic energy than they lost
(negative heat capacity of a self-gravitating system)4

◮ The centre is now hotter than the outer parts, and heat
continues to flow from centre to outer parts.

◮ A gravothermal runaway is created, i.e. the model is unstable.

◮ Core collapse can be interpreted as a result of gravothermal
runaway

4In a self-gravitating system in virial equilibrium, T = −E, where T is kinetic
energy and E is total energy. If E decreases, T increases.
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Stability of an isothermal model (continued)

◮ An isothermal model with a density contrast
ρ(0)
ρ(edge)

>∼ 709 is

gravothermally unstable (Antonov, 1962; transl. in 1975,
IAUS, 113, 525)

◮ Physical explanation due to Lynden-Bell & Wood, 1968,
MNRAS, 138, 495

◮ For a fascinating, readable account of the thermodynamics of
self-gravitating systems, see Padmanabhan, 1990, Phys.
Rep., 188, 285
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Stability of balanced evolution - example

◮ Consider a single binary at the centre of a star cluster

◮ Ė ∼ −
Gmρcaφc

σ
(eq.3)

◮ This must balance energy flow at half-mass radius, i.e.

−Gmρcaφc

σ
∼ − E

trh
.

◮ We estimate

E ∼ −GM2

rh

trh ∼
σ3

G2mρh lnΛ

⇒ −
Gmρcaφc

σ
∼

G3M2mρh lnΛ

rhσ3
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Stability of balanced evolution - example (continued)

−
Gmρcaφc

σ
∼

G3M2mρh lnΛ

rhσ3

⇒ ρc

ρh
∼ −G2M2 lnΛ

rhσ2aφc

∼
(

σ2

−φc

) (

Gm
aσ2

) (

GM lnΛ

rhσ2

)

N

where
◮ φ varies logarithmically (i.e. weakly) in an isothermal region,

so first factor almost constant
◮ Second factor is hardness of the binary, which we treat as

constant
◮ Third factor is almost constant (virial theorem)

Therefore we expect balanced evolution to be unstable if N is
sufficiently large (as this makes the density contrast large)
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Gravothermal oscillations

◮ For binaries formed in 3-body encounters, and equal masses,
the critical N ∼ 7000 (Goodman, 1987, ApJ, 313, 576)

◮ The instability was discovered by Sugimoto & Bettwieser,
1983, MNRAS, 204P, 19; see also talk by Phil Breen
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Dependence of gravothermal oscillations on N

N-body models: Makino, 1996, ApJ, 471, 796
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Gravothermal oscillations in a model of NGC6397
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Summary of Lecture 2

◮ Definition of the core radius

◮ Energy generation mechanisms: mass loss by stellar
evolution, action of a central IMBH, ejection of binaries,
hardening of binaries; evolution of core by mass segregation
of a dark component; formation of binaries

◮ Hénon’s Principle
◮ Binary interactions

◮ gravitational focusing
◮ close-interaction cross section
◮ hard and soft binaries and their average behaviour

◮ Isothermal models: stability

◮ Core radius in balanced evolution

◮ Gravothermal oscillations
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Lecture 3: Modelling globular clusters and their long-term
evolution

Two types:
1. “Snapshot models”: dynamically consistent models which

describe the distribution of stars, in phase space, at the
present day. Examples:

◮ King’s models (King 1966) and their variants
◮ Schwarzschild models (e.g. van de Ven et al, 2006, A&A, 445,

513 – applied to ωCen)
◮ Non-parametric modelling with Jeans’ equations (e.g.

Gebhardt & Fischer, AJ, 109, 209)

2. Evolutionary models: models which follow the dynamical and
stellar evolution from some initial state to the present day.
Examples:

◮ N-body models (Hasani Zonoozi et al, 2011, MNRAS, 411,
1989 – Pal 14)

◮ Monte Carlo models (e.g. Giersz & Heggie, 2011, MNRAS,
410, 2698 – 47 Tuc)
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Snapshot models
Example: Isothermal model

For isothermal,

ρ

ρ0
= e−y (slide 1)

where y =
φ

σ2

and
d2y
dx2
+

2
x

dy
dx

= 9
ρ

ρ0

where x =
r
rc

and so ρ = ρ0 F

(

r
rc

)

,

where F is a certain function which can easily be calculated
numerically.
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Isothermal and King’s models

Then the surface density, on a line of sight passing at a distance R
from the centre, is

Σ =

∫ ∞

−∞
ρ
(√

R2 + z2
)

dz

= Σ0G

(

R
rc

)

,

where Σ0 is the value at the centre, and G is another function.
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Isothermal and King’s models

Then the surface density, on a line of sight passing at a distance R
from the centre, is

Σ =

∫ ∞

−∞
ρ
(√

R2 + z2
)

dz

= Σ0G

(

R
rc

)

,

where Σ0 is the value at the centre, and G is another function.
For King’s model (see talk by Marzieh Bahmani)

ρ

ρ0
= e−y

−
exp(−W0 + y)

3
√
π

(

4(W0 − y)3/2
+ 6(W0 − y)1/2

)

+ erf
√

W0 − y

−
exp(−W0)

3
√
π

(

4W3/2
0 + 6W1/2

0

)

+ erf
√

W0

where W0 is a parameter related to the depth of the potential well.
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King’s model (continued)

Then

Σ = Σ0 F

(

R
rc
,W0

)

,

where F is a different function.

Figure: King (1966) models: fixed rc ,Σ0, varying W0
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Model fitting

Source: Data from Trager et al, 1995, AJ, 109, 218 at
http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/AJ/109/218

Name log Radius (arcsec) µV (mag/arcsec2) Weight
ngc104 -0.005 14.38 1.000
ngc104 0.115 14.27 1.000
. . . . . . . . . . . . (206 entries)
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Model fitting (continued)

◮ Unit conversion required
◮ parsec→ arcsec (requires distance)
◮ surface density→ surface brightness (requires M/LV ratio, and

MV⊙)
◮ require numerical measure of goodness of fit, e.g.

∆ =

206
∑

1

wi(µi − µ(Ri , rc , ρ0,W0))2

◮ require optimisation routine for minimising ∆ in the space of
the three parameters rc , ρc ,W0, e.g. amoeba (Press et al,
1992, Numerical Recipes, CUP)

◮ A more informative method of optimisation is MCMC (Markov
Chain Monte Carlo). See for example CosmoMC
(http://cosmologist.info/cosmomc/). Provides information on
the range of parameter values consistent with the data, and
correlations among them (see also Tom Kitching’s Lecture 3).
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Dynamical evolutionary models I: N-body methods

One Milky Way globular cluster has been modelled with full-size
N-body model: Pal 14 (Hasani Zonoozi et al, 2011, MNRAS, 411,
1989)
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The N-body problem

◮ Summary: integrate numerically the equations

r̈ i = −G
j=N
∑

j,i,j=1

mj
r i − r j

|r i − r j |3

◮ Each force takes ∼ 30N calculations
◮ Each of N stars needs updating once per time step
◮ Typical time step≪ time to close encounter with nearest

neighbour,
rh

N1/3σ
∼ tcr

N1/3
, where tcr is the crossing time.

◮ About N/ ln N crossing times per relaxation time

(trh ∝
N1/2r3/2

h

ln N
)

◮ Computing time (wall-clock time)
W ∝ N10/3/ ln N ∼ N3 per relaxation time ∼ N5/2r−3/2

h
◮ Binaries very time-consuming (factor >∼ 10 for few % binary

fraction); dependence on N, rh complicated by distribution of
hardness
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History of progess with the N-body problem
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Figure: Largest N-body simulation to date showing advanced evolution
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Estimates for N-body modelling of globular clusters

◮ Assume W ∝ N5/2r−3/2
h

◮ Hasani Zonoozi et al found W ≃ 1 month for Pal 14 (with
binaries; rh ≃ 34pc, M ∼ 104M⊙)
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Small-scale N-body models

◮ The idea: model a cluster which has N stars by a model with
N∗ ≪ N stars

◮ The principle: get the time scale of the major evolutionary
effects correct

◮ Stellar evolution: set by stellar evolution models

◮ Two-body relaxation: time scale trh ∝
N1/2r3/2

h

log N
Hence choose radius of “small-scale” model so that

N∗1/2r∗h
3/2

log γN
=

N1/2r3/2
h

log γN

⇒ r∗h = rh

(

N
N∗

)1/3 (

log γN∗

log γN

)2/3

(Portegies Zwart et al, 1999, A&A, 348, 117; Heggie & Giersz,
2008, MNRAS, 389, 1858)
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Dynamical evolutionary models II: Monte Carlo codes

◮ Aims to follow the evolution on time scale of trh(≫ tcr )

◮ Each star characterised by its radius r (distance from cluster
centre), energy E and angular momentum J

◮ In each time step (∝ trh), for each star,
◮ r chosen appropriately for an orbit of energy E and angular

momentum J
◮ E and J are changed slightly according to theory of relaxation

(cumulative effect of gravitational encounters)

◮ Includes approximate treatments of
◮ Binaries (interactions treated with cross sections or on-the-fly

computation of individual interactions)
◮ stellar evolution (as in N-body codes)
◮ steady tide
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Dynamical evolutionary models II: Monte Carlo codes
(continued)

◮ Exclusions
◮ unsteady tides
◮ cluster rotation
◮ non-spherical cluster

◮ Advantage: speed. Even the cluster 47 Tuc (N ≃ 2 × 106)
takes a few days (single core)

◮ Availability: soon available within AMUSE (see
http://amusecode.org/)

◮ See
◮ Giersz et al, 2008, MNRAS, 388, 429
◮ Hénon, 1971, ApSS, 14, 151
◮ CMC (Cluster Monte Carlo code, J. Fregeau, ex-Northwestern

University)
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Complexity of the Monte Carlo method

In each step
◮ Reassign new positions (radii) to all N stars (O(N log N))
◮ Order the N stars by radius (for rapid calculation of the

potential and selection of particles for interaction) (O(N log N))
◮ Work through all N/2 pairs of neighbouring stars to carry out

◮ Two-body relaxation
◮ Stellar evolution
◮ (If one of the “stars” is a binary) carry out binary-single

interaction
◮ (If both of the “stars” are binaries) carry out binary-binary

interaction

Hence effort is

W ∼ N log N per relaxation time trh ∝ N1/2r3/2
h

∝ N1/2r−3/2
h (neglecting log factors)
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Monte Carlo - time taken to simulate MW globular clusters

Assume wall clock time ∝ N1/2r−3/2
h (slide 3)
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A Case Study: the Globular Cluster M4

Present-day parameters (Heggie & Giersz, 2008, MNRAS, 389,
1858)
◮ Distance from the sun 1.72 kpc (Harris catalogue)
◮ N ≃ 80000, rh ≃ 2.9pc, trh ≃ 3 × 109 yr
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M4: Initial conditions

Monte Carlo simulation takes ∼ 1 day. Best initial conditions which
we found in a multi-parameter search:

◮ N ≃ 453000

◮ rh ≃ 0.58pc (half-mass radius)

◮ fb ≃ 0.07 (binary fraction)

After 12 Gyr of evolution this gives fairly satisfactory fit to

◮ Surface brightness profile→
◮ Velocity dispersion profile

◮ Mass functions at two radii
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Evolution of the Monte Carlo model of M4
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N-Body Models of M4

◮ A realisation of these initial conditions is at
http://www.maths.ed.ac.uk/∼heggie/m4-fort.10.gz (31Mb).

◮ Initial unit of N-body time is 0.017 Myr.
◮ With NBODY6 each unit of time initially took about 3hrs,

hence expect entire simulation would take 240 yr.
◮ Monte Carlo simulation shows that rh increases from 0.58 pc

to 3.2 pc, and N decreases from 453 000 to 80 900. Hence
simulation will accelerate.

◮ If we assume wall-clock time W varies with time t as

dW ∝
dt
trh

N10/3 we find total duration of simulation ∼1–5 yr.

However, most of the speedup is towards the end; after 2
years the simulation will have reached only 360 Myr. (Now,
after 6 months, reached 56 Myr.)

◮ Other factors (e.g. increased proportion of unperturbed
binaries) may accelerate the calculation further.
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Evolution of the N-body model of M4
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Results 2. Half-mass radius, and radius of the core
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Results 2. Mass segregation
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Results 3. Binary fraction
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Results 4. Binary fraction in the core
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Results 5. Number of degenerate stars and collisions
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Results 6. Internal energy of binaries
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Progress of the Simulation
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Software, and entry-level hardware

◮ NBODY6 (with OpenMP and GPU support):
www.ast.cam.ac.uk/∼sverre/web/pages/nbody.htm

◮

(g) NVIDIA GeForce GTX
285 graphics card

(h) Super Micro 7046gt-trf server
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The Future

◮ GPU-enabled parallel version of NBODY6++ (in progress)
◮ “Multiples” module in AMUSE (see S. McMillan’s Lecture 3)
◮ Clusters of GPUs, e.g. NAOC Beijing (image: P. Berczik)
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...for what could be more beautiful than the heavens, which contain
all beautiful things? (Copernicus, de Revolutionibus)
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Summary of Lecture 3

◮ Two types of model: “snapshot” and evolutionary

◮ Fitting a King model

◮ Various observational constraints

◮ Challenge of computing an N-body simulation in a reasonable
time

◮ Scaling N-body simulations

◮ Hénon’s Monte Carlo method

◮ Example: evolutionary simulation of M4

◮ Recent hardware developments
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