Collisions and Close Encounters within Globular Clusters

Prof. Melvyn B. Davies Lund Observatory Dept Astronomy and Theoretical Physics Lund University

Lecture 2

- Production of blue stragglers (both from single-single collisions and encounters involving binaries)
- Explanation of observed blue straggler population
- Production of interacting binaries

H–R Diagram of a globular cluster

Two kinds of blue stragglers

Those produced in collisions/mergers between two single stars

Those produced via mass transfer within binaries

Stellar encounter timescales

Cross section is given by

$$\sigma = \pi R_{min}^2 \left(1 + \frac{2G(M_1 + M_2)}{R_{min}V_{\infty}^2} \right)$$

Timescale for a given star to undergo an encounter is

$$\tau_{enc} \sim 10^{11} yr \, \left(\frac{10^5/pc^3}{n}\right) \cdot \left(\frac{M_{\odot}}{M}\right) \cdot \left(\frac{R_{\odot}}{R_{min}}\right) \cdot \left(\frac{V_{\infty}}{10 km/s}\right)$$

Stellar collision between two MS stars

Modelling post-collision evolution is very difficult

- Significant rotation
- Possible mixing of material
- Angular momentum loss?

(eg Sills et al 2005; 2009)

Wednesday, May 11, 2011

How much do stars mix during collisions?

(Sills, Adams, and Davies 2005)

Making blue stragglers through binary evolution

(Davies, Piotto, and De Angeli 2004)

How does blue straggler formation rate scale with cluster mass?

Collision rate between main-sequence stars given by

$$\Gamma_{\rm coll} \propto \frac{\rho^2 r_{\rm c}^3}{\sigma} \propto \frac{\rho^2 r_{\rm c}^3}{\sqrt{M_{\rm tot}/r_{\rm h}}} \propto \frac{M_{\rm c}^2 r_{\rm c}^{-3}}{\sqrt{M_{\rm tot}/r_{\rm h}}} \propto \frac{f_{\rm c}^2 r_{\rm h}^{1/2}}{r_{\rm c}^3} M_{\rm tot}^{3/2}$$

Number of blue stragglers made in collisions $N_{\rm bs,coll} \propto M_{\rm tot}^{3/2}$

Number of blue stragglers made in binaries

 $N_{\rm bs,bin} \propto M_{\rm tot}$

There are roughly the same number of blue stragglers in all clusters!

(eg Davies, Piotto, and De Angeli 2004)

The effect of encounters on binaries

(Davies, Piotto, and De Angeli 2004)

Predicted BS numbers from both collisions and binaries

(Davies, Piotto, and De Angeli 2004)

Globular cluster M30

Globular cluster M30

How to make an interacting binary

Making interacting binaries containing white dwarfs

Making interacting binaries containing neutron stars

(Ivanova et al 2008)

How to make an interacting binary

- Tidal capture (single-single encounter)
- Collisions involving a red giant making a common envelope system
- Encounters between binaries and single stars which lead to clean exchanges

Tidal capture

(Benz and Hills 1992)

Tidal capture II

Rcapt ~ 3Rstar (agrees with theoretical prediction of Fabian, Pringle and Rees 1975).

Post tidal capture, (might) get tidal circularisation. System put into circular orbit separation ~6 Rstar.

Problem: heating in star may cause it to expand forming a merged system rather than a binary.

A high-velocity collision between a red giant and a black hole

A high-velocity collision between a red giant and a black hole

Wednesday, May 11, 2011

A high-velocity collision between a red giant and a black hole

Outcome of a lower-velocity red giant collision

Collision leads to the formation of a *common-envelope* system, with intruder and red-giant core orbiting inside envelope of gas.

Intruder and red-giant core (effectively a white dwarf) spiral together as envelope is ejected.

$$\frac{G(M_c + M_e)M_e}{\lambda d_i r_l} = \alpha_{\rm ce} \left(\frac{GM_2M_c}{2d_f} - \frac{GM_2(M_e + M_c)}{2d_i}\right)$$

Final binary contains a white dwarf and the intruder star. Can reduce the separation from ~100Rsolar to ~10 Rsolar.

Making binaries via binary-single encounters

Wednesday, May 11, 2011