LECTURE 2

Summary of Lecture 1

- Hubble diagram of distant standard candles (Sn Ia) plus Friedmann equation requires extra $w=-1$ fluid in the cosmic budget $H^{2}(z)=H_{0}^{2}\left\{\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}\right\}$
- Formally, this coincides with Einstein's cosmological constant Λ
- This corresponds to energy density remaining constant with expansion, i.e. negative pressure
- Value of density in Λ is enough to make Universe accelerate in recent times
- Value of density in Λ is right what we need to make geometry flat
- It's the missing piece of the puzzle
- Large-scale structure contains imprint of cosmological parameters: we can extract them through statistical analyses of clustering in large surveys
- Relic feature of early Universe baryon-photons interaction provides standard ruler: Baryonic Acoustic Oscillations in the galaxy power spectrum
- First detection of BAO in currently largest surveys provides confirmation of SnIa results

Cosmic concordance

Amanullah et al. 2010 (Union supernovae)

A standard cosmological model

The cosmological constant (or DE) is dominant today

Fine-tuning and Cosmic Coincidence

- If Λ has something to do with vacuum energy (a "quantum zero-point"), then it is a factor $\sim 10^{120}$ too small (Weinberg 1989)
- Also, it is suspiciously fine-tuned: why Ω_{m} and Ω_{Λ} so similar today?
redshift

Size $=1 / 4 \quad$ Size $=1 / 2$

Today

Size $=2$
time

Size $=4$

- Anthropic solution?
- Or perhaps $w=w(z)$? --> e.g. quintessence, a cosmic scalar field (Wetterich 1988), or some complex interaction between DM and DE? (see L. Amendola lectures)

DOES THEN UNDERSTANDING COSMIC ACCELERATION SIMPLY MEAN FINDING WHETHER $w=w(z) ?$

Not only: we need to look at both sides of the story...

Modify gravity theory [e.g. $\boldsymbol{R} \rightarrow \boldsymbol{f}(\boldsymbol{R})$]

"...the Force be with you"

And there is also a third possibility....

\rightarrow There is no dark energy or modification of GR whatsoever: we are just applying GR the wrong way to the inhomogeneous Universe (backreaction, e.g. Buchert 2008, GeRGr, 40, 467)

$$
\frac{\sqrt{\left\langle G_{\mu v}\left(T_{\mu \nu}\right)\right\rangle \neq G_{\mu \nu}\left(\left\langle T_{\mu v}\right\rangle\right)}}{\left(G_{\mu v}=R_{\mu v}-\frac{1}{2} g_{\mu v} R\right)}
$$

\rightarrow Very difficult to test observationally

In any case, measuring $w(z)$ is not the end of the story...

\rightarrow How could we distinguish between (at least) the "dark energy" (cosmological constant, quintessence, ...) and "modified gravity" options?
\rightarrow We need to look at how density fluctuations grow in the expanding Universe

Describing the growth of density fluctuations

Standard equations (Jeans theory) in inertial frame, neglecting pressure gradients
Continuity equation: $\quad\left(\frac{\partial \rho}{\partial t}\right)_{\mathbf{r}}+\vec{\nabla}_{\mathbf{r}} \cdot(\rho \mathbf{u})=0 \quad$ (mass conservation)
Euler equation: $\quad\left(\frac{\partial \mathbf{u}}{\partial t}\right)_{\mathbf{r}}+\left(\mathbf{u} \cdot \vec{\nabla}_{\mathbf{r}}\right) \mathbf{u}=-\vec{\nabla}_{\mathbf{r}} \Phi \quad$ (momentum conservation)
Poisson equation : $\nabla_{\mathbf{r}}^{2} \Phi=4 \pi G \rho$.

Transforming these to comoving coordinates \boldsymbol{x} (and peculiar velocities \boldsymbol{v}) and linearizing
Continuity : $\quad \frac{\partial \delta}{\partial t}+\frac{1}{a} \vec{\nabla} \cdot[(1+\delta) \mathbf{v}]=0$
Euler : $\frac{\partial \mathbf{v}}{\partial t}+\frac{1}{a}(\mathbf{v} \cdot \vec{\nabla}) \mathbf{v}+\frac{\dot{a}}{a} \mathbf{v}=-\frac{1}{a} \vec{\nabla} \phi \quad \delta=(\rho-\bar{\rho}) / \bar{\rho} \ll 1$
Poisson : $\quad \nabla^{2} \phi=4 \pi G \rho_{b} a^{2} \delta \quad$ with $\quad \phi \equiv \Phi-\frac{2}{3} \pi G \rho_{b} a^{2} x^{2}$.

Describing the growth of density fluctuations

Combining these equations one gets

$$
\frac{\partial^{2} \delta}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t}=4 \pi G \bar{\rho} \delta
$$

or

$$
\ddot{\delta}+2 H(t) \dot{\delta}=4 \pi G \bar{\rho} \delta
$$

which has a growing solution (plus a decaying one, which we can ignore after sufficient time)

$$
\delta^{+}(\bar{x}, t)=\hat{\delta}(\bar{x}) D(t)
$$

$D(t)$ normalized to a reference redshift (e.g. CMB) is the GROWTH FACTOR and we define the GROWTH RATE

$$
G(t)=\frac{D(t)}{D\left(t_{C M B}\right)}
$$

$$
f \equiv \frac{d \ln G}{d \ln a}
$$

- The growth equation (and thus the growth rate) depends not only on the expansion history $H(t)$ (and thus on w) but also on the gravitation theory (e.g. Lue et al. 2004)
- Measuring the growth rate $f(z)$ can break the degeneracy between dark energy and modified gravity (however, see Kunz \& Sapone 2007)

For a wide variety of models

$$
f(z)=\left[\Omega_{\mathrm{m}}(z)\right]^{\gamma}
$$

(Wang \& Steinhardt 1998, Amendola et al. 2005, Linder 2005)
e.g.
$\gamma=0.55$ for standard Λ
$\gamma=0.68$ for DGP braneworld

How can we measure $f(z)$?

Or we can count the number density of X-ray clusters...

REFLEX: Boehringer et al. 2004
(figure from Borgani \& Guzzo 2001)
...and how it evolves with redshifts: probing a combination of the growth rate $\mathrm{f}(\mathrm{z})$ and the expansion rate $\mathrm{H}(\mathrm{z})$

Borgani \& Guzzo 2001
...or use weak gravitational lensing "tomography"

Growth produces motions: galaxy peculiar velocities

Peculiar velocities manifest themselves in galaxy redshift surveys as redshift-space distortions (Kaiser 1987)

real space

Peculiar velocities manifest themselves in galaxy redshift surveys as redshift-space distortions (Kaiser 1987)

redshift space

Redshift-space galaxy-galaxy correlation function $\xi\left(\mathrm{r}_{\mathrm{p}}, \pi\right)$

Compression parameter β (Kaiser 1987)

Kaiser model of linear redshift-distortions (1987)

- Easier to describe in Fourier space:

$$
P(k, \mu)=P(k)\left[1+\frac{f}{b} \mu^{2}\right]
$$

where f is growth rate and b is the linear bias of the class of galaxies that we are using. If galaxies trace the mass $b=1$.

- It is usually expressed in terms of the parameter $\beta=f / b$
- One has also to account for the nonlinear effects on small scales, so a more complete description is given by

$$
P\left(k_{\|}, k_{\perp}\right)=P(k)\left(1+\beta \mu^{2}\right)^{2} D\left(k \mu \sigma_{p}\right) .
$$

Redshift-space galaxy-galaxy correlation function $\xi\left(\mathrm{r}_{\mathrm{p}}, \pi\right)$

2dFGRS, z~0.1

Compression
\longrightarrow parameter
$\beta=0.49 \pm 0.09$

Peacock et al. 2001, Hawkins et al. 2003

How to estimate β from observed $\xi\left(\mathrm{r}_{\mathrm{p}}, \pi\right)$?

A natural way for this circularly (a)symmetric problem is to decompose $\xi(\mathrm{s})$ in spherical harmonics (Hamilton 1992, 1997)

$$
\xi\left(r_{p}, \pi\right)=\xi_{0}(s) P_{0}(\mu)+\xi_{2}(s) P_{2}(\mu)+\xi_{4}(s) P_{4}(\mu)
$$

where P_{n} are Legendre polynomials and the moments $\xi_{\mathrm{n}}(\mathrm{s})$ are given by

$$
\begin{gathered}
\xi_{0}(s)=\left(1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}\right) \xi(r) \\
\xi_{2}(s)=\left(\frac{4}{3} \beta+\frac{4}{7} \beta^{2}\right)[\xi(r)-\bar{\xi}(r)] \\
\xi_{4}(s)=\frac{8}{35} \beta^{2}\left[\xi(r)+\frac{5}{2} \bar{\xi}(r)-\frac{7}{2} \overline{\bar{\xi}}(r)\right] ; \\
\bar{\xi}(r) \equiv 3 r^{-3} \int_{0}^{r} \xi\left(r^{\prime}\right) r^{\prime 2} d r^{\prime} \\
\overline{\bar{\xi}}(r) \equiv 5 r^{-5} \int_{0}^{r} \xi\left(r^{\prime}\right) r^{\prime 4} d r^{\prime}
\end{gathered}
$$

In general, β can be extracted in different ways from combinations of the moments or using the full relationship:
a) Ratio of redshift to real-space functions

$$
\frac{\xi(s)}{\xi(r)}=\left(1+\frac{2 \beta}{3}+\frac{\beta^{2}}{5}\right)
$$

b) Quadrupole to monopole ratio [requires power-law assumption for $\xi(\mathrm{r})$]

$$
\frac{\xi_{2}(s)}{\xi_{0}(s)}=\frac{\gamma-3}{\gamma} \frac{\frac{4}{3} \beta+\frac{4}{7} \beta^{2}}{1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}}
$$

c) Q-statistics [totally independent from functional form of $\xi(r)$]

$$
Q(s)=\frac{\frac{4}{3} \beta+\frac{4}{7} \beta^{2}}{1+\frac{2}{3} \beta+\frac{1}{5} \beta^{2}}=\frac{\xi(s)}{\xi_{0}(s)-\frac{3}{s^{3}} \int_{0}^{s} \xi_{0}\left(s^{\prime}\right) s^{\prime 2} d s}
$$

d) Full model in terms of moments of $\xi(r)$ and Legendre polynomials

Q statistics for different sample volume/densities

model

M. Pierleoni, Laurea thesis, Bologna, 2006
vVDS2

The full 2D model is constructed as the convolution of the linearly-distorted $\xi_{L}(\mathrm{~s})$

$$
\xi_{L}\left(r_{p}, \pi\right)=\xi_{0}(s) P_{0}(\mu)+\xi_{2}(s) P_{2}(\mu)+\xi_{4}(s) P_{4}(\mu)
$$

with the distribution of non-linear pairwise velocities, well described by an exponential (Peebles 1980)

$$
f(v)=\left(\sigma_{12} \sqrt{2}\right)^{-1} \exp \left\{-\sqrt{2}|v| / \sigma_{12}\right\}
$$

such that $\xi\left(r_{p}, \pi\right)$ is then modelled as

$$
\xi\left(r_{p}, \pi\right)=\int_{-\infty}^{\infty} \xi_{L}\left[r_{p}, \pi-\frac{v(1+z)}{H(z)}\right] f(v) d v
$$

Need to reconstruct the real-space $\xi(r)$: get it from the projected (distortion-free) function

$$
w_{p}\left(r_{p}\right) \equiv 2 \int_{0}^{\infty} \xi\left(r_{p}, \pi\right) d \pi
$$

as

$$
\xi(r)=\frac{1}{\pi} \int_{0}^{\infty} \frac{d w_{p}}{d r_{p}} \frac{d r_{p}}{\left(r_{p}^{2}-r^{2}\right)}
$$

Growth rate of structure from redshift distortions at $\mathrm{z} \sim 1$

$$
f=b_{L} \beta
$$

- 2dFGRS: Hawkins+ 2003
- SDSS main: computed from Tegmark+ 2005
- SDSS-LRG: Tegmark+ 2007, Cabre \& Gaztanaga 2008 (see also Yamamoto+ 2008)
- 2SLAQ: Ross+ 2007 (gal), da Angela+ 2007 (QSO)
- VVDS: Guzzo+ 2008

$f(z)$ from redshift distortions, recent developments

Blake et al. 2011, arXiv:1104.2948

- WiggleZ survey, 152,000 redshifts $0.1<z<0.9$ (aim at 200,000 gals)
- Original main goal: BAO
- Redshift distortions from $P(k)$
- Large volume, but very sparse sample
- UV-selected emission-line galaxies from GALEX: complex selection function

END OF LECTURE 2

