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1 Introduction

Globular clusters (see Fig. 1) have long been regarded as near-perfect laboratories for studies
of stellar physics and stellar dynamics. Some reasons (and complications) are:

• they are isolated in space (but not all clusters are found in galactic halos—many disk
and bulge clusters are known, and dynamical friction has probably transported many
clusters to the Galactic Center)

• they contain coeval stars (but many clusters are now known to contain multiple stellar
populations indicating several distinct phases of star formation)

• they contain virtually no gas or dust (today, that is—at early times, gas dynamical
processes dominated their evolution)

• they are nearly spherical (although several are measurably flattened by rotation and/or
tidal effects)

These systems thus represent a relatively—although not perfectly—“clean” realization
of the classical N-body problem

ai ≡ ẍi =
N∑
j 6=i

Gmj
xj − xi

|xj − xi|3
, i = 1, . . . , N. (1)

We begin our study of cluster dynamics by ignoring complicating factors such as gas dy-
namics, stellar evolution, mass loss, etc., and focus on the pure N-body problem, basically
as it might have been described by Newton. We’ll define time scales and other units, dis-
cuss the fundamental dynamical processes driving cluster evolution, and present some basic
terminology relevant to cluster dynamics.

Eq. (1) is a particle description of the problem—appropriate to star clusters with N ∼
103 − 107. For sufficiently large N (and N = 106 is probably enough), it is possible and
convenient to switch to a continuum description of the problem, in which we treat the
stars as a continuous fluid, with well defined “thermodynamic” properties ρ(x), 〈v2〉(x),
etc. The condition for this to be feasible, for N stars uniformly distributed in a box of side
L, which represents the characteristic length scale of the cluster—the macroscopic scale of
interest—is that there exist a scale λ� L such that a cube of side λ contains many particles,



Figure 1: Left: an HST image of the old globular cluster M4. Right: an N-body realization
(without red giants) of a cluster having similar structural properties.

so meaningful thermodynamic definitions are possible. In terms of the mean interparticle
spacing ` ∼ L/N1/3, we require that

`� λ� L. (2)

If this is the case, we can employ the fluid approximation on scales larger than λ.
For now, we will adopt the more natural, and arguably more physical, particle view, but

will briefly return to the continuum formulation later. One very interesting, and still current,
aspect of cluster dynamics is the remarkable degree to which the continuum description
captures the essential dynamics, even for quite small systems where the approximation is
hard to justify. See §4 and Heggie’s lectures.

2 Virial Equilibrium

Let’s begin by refining our notion of “equilibrium” for a stellar system. For a fluid-dynamical
system, equilibrium means the familiar hydrostatic equilibrium, in which the fluid is at rest
(no large-scale velocities—on scales greater than λ, as just defined). In a stellar system,
stars are constantly moving in and out on their orbits, but the analogous statement is that,
at any given radius (for a spherical system, at least), there are as many stars moving inward
as moving outward—that is, there is no net radial stellar flux.



2.1 The Virial Theorem

A convenient global restatement of the above condition involves the quantity

I =
N∑
i=1

mi r
2
i ,

where ri = |xi|. This is the radial moment inertia of the system. Differentiating, we have

İ = 2
N∑
i=1

mi xi · vi ,

Ï = 2
N∑
i=1

mi

(
v2i + xi · ai

)
.

Setting Ï = 0 as our definition of equilibrium, we have

N∑
i=1

mi v
2
i +

N∑
i=1

mi xi · ai = 0.

The first term is simply twice the total kinetic energy of the system, 2T . We can simplify
the second term by using Eq. (1) to rewrite it as

N∑
i=1

N∑
j 6=i

Gmimj
xi · (xj − xi)

|xj − xi|3
=

N∑
i=1

N∑
j>i

Gmimj
(xi − xj) · (xj − xi)

|xj − xi|3

= −
N∑
i=1

N∑
j>i

Gmimj

|xj − xi|

= U ,

where U is the total potential energy of the system. Thus we obtain the (scalar) Virial
Theorem:

2T + U = 0. (3)

A stellar system for which this relation holds is said to be in virial equilibrium. We’ll
investigate later how systems get into this state. For now, we’ll simply assume it to be the
case.

Since the total energy is

E = T + U (< 0, note) ,

in virial equilibrium we have

T = − E, U = 2E.



2.2 Length and Time Scales

We can define some characteristic physical scales for a system in virial equilibrium (Eq. 3).
For a cluster of total mass M , the virial radius, Rvir, is defined as

Rvir ≡ − GM2

2U
= − GM2

4E
.

It represents a characteristic length scale for the cluster. It is typically comparable to the
cluster half-mass radius, Rh, the radius of the sphere centered on the cluster enclosing half
of the cluster’s total mass. The two radii are often used interchangeably, although they are
distinct physical quantities. Spitzer (1987) notes that Rvir ≈ 0.8Rh for a broad range of
common cluster models.

The cluster dynamical time scale (or “crossing time”), tdyn, is

tdyn ≡
(
GM

Rvir
3

)−1/2
=

GM5/2

(−4E)3/2
(4)

= 0.47 Myr

(
M

106M�

)−1/2 (
Rvir

10pc

)3/2

.

The second form of this and the previous expression conveniently define Rvir and tdyn in
terms of conserved quantities.

Finally, the cluster-wide velocity dispersion 〈v2〉 is

〈v2〉 =
2T
M

= − 2E

M

=
GM

2Rvir

(5)

= (14.7 km/s)2
(

M

106M�

)(
Rvir

10pc

)−1
.

Dynamicists often write the total kinetic energy T in terms of the “thermodynamic” quantity
kT , defined by

T = 3
2
NkT

so

kT = 1
3
〈m〉〈v2〉 = − 2E

3N
in virial equilibrium, (6)

where 〈m〉 = M/N is the mean stellar mass.
Since gravity has no preferred scale, dynamicists find it convenient to work in a system

of dimensionless units such that all bulk cluster properties are of order unity. The system in
widespread use, described in more detail by Heggie & Mathieu (1986), has G = 1,M = 1,
and E = −1

4
, so Rvir = 1, tdyn = 1, and 〈v2〉 = 1

2
.



3 Relaxation

The long-term evolution of a star in hydrostatic equilibrium is driven by thermal and nuclear
processes that transfer energy throughout the star and generate energy in the core. In a star
cluster, thermal evolution is driven by two-body relaxation, while energy is generated by
binary interactions, as discussed later by Heggie. We now describe the process of two-body
relaxation in more detail.

To a first approximation (Fig. 2), stars orbiting in a cluster move on relatively smooth
orbits determined by the bulk mean-field gravitational potential of the system as a whole.
However, stars occasionally experience close encounters with one another, changing their
orbital parameters and transferring energy from one to the other (see Fig. 3). This is the
thermalizing process that allows energy to flow around the stellar system. To estimate the
time scale on which it operates, we begin by calculating the time scale for a close encounter
to occur.

Figure 2: Two typical orbits in a 10,000-body system. Note that both orbits are smooth,
although the one on the right does show one or two sharp “kinks” associated with close
encounters in the dense core.

3.1 Two-body Scattering

Our basic approximation here is the assumption that encounters between stars can be treated
as isolated two-body scattering events. This is permissible because, in Eq. (2), ` is the scale
of two-body encounters, so we can talk sensibly about stellar velocities at infinity (really,
at separation L) without having to worry about the large-scale motion of stars around the
cluster.

The outcome of a two-body scattering encounter is well known from elementary physics.
We simply quote the relevant results here. Imagine two stars of masses m1 and m2 ap-



-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

y

x

Figure 3: Enlargement of the stellar orbit in the right-hand frame of Fig. 2.

proaching one another on unbound trajectories with relative velocity at infinity v∞ and
impact parameter b (Fig. 4). The solution for the relative orbit r = x1 − x2 is

r(1 + e cos θ) = a(e2 − 1),

where (with m = m1 +m2)

a =
Gm

v∞2
is the semi-major axis, and

e =

√√√√1 +

(
bv∞
Gm

)2

is the eccentricity.

The deflection angle is ψ = π − 2θ1, where

cos θ1 = 1/e , or

tan θ1 =
bv∞

2

Gm
.

Thus the impact parameter corresponding to a 90◦ scattering, ψ = π/2 or θ1 = π/4, is

b90 =
Gm

v∞2
.

More generally, for encounters in a cluster, we have m ∼ 2〈m〉 and 〈v∞2〉 ∼ 2〈v2〉, and we
may write

b90 ∼
G〈m〉
〈v2〉

. (7)



Figure 4: Two stars, of masses m1 and m2, approach one another with impact parameter b
(and relative velocity at infinity v∞), and are deflected by an angle ψ.

For 〈m〉 ∼ 1M� and 〈v2〉1/2 ∼ 10 km/s, Eq. (7) gives b90 ∼ 9 AU. Combining Eqs. (5) and
(7), we find b90 ∼ 2Rvir/N .

3.2 Strong Encounters

The strong encounter time scale, ts, is the time needed for a typical star to experience a 90◦

scattering. For a star of mass m∗ moving with velocity v through a uniform field of identical
stars with number density n, the cross section for a strong encounter is

σ = πb290 =
πG2m2

∗
v2

.

The time scale for a strong encounter then is

ts = (nσv)−1 =
v3

πG2m2
∗n
.

Replacing m∗ by the mean stellar mass 〈m〉, v2 by the mean stellar velocity dispersion 〈v2〉,
and writing 〈m〉n = ρ, we obtain

ts =
〈v2〉3/2

πG2〈m〉ρ
. (8)

This is the relevant time scale for discussions of interactions involving close binaries, as
discussed later in Heggie’s lectures.



3.3 Distant Encounters

The cross section for wide encounters, with smaller deflections ψ � 1, is much larger than
that for a 90◦ scattering, but to estimate the cumulative effect of many small-angle deflections
we must adopt a different approach. Consider again our star moving through a field of
similar stars. For a single encounter with impact parameter b, the resulting velocity change
transverse to the incoming velocity v is

δv⊥ = v sinψ

= 2v
tan θ1

1 + tan2 θ1

= 2v

(
b

b90

)(
1 +

b2

b290

)−1
.

Integrating over repeated random encounters, we expect the mean velocity change in any
direction transverse to the incoming velocity to be zero, by symmetry:

∆v⊥ =
∫ ∞
−∞

2v

(
b

b90

)(
1 +

b2

b290

)−1
= 0.

The transverse velocity undergoes a symmetric, two-dimensional random walk, and we expect
transverse velocity changes to add in quadrature, leading to a non-zero value for the mean
square transverse velocity ∆v2⊥. During a time interval δt, the number of encounters with
impact parameters in the range [b, b + db) is 2πb db nvδt, so integrating over all encounters,
we find

∆v2⊥ = 2πnvδt
∫ bmax

0
b db 4v2

(
b

b90

)2 (
1 +

b2

b290

)−2

= 8πnv3δt b290

∫ bmax/b90

0

x3 dx

(1 + x2)2

≈ 8πδt
G2m2

∗n

v
ln

(
bmax

b90

)
,

where we have assumed bmax ∼ Rvir � b90.
We can define a two-body relaxation time scale, δtr, as the time interval in the above

expression corresponding to ∆v2⊥ = v2. Rearranging the equation and replacing all quantities
by mean values, as above, we find

δtr =
〈v2〉3/2

8πG2〈m〉ρ ln Λ
, (9)

where the “Coulomb logarithm” term (the term stemming from the almost identical devel-
opment found in plasma physics) has Λ = Rvir/b90 = 1

2
N , from Eqs. (5) and (7).

There is considerable ambiguity in the above definition. For example, we could equally
well have used ∆v2‖ as our measure of relaxation, and our procedure neglects the distribution



of relative velocities of stars in a real system. In fact, all approaches and refinements yield
the same functional dependence on physical parameters as Eq. (9), but they differ in the
numerical coefficient. The expression presented in Spitzer (1987), now widely adopted as a
standard definition of the term, defines the relaxation time in terms of ∆v2‖, and averages
over a thermal velocity distribution—the end point (not always realized in practice) of the
relaxation process. The result is

tr =
0.065 〈v2〉3/2

G2〈m〉ρ ln Λ
(10)

= 3.4 Gyr

 〈v2〉1/2
10km/s

3 (
〈m〉
M�

)−1 (
ρ

100M�pc−3

)−1 (
ln Λ

10

)−1
.

The precise definition of Λ is also the subject of a minor debate. Spitzer (1987) chooses
bmax = Rh and hence writes Λ = 0.4N . Giersz & Heggie (1994) calibrate the relaxation
process using N-body simulations (see Lecture 3) and find Λ ∼ 0.1N . For systems with a
significant range of stellar masses, the effective value of Λ may be considerably smaller than
even this value.

Relaxation is the process whereby a stellar system thermalizes, that is, it sets the time
scale on which the velocity distribution approaches a Maxwellian. This fact is key to under-
standing the long-term dynamics of clusters. We note in passing that, although the analysis
leading to Eq. (10) is global in nature, it is common to find this expression used as a local
measure of the relaxation or thermalization time scale in a system.

3.4 Comparison of Time Scales

Comparing Eqs. (10) and (8), we see that

ts
tr
∼ 5 ln Λ ∼ 60 for N ∼ 106,

so distant encounters dominate over close encounters in determining the flow of energy around
the system.

Spitzer (1987) defines a global relaxation time scale, often referred to as the half-mass
relaxation time, trh, by replacing all quantities in Eq. (10) with their system-wide averages,

〈v2〉 → GM

2Rvir

ρ → 3M

8πRh
3

〈m〉 → M

N
,

obtaining

trh =
0.138NRh

3/2

G1/2M1/2 ln Λ
(11)

= 6.5 Gyr
(
N

106

)(
M

106M�

)−1/2 (
Rh

10 pc−3

)3/2 (
ln Λ

10

)−1
.



Hence, from Eqs. (4) and (11), we have

trh
tdyn

∼ N

5 ln Λ
,

and we see that relaxation is a slow process relative to the dynamical time for all but the
smallest systems.

Relaxation is driven by the granularity in a stellar system—that is, the statistical de-
parture of the system from its mean-field average. As the number of stars in the system
increases, the granularity decreases and relaxation slows relative to the crossing time. Sys-
tems in which the relaxation time is shorter than the time scale of interest—for example,
the Hubble time—and hence for which relaxation is an important evolutionary process, are
often referred to as collisional systems. (Note that this dynamical terminology does not
necessarily have anything to do with the possibility of actual stellar collisions, such as those
discussed later by Davies.) Systems in which the relaxation time is longer than any other
time scale of interest are called collisionless. Open and globular clusters, as well as some
galactic nuclei (including the nucleus of the Milky Way galaxy), and some dwarf galaxies,
are collisional. The disks and halos of large spiral and elliptical galaxies are collisionless.

4 Particle and Continuum Models

Modeling methods for star clusters fall fairly naturally into two categories. The first simply
treats the system as a discrete collection of N interacting particles, as the above presentation
has done, and focuses on following the motion of each particle under the combined gravita-
tional influence of all others. We will present and discuss some details of this approach in
Lecture 3.

The second category starts from an idealized continuum description of the stellar system—
comparable to the fluid description of stellar structure—and includes relaxation and other
effects as needed. Such methods, although approximate, are much faster than the particle
approach, and continue to contribute greatly to our understanding of cluster evolution. They
include gas-sphere, Fokker–Planck, and Monte Carlo descriptions of cluster dynamics.

Continuum descriptions of cluster dynamics generally begin with the collisionless Boltz-
mann equation, which describes the flow of a collisionless fluid in a 6-dimensional phase
space. If f(x,v, t) is the distribution function of the fluid—that is, the number of particles
in 6-d volume d3x d3v is f(x,v, t) d3x d3v—the Boltzmann equation is a continuity equation
in phase space:

df

dt
≡ ∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= 0. (12)

The gravitational nature of the system is included via a = −∇φ. The “0” on the right-
hand side of Eq. (12) means that particles interact only via their bulk gravity—relaxation
effects are explicitly excluded. Incorporation of relaxation into the equation in essence entails
adding a collisional term

Γ[f ] ≡ df

dt

∣∣∣∣∣
c

on the right.



Two continuum approaches deserve mention here. Both simplify the geometry of the
system to spherical symmetry. Gas-sphere methods integrate the Boltzmann equation locally
over velocity, introducing successive moments of f , ρ(x) =

∫
f d3v, 〈v2〉(x) =

∫
fv2 d3v,

etc., and recasting the equation as a set of coupled spatial differential equations closely
resembling the equations of stellar structure and evolution, with relaxation playing the role
of conductivity in transporting energy from place to place. Specifically, as described by
Lynden-Bell & Eggleton (1980), the energy transport equation

∂T

∂r
= − L

4πκr2
,

where T (r) is temperature, L(r) is luminosity, and κ is the thermal conductivity, becomes,
in the stellar dynamical case

∂

∂r

(
1
2
〈v2〉

)
= − L

4πκr2
.

In the latter form, L is the conductive luminosity, 〈v2〉 is related to T by Eq. (6), and the
“conductivity” is

κ =
Cρλ2

tr
,

where C ∼ 1 and λ is the local Jeans length, defined by λ2 = π〈v2〉/3Gρ—a local analog to
the global virial radius (see Eq. 5).

Alternatively, we can add to the right-hand side of the Boltzmann Equation (12) a term
Γ describing the effect of two-body scattering in redistributing stars from one part of phase
space to another. Following Binney & Tremaine (2008) and writing for brevity w = (x,v),
we have

Γ[f ] =
∫
d 6∆w [Ψ(w −∆w,∆w)f(w −∆w)−Ψ(w,∆w)f(w)] , (13)

where Ψ(w,∆w)d 6∆w∆t is the probability that a star with phase space coordinates w is
scattered into the volume d 6∆w around w + ∆w in time ∆t. In principle, Ψ can be deter-
mined directly from the considerations presented in §3.1. If, as we have argued, relaxation
is driven predominantly by weak encounters, then |∆w| is small and we can approximate
the integrand in Eq. (13) by the first two terms of a Taylor series:

Ψ(w −∆w,∆w)f(w −∆w)−Ψ(w,∆w)f(w)

≈ −
6∑

i=1

∆wi
∂

∂wi

[Ψ(w,∆w)f(w)]

+ 1
2

6∑
i,j=1

∆wi∆wj
∂2

∂wi∂wj

[Ψ(w,∆w)f(w)] . (14)

This is the Fokker-Planck approximation. Carrying out the integrals over d 6∆w in Eq. (14)
results in the Fokker-Planck equation

df

dt
= −

6∑
i=1

∂

∂wi

[f(w)〈wi〉]

+ 1
2

6∑
i,j=1

∂2

∂wi∂wj

[f(w)〈wiwj〉)] , (15)



where

〈wi〉 =
∫
d 6∆w∆wiΨ(w,∆w) ,

〈wiwj〉 =
∫
d 6∆w∆wi∆wjΨ(w,∆w) .

The quantities 〈wi〉 and 〈wiwj〉 are diffusion coefficients that depend only on local phase-
space coordinates. They are significantly simplified when interactions can be viewed as local,
so that ∆x = 0 and Eq. (15) becomes

df

dt
= −

3∑
i=1

∂

∂vi
[f(w)〈vi〉]

+ 1
2

3∑
i,j=1

∂2

∂vi∂vj
[f(w)〈vivj〉)] .

The velocity-space Fokker-Planck equation has proved a very useful tool for numerical stud-
ies of cluster dynamics. A Monte Carlo realization of this approach developed by Spitzer
and coworkers (see Spitzer 1987 for references) has been instrumental in furthering our un-
derstanding of cluster evolution.

It can be shown that the distribution function f of a collisionless, stationary system is a
function of conserved quantities only. For a spherically symmetric system, those quantities
are the energy E and the angular momentum J . In that case, the Fokker-Planck equation
can be simplified by orbit averaging all components:

Q =
1

P

∮
Q(r;E, J)

dr

vr
,

where vr is the radial velocity and P (E, J) is the orbital period. The result, with N(E, J, t)
the density of stars in E − J space, is the orbit averaged Fokker-Planck Equation:

∂N

∂t
= − ∂

∂E

[
N〈∆E〉

]
− ∂

∂J

[
N〈∆J〉

]
+ 1

2

∂ 2

∂E2

[
N〈(∆E)2〉

]
+

∂ 2

∂E∂J

[
N〈∆E∆J2〉

]
+ 1

2

∂ 2

∂J2

[
N〈(∆J)2〉

]
.

It has formed the basis for many landmark studies of globular cluster dynamics.


