

The sun, with all those planets revolving around it and dependent on it, can still ripen a bunch of grapes as if it had nothing else in the universe to do.

The sun, with all those planets revolving around it and dependent on it, can still ripen a bunch of grapes as if it had nothing else in the universe to do.

Francesca, with all the projects revolving around her and dependent on her, can still cultivate the joy of life as if she had nothing else in the universe to do.

Physics of spinstars and some consequences for the (early) chemical evolution of galaxies

Georges Meynet Geneva Observatory, Geneva University

Cristina Chiappini (Potsdam, D) Gabriele Cescutti (Potsdam, D) Sylvia Ekstroem (Uni. Geneva) Cyril Georgy (Keele, UK) José Groh (Uni. Geneva) Raphael Hirschi (Keele, UK) Andre Maeder (Uni. Geneva)

Painting by Adolf Schaller, STScI-PRC02-02

$$U \sim 1/\rho$$
 t ~R/ U

 \rightarrow Equatorial mass loss

Zahn 1992; Maeder & Zahn 1998; Maeder 1999; Maeder & Meynet 2000 ; Krticka et al. 2011

IMPORTANT IMPACT OF ROTATION IN METAL POOR REGIONS

STARS ARE MORE COMPACT → Opacities smaller → CNO content smaller

CONSEQUENCES: SHEAR MIXING STRONGER

Gradients of Ω steeper at lower metallicity

20 M_{sol} , X_c mass fraction of H at the centre, V_{ini} = 300 km/s

Why?

Stars more compact, mixing timescale scales with R² transport of angular momentum less efficient

Consequences ?

More efficient mixing of the chemical elements

AN ILLUSTRATION OF STRONGER MIXING IN METAL POOR STARS

FROM THEORETICAL MODELS

A FEW RECENT DEVELOPMENTS

Members Research **Database** Publications

http://obswww.unige.ch/Recherche/evoldb/index/

Home > Database > Interactive tools

Welcome to the interactive webpage for the Geneva stellar models

Through this portal, you'll access several tools designed for the Geneva stellar models. Don't hesitate to contact us if you have suggestions or comments (or to report a bug!).

We propose the following services:

Isochrone calculation

Compute a single isochrone of the desired age, or a sequence of isochrones giving the age range and the time steps.

• Interpolation of a new model:

Create a new model by interpolating between existing tracks. Choose the mass, rotation rate and metallicity and obtain the corresponding model track.

Please select one of the following modes:

Compute an isochrono	
Compute an isocnione	

~		-	-	
`	LI	D	rn	L
-				

Site created with d by C. Georgy & S. Ekström; Site Map | admin | Last update: July 22, 2013 at 16:58

GePSy, Geneva Population Synthesis tool

The evolution of massive stars and their spectra I. A non-rotating 60 M_{\odot} star from the ZAMS to the pre-SN stage Submitted Jose H. Groh¹, Georges Meynet¹, Sylvia Ekström¹, and Cyril Georgy² (a) (34) WN11h (28-33) cool LBV (35) WN8h (38) WN2h 6.0 (36) WN7h (39-41) WN5h (16) hot LBV 17-27) cool LBV (37) WN5h (15) hot LBV 0000 5.9 (10) B0.5 Ia -og Luminosity (Lsun) (42) WN5h (12) hot LBV (9) B0.2 la 3) cool LBV (7) O7.5 I (43)WN5h (8)O9 I (14) hot LBV (44) WN5 (6) O6 I (5) O5 I 5.8 (11) hot LBV (45) WN5 (4) O4 I (46) WO4 (3) O3 I (2) O3 I (53) WO1 **-**(47) WC4 5.7 (1) O3 I •(48) WC4 5.6 **⊒(**52) WO1 (49) WC4 (51) WO1 5.5 (50) WO4 60 M_☉ v=0 km/s Z=0.014 5.5 5.0 4.5 4.0

Log Surface Temperature (K)

The evolution of massive stars and their spectra

I. A non-rotating 60 M_{\odot} star from the ZAMS to the pre-SN stage

Jose H. Groh¹, Georges Meynet¹, Sylvia Ekström¹, and Cyril Georgy²

Submitted

The evolution of massive stars and their spectra

I. A non-rotating 60 M_{\odot} star from the ZAMS to the pre-SN stage

Jose H. Groh¹, Georges Meynet¹, Sylvia Ekström¹, and Cyril Georgy²

Submitted

 $O3 \ I \ (ZAMS) \rightarrow O4 \ I \ (mid \ H-core \ burning) \rightarrow hot \ LBV$ (end H-core $burning) \rightarrow cool \ LBV \ (start \ He-core \ burning)$) $\rightarrow WNL \rightarrow WNE \rightarrow WC \ (mid \ He-core \ burning) \rightarrow WO \ (end \ He-core \ burning \ until \ core \ collapse).$

SPECTROSCOPIC AND PHOTOMETRIC PROPERTIES OF CORE-COLLAPSE PROGENITORS

Why so few detections of type lbc progenitors? ~13 archives images, only one detection

Pre SN are WO stars not WN or WC stars Too low L for being detected

THE ONLY PROGENITOR DETECTED SO FAR FOR A TYPE lbc: iPTF13bvn Cao et al. 2013

THE ONLY PROGENITOR DETECTED SO FAR FOR A TYPE lbc: iPTF13bvn Cao et al. 2013

V/V_{crit}=0.70

60 M_{sun} , Z=10⁻⁵

WHAT IS NEEDED FOR PRIMARY NITROGEN IN ROTATING STARS?

STRONG OMEGA GRADIENT AT THE BORDER OF THE CORE He-BURNING CORE AT A TIME WHEN mu-GRADIENTS ARE STILL NOT TOO STRONG → EARLY PHASES OF CORE He-BURNING

AT LOW- $Z \rightarrow$ stars more compact \rightarrow shorter timescales

AT LOW- $Z \rightarrow$ more angular momentum is retained in the core

AT $Z=0 \rightarrow$ less efficient N prodution because less contraction at the end MS phase

AT high $Z \rightarrow$ less efficient N production because... \rightarrow shallower gradients and longer timescales

IMPACT OF VARIOUS PRESCRIPTIONS

 D_{shear} from Maeder (1997, M97)

$$D_{\text{shear}} = f_{\text{energ}} \frac{H_P}{g\delta} \frac{K}{\left[\frac{\varphi}{\delta} \nabla_{\mu} + (\nabla_{\text{ad}} - \nabla_{\text{rad}})\right]} \left(\frac{9\pi}{32} \ \Omega \ \frac{\mathrm{d}\ln\Omega}{\mathrm{d}\ln r}\right)$$

where
$$K = \frac{4ac}{3\kappa} \frac{T^4 \nabla_{ad}}{\rho P \delta}$$
, and with $f_{energ} = 1$, and $\varphi = \left(\frac{\mathrm{dln}\rho}{\mathrm{dln}\mu}\right)_{P,T} = 1$

D_{shear} from Talon & Zahn (1997, TZ97)

$$D_{\rm shear} = f_{\rm energ} \frac{H_P}{g\delta} \frac{(K+D_{\rm h})}{\left[\frac{\varphi}{\delta} \nabla_{\mu} \left(1+\frac{K}{D_{\rm h}}\right) + \left(\nabla_{\rm ad} - \nabla_{\rm rad}\right)\right]} \left(\frac{9\pi}{32} \ \Omega \ \frac{{\rm d} \ln \Omega}{{\rm d} \ln r}\right)$$

with K, f_{energ} , and φ as in (1).

D_b from Zahn (1992. Z92)

$$D_{\rm h} = \frac{1}{c_{\rm h}} r |2V(r) - \alpha U(r)|$$
 (5)

where
$$\alpha = \frac{1}{2} \frac{d \ln(r^2 \Omega)}{d \ln r}$$
 and $c_h = 1$.

*D*_h from Maeder (2003, M03)

$$D_{\rm h} = A r \left(r \Omega(r) V \left| 2V - \alpha U \right| \right)^{1/3} \tag{6}$$

with α as in Eq. (5) and A = 0.002.

 $D_{\rm h}$ from Mathis et al. (2004, MZ04)

$$D_{\rm h} = \left(\frac{\beta}{10}\right)^{1/2} \left(r^2 \Omega\right)^{1/2} \left(r \left|2V - \alpha U\right|\right)^{1/2} \tag{7}$$

with α as in Eq. (5) and $\beta = 1.5 \cdot 10^{-6}$.

40 M_{sun}, Z=0.00001, V(ini)= 700 km s⁻¹

Meynet et al. 2013

All models produce primary nitrogen

In most of cases (4/6), the quantities of primary nitrogen produced is about 10 times the initial content of CNO in the ejected mass.

IF MIXING IS TOO EFFICIENT \rightarrow FLATTENING ALSO OF OMEGA \rightarrow LESS PRIMARY N

Some Possible Consequences

Mass loss triggered by rotation even in Pop III stars Ekström et al. 2008 Origin of primary nitrogen, ¹³C, ²²Ne in the early phases of the chemical evolution of galaxies Meynet et al. 2006; Chiappini et al. 2005, 2006, 2008

Cescutti and Chiappini 2010

Origin of the CEMP stars (at least the CEMP-no :no s-elements) Meynet et al. 2006, 2010

Origin of the O-Na anticorrelation in globular clusters Decressin et al. 2007ab

Origin of the high He-abundance in some stars in globular clusters

Maeder and Meynet 2006; Charbonnel et al. 2013

New s-process in massive metal poor rotating stars

Pignatari et al. 2008; Chiappini et al. 2011; Frischknecht et al. 2012; Cescutti et al. 2013

Primary-like evolution of Be and B

Prantzos 2012

V/V_{crit}=0.70

-Integration in the Geneva stellar models of nuclear networks with 613 isotopes up to end He-burning with 737 isotopes from He-burning on.

Reaction library (REACLIB) from Rauscher & Thielemann (2000)

Nuclear reaction	Rate source
$^{22}\mathrm{Ne}(lpha,n)^{25}\mathrm{Mg}$	Jaeger et al. (2001)
$^{22}\mathrm{Ne}(lpha,\gamma)^{26}\mathrm{Mg}$	NACRE
$ m ^{14}N(lpha,\gamma)^{18}F$	NACRE
$^{18}{ m O}(lpha,\gamma)^{22}{ m Ne}$	NACRE
$^{17}\mathrm{O}(lpha,n)^{20}\mathrm{Ne}$	NACRE
$^{17}\mathrm{O}(lpha,\gamma)^{21}\mathrm{Ne}$	Caughlan & Fowler (1988)
$ m ^{13}C(lpha,n)^{16}O$	NACRE
$ m ^{12}C(lpha,\gamma)^{16}O$	Kunz et al. (2002)
${}^{4}\mathrm{He}(2lpha,\gamma)$	Fynbo et al. (2005)
(n,γ) - experimental	KADoNiS v $0.2/v0.3$
(n,γ) - theoretical	Rauscher & Thielemann (2000)
eta^- - constant	bet-/Nuclear Wallet Cards 7th Ed.
β^- - T-dependent	Takahashi & Yokoi (1987)/Goriely (1999)

Table 3.1: Important reaction rates for the s process

Frischknecht 2011, PhD Thesis, Basel

-Integration in the Geneva stellar models of nuclear networks with 613 isotopes up to end He-burning with 737 isotopes from He-burning on.

Reaction library (REACLIB) from Rauscher & Thielemann (2000)

	^					
	Nuclear reaction	Rate source				
-	$^{22}\mathrm{Ne}(lpha,n)^{25}\mathrm{Mg}$	Jaeger et al. (2001)				
Karakas et al. 2006 low	er 22 Ne $(\alpha, \gamma)^{26}$ Mg	NACRE				
	$ m ^{14}N(lpha,\gamma)^{18}F$	NACRE				
	$^{18}\mathrm{O}(lpha,\gamma)^{22}\mathrm{Ne}$	NACRE				
	$^{17}\mathrm{O}(lpha,n)^{20}\mathrm{Ne}$	NACRE				
Descouvemont 1993 low	ver $^{17}{ m O}(lpha,\gamma)^{21}{ m Ne}$	Caughlan & Fowler (1988)				
	$^{13}\mathrm{C}(lpha,n)^{16}\mathrm{O}$	NACRE				
	$ m ^{12}C(lpha,\gamma)^{16}O$	Kunz et al. (2002)				
	${}^4 ext{He}(2lpha,\gamma)$	Fynbo et al. (2005)				
	(n,γ) - experimental	KADoNiS $v0.2/v0.3$				
	(n,γ) - theoretical	Rauscher & Thielemann (2000)				
	β^- - constant	bet-/Nuclear Wallet Cards 7th Ed.				
	β^- - T-dependent	Takahashi & Yokoi (1987)/Goriely (1999)				

Table 3.1: Important reaction rates for the s process

Frischknecht 2011, PhD Thesis, Basel

-Integration in the Geneva stellar models of nuclear networks with 613 isotopes up to end He-burning with 737 isotopes from He-burning on.

Reaction library (REACLIB) from Rauscher & Thielemann (2000)

Table 3.1: Important reaction rates for the s process

Frischknecht 2011, PhD Thesis, Basel

Horizontal shear diffusion coefficient Zahn (1992) Vertical shear diffusion coefficient Talon & Zahn (1997)

Frischknecht, Hirshi and Thielemann (2012, A&A Letter)

Z=10⁻⁵, V_{ini}/V_{crit} =0.4

Frischknecht et al. 2012

The details are making the perfection and the perfection is not a detail.

Léonard de Vinci

Extrait des carnets

Some Possible Consequences

Mass loss triggered by rotation even in Pop III stars **Ekström et al. 2008**

Origin of primary nitrogen, ¹³C, ²²Ne in the early phases of the chemical evolution of galaxies Meynet et al. 2006; Chiannini et al. 2005, 2005

Meynet et al. 2006; Chiappini et al. 2005, 2006, 2008 Cescutti and Chiappini 2010;

Origin of the CEMP stars (at least the CEMP-no :no s-elements) Meynet et al. 2006, 2010

Origin of the O-Na anticorrelation in globular clusters

Decressin et al. 2007ab

Origin of the high He-abundance in some stars in globular clusters

Maeder and Meynet 2006

New s-process in massive metal poor rotating stars

Pignatari et al. 2008; Chiappini et al. 2011; Frischknecht et al. 2012; Cescutti et al. 2013

Primary-like evolution of Be and B

Prantzos 2012

Nissen 2004; see also Fabbian et al. 2009

Chiappini, private communication

Models from Cescutti & Chiappini 2010; Cescutti et al. 2009

Element	B-8 (1)	B-107 (2)	B-108 (3)	B-118 (4)	B-122 (5)	B-128 (6)	B-130 (7)	F-121 (8)	Barbuy et al. 200
[O/Fe] ¹	+0.25:	+0.5:	+0.7:	+0.3:	+0.7:		+0.50:	+0.5:	x
[Mg/Fe] ¹	+0.10	+0.27	+0.33	+0.20	+0.20	+0.25	+0.40	+0.40	X
[Si/Fe] ¹	+0.34	+0.20	+0.20	+0.29	+0.13	+0.24	+0.35	+0.27	X
[Ca/Fe] ¹	+0.15	+0.04	+0.18	+0.21	+0.21	+0.16	+0.23	+0.16	X
[Ti/Fe] ¹	+0.12	+0.14	+0.21	+0.11	+0.19	+0.17	+0.21	+0.16	X
[Ba/Fe] ¹	+0.95	+0.50	0.0	+1.00	+0.60	+0.90	+0.25	-0.25	X
[La/Fe] ¹	+0.50	+0.50	+0.30	+0.50	+0.30			0.00	X
[Y/Fe] ^a	+1.20	+1.3	+1.00	+0.50	+1.20	+1.5	+1.20	+1.20	
[Sr/Fe] ^a	+1.20	+1.00	+1.55	+1.50	+0.50	+1.5			
[Eu/Fe] ¹	+0.50	0.00	+0.50	+0.50	+0.30	0.00	+0.80	+0.50	X
[Na/Fe] ¹	+0.35	-0.30	-0.15	+0.10	+0.15	+0.10	+0.15	-0.10	X
[C/Fe] ^a	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	

Chiappini et al., Nature 2011

