The Gaia-ESO Survey

Sofia Randich INAF-Arcetri

Survey Co-PIs: Gerry Gilmore & Sofia Randich 350+ Co-Is (mostly from Europe, but not only) 90++ institutes

CREDIT AND THANKS

1 The Gaia-ESO Survey

Co-PIs: Gerry Gilmore¹²⁷⁰, Sofia Randich¹³²⁵

Cols: M. Asplund¹⁴²⁰, J. Binney¹⁶¹¹, P. Bonifacio¹⁵⁸⁸, J. Drew¹⁶⁶⁸, S. Feltzing¹⁴⁷³, A. Ferguson¹⁶⁴⁹, R. Jeffries¹¹³², G. Micela¹³⁴⁴, I. Negueruela⁷⁶⁰⁹, T. Prusti¹²⁷⁸, H-W. Rix¹⁴⁸⁹, A. Vallenari¹³⁴³, U. Abbas¹³⁴⁶, D. Aden¹⁴⁷³, V. Adibekyan¹²⁰⁰, C. Aerts¹³⁹⁹, L. Affer¹³⁴⁴, J-M. Alcala¹³⁴⁰, E. Alfaro¹³⁹², C. Allende Prieto¹³⁹³, G. Altavilla⁵¹³⁰, J. Alves¹⁸⁹³, T. Antoja¹⁴²², A. Aparicio¹¹⁹³, F. Arenou¹⁸⁸⁸, C. Argiroffi¹⁸⁸³, A. Asensio Ramos¹¹⁹³ C. Babusiaux¹⁵⁸³, C. Bailer-Jones¹⁴⁸⁹, L. Balaguer-Nunex¹⁸²¹, G. Barentsen¹⁶⁶³, A.Bayo¹²⁶¹, B. Barbuy¹⁸²⁸ G. Barisevicius¹²⁷⁶, D. Barrado y Navascues¹⁰⁶⁸, C. Battistini¹⁴⁷³, I. Bellas-Velidis¹³⁵⁵, M. Bellazzini¹³²⁹, V. Belokurov¹³⁷⁰, T. Bensby¹⁴⁷³, M. Bergemann¹⁴²⁰, G. Bertelli¹³⁴³, K. Biazzo¹³⁴⁰, O. Bienayme¹⁵⁹², S. Blanco Cuaresma¹⁵⁹², J. Bland-Hawthorn²⁰⁴⁴, R. Blomme¹⁶⁵⁰, C. Boeche²¹¹², S. Bonito¹³⁴⁴, S. Boudreault¹³⁶³, J. Bouvier¹⁴⁴⁹, A. Bragaglis¹³¹⁷, I. Brandao¹²⁰⁰, A. Brown¹⁷¹⁶, E. Brugaletta¹⁸⁷⁴, J. de Bruijne¹²⁷⁶, M. Burleigh¹²⁴⁴ J. Caballero⁸⁵⁴⁵, E. Caffau²¹¹², F. Calura¹⁵³⁷, T. Cantat¹⁵⁴³, R. Capuzzo-Dolcetta¹⁸⁵⁷, M. Caramazza¹³⁴⁴. G. Carraro¹²⁶¹, L. Casagrande¹⁴⁹⁰, S. Casewell¹²⁴⁴, S. Chapman¹¹⁷⁰, C. Chiappini¹¹³⁵, Y. Chorniy¹³⁷⁶, N. Christlieb¹⁹⁸², M. Cignoni⁷⁵¹⁰, G. Cocozza⁷⁵¹⁰, M. Colless¹⁰¹⁷, R. Collet¹⁴⁹⁰, M. Collins¹⁴⁸⁹, M. Correnti¹¹²⁹ M. Cottaar¹³⁷¹, E. Covino¹³⁴⁰, D. Crnojevic¹⁶⁴⁹, M. Cropper¹³⁴², P. Cruz Gamba¹⁰⁸⁸, M. Cunha¹²⁰⁰, F. Damiani¹¹⁴⁴, M. David¹²¹³, A. Delgado¹³⁵², E.Delgado-Mena¹²⁰⁰, R. Dorda Laforet⁷⁶⁰⁹, S. Duffau²¹¹², S. Van Eck¹²⁵⁸, B. Edvardsson⁶¹⁸¹, J. Eldridge¹³⁷⁰, H. Enke¹¹²⁵, K. Eriksson⁶¹⁸¹, N.W. Evans¹³⁷⁰, L. Eyer¹³⁷⁷, B. Famaey¹⁵⁸², M. Fellhauer¹⁸²⁴, I. Ferreras¹²⁴², F. Figueras¹⁸²¹, G. Fiorentino¹⁴²², E. Flaccomio¹¹⁴⁴, C. Flynn²⁰⁴⁴ D. Folha¹²⁰⁰, E. Francoisini¹³³⁵, P. Francois¹⁵⁸⁶, A. Frasca¹⁵⁴¹, K. Freeman¹¹²⁹, Y. Fremat¹⁶⁵⁰, E. Friel¹³⁵⁵, B. Gaensicke¹²⁴¹, P. Galindo¹⁰⁶⁸, J. Gameiro¹²⁰⁰, F. Garzon¹³⁹³, M. Gebran ⁵⁷⁴¹, S. Geier⁵⁶⁷⁷, D. Geisler¹⁸²⁴ Gerhard¹⁴⁶⁶
B. Gibson¹¹⁹⁷
M. Gieles¹¹⁷⁰
A. Gomboc¹⁹⁹³
A. Gomez¹⁵⁸⁶
C. Gonzalez-Fernandez⁷⁶⁰⁹ J.I. Gonzalez Hernandez¹³⁹³, E. Gosset¹³⁵⁹, E. Grebel²¹¹², R. Greimel¹⁴²³, M. Groenewegen¹⁶⁵⁰, J Groh¹⁴⁹⁴ F. Grundahl¹¹⁶⁸, P. Gruyters⁶¹⁸¹, M. Guarcello¹³¹², B. Gustafsson⁶¹⁸¹, P. Hadrava¹¹¹⁶, T. Hansen¹⁹⁸², D. Hatzidimitriou¹⁵⁵⁹, N. Hambly¹⁶⁴⁹, P. Hammersley¹²⁵⁸, C. Hansen²¹¹², M. Haywood¹⁵⁸⁸, U. Heber⁵⁶⁷⁷, U. Heiter⁶¹⁸¹, E. Held¹¹⁴³, A. Helmi¹⁴²², G. Hensler¹⁸⁶³, A. Herrero¹¹⁰³, V. Hill¹⁵⁹¹, S. Hodgkin¹⁵⁷⁰, N. Huelamo⁸⁵⁴⁵ A. Huxor²¹¹², R. Ibata¹⁵⁸², M. Irwin¹³⁷⁰, H. Jacobson¹⁴⁸¹, R. Jackson¹¹³², P. Jofre¹⁵⁹², R. de Jong¹¹³⁵ P. Jonker¹⁶⁶⁵, S. Jordan²¹¹², C. Jordi¹⁶²¹, A. Jorissen¹³⁵⁶, N. Kacharov¹²⁴⁴ D. Katz¹⁵⁸⁶, D. Kawata¹²⁴², S. Keller¹¹³⁹, N. Kharchenko¹¹³⁵, R. Klement¹⁴⁸⁹, A. Klutsch¹⁸⁰³, J. Knude¹⁹⁶⁶, A. Koch¹²⁴⁴, O. Kochukhov⁶¹⁸¹ M. Kontizas¹⁵⁶⁰, S. Koposov¹¹⁷⁰, G. Kordopatis¹³⁷⁰, A. Korn⁶¹⁸¹, A. deKoter¹⁶¹⁴, P. Koubsky¹¹¹⁶, A. Lanzafame¹⁸⁷⁴ R. Lallement¹⁵⁶⁸, C. Lardo¹³¹⁷, P. de Laverny¹⁵⁹¹, F. van Leeuwen¹³⁷⁰, B. Lemasle¹⁴²², G. Lewis²⁰⁴⁴, K. Lind¹⁴⁶⁰, H.P.E. Lindstrom¹⁹⁶⁶, A. Lobel¹²⁵⁹, J. Lopez Santiago¹⁸⁰³, P. Lucas¹⁶⁶⁸, H. Ludwig²¹¹², T. Lueftinger¹⁸⁹³ L. Magrini¹³³⁵, L. Mahy¹³⁵⁹, J. Maiz Apellaniz¹³⁹², J. Maklonado¹⁸⁰³, M. Mapelli¹³⁴³, G. Marconi¹²⁶¹, A. Marino¹⁴⁹⁰, S. Marinoni¹¹³⁷, C. Martayan¹²⁶¹, S. Martell¹⁰¹⁷, I. Martinez-Valpuesta¹⁴⁹⁶, T. Masseron¹³⁵⁸, G. Matijevic¹⁵⁰⁵, R. McMahon¹¹⁷⁰, S. Messina¹³⁴¹, M. Meyer¹³⁷⁷, A. Miglio¹³⁵⁹, S. Mikolaitis¹³⁷⁶, I. Minchev¹¹²⁵ D. Minniti¹⁸⁰¹, A. Moitinho⁸⁸⁴⁸, Y. Momany¹²⁶¹, L. Monaco¹²⁶¹, M. Montalto¹²⁰⁰, M.J. Monteiro¹²⁰⁰, R. Monier⁵⁶⁹⁵, D. Montes¹⁸⁶³, A. Mora¹³⁵⁰, E. Moraux¹⁴⁴⁹, T. Morel¹¹⁵⁹, J. Muijos⁵⁶⁸⁸, N. Mowlavi¹⁵⁸³, A. Mucciarelli⁷⁵³⁰, U. Munari¹⁵⁴⁵, R. Napiwotzki¹⁶⁶⁸, N. Nardetto¹⁵⁹¹, T. Naylor¹¹³⁰, Y. Naze¹³⁵⁹, G. Nelemans¹⁶³⁸ S. Okamoto¹⁶¹⁶, S. Ortolani⁶⁵¹¹, G. Pace¹²⁰⁰, F. Palla¹³³⁵, J. Palous¹¹¹⁶, E. Paneino¹³³⁷, R. Parker¹³⁷⁷, E. Paunzen¹⁸⁹³, J. Penarrubia¹⁸²⁸, I. Pillitteri¹³¹², G. Piotto¹³⁴⁶, H. Posbie¹⁵⁸⁸, L. Prisinzano¹³⁴⁴, N. Przybilla¹²⁵¹ L.Puspitarini¹⁵⁸⁸, E. Puzeras¹³⁷⁶, A. Quirrenbach²¹¹², S. Ragaini⁷⁵³⁰, P. Re Fiorentin¹⁵⁴⁶, J. Read¹³⁷⁷, M. Read¹⁶⁴⁹, A. Recio-Blanco¹⁵⁹¹, C. Reyle¹⁵⁹², J. De Ridder¹³⁹⁹, N. Robichon¹⁵⁸⁸, A. Robin¹⁵⁹², S. Roeser²¹¹² D. Romano¹³³⁷, F. Royer¹⁵⁸⁸, G. Ruchti¹⁴⁵⁰, C. Ruhland¹⁶⁶⁸, A. Ruzicka¹¹¹⁶, S. Ryan¹⁶⁶⁸, N. Ryde¹⁴⁷³, G. Sacco¹⁶⁴⁵, H. Sana N. Santos¹²⁰⁰, J. Sanz Forcada⁸⁵⁴⁵, L.M. Sarro Baro⁵⁶⁸⁸, L. Sbordone¹⁶⁸², E. Schilbach²¹¹², S. Schmeja²¹¹², O. Schnurr¹¹²⁵, R. Schoenrich¹⁴⁹⁰, R-D. Scholz¹¹³⁵, G. Sesbroke¹²⁴², P. Sestito¹⁸⁰³, S. Sharma²⁰⁴⁴ G. De Silva¹⁰¹⁷, R. Smiljanic¹²⁵⁸, M. Smith¹⁶¹⁶, J. Sobeck¹⁵⁹¹, E. Solano⁸⁵⁴⁵, R. Sordo¹³⁴¹, C. Soubiran¹⁴⁴⁴ S. Sousa¹²⁰⁰, A. Spagna¹¹⁴⁶, L. Spina¹¹³⁵, M. Steffen¹¹³⁵, M. Steinmetz¹¹³⁵, B. Stelzer¹⁵⁴⁴, E. Stempels⁶¹⁸¹, H. Tabernero¹⁸⁰¹, G. Tsutvaisiene¹³⁷⁶, F. Thevenin¹⁸⁹¹, J. Torra¹⁸²¹, M. Tosi¹⁵³⁷, E. Tolstoy¹⁴²², M. Tsantaki¹²⁰⁰ C. Turon¹⁵⁸⁸, M.Valentini¹³⁵⁹, M. Walker¹³¹², N. Walton¹³⁷⁰, J. Wambsganss²¹¹², C. Worley¹⁵⁹¹, N. Wright¹⁶⁸⁸ K. Venn²⁰⁶¹, J. Vink¹¹¹¹, R. Wyse¹⁴¹⁹, S. Zaggia¹³⁴¹, W. Zeilinger¹⁸⁹³, M. Zoceali¹⁸⁰¹, J. Zoree¹³⁶¹, D. Zucker¹⁴⁷⁷ T. Zwitter¹⁹⁹⁵

OUTLINE

- Overview
- Core science
- Milestones and current status
 - Project organization, data flow, analysis
 - Science verification and first results

GAIA-ESO SURVEY IN A NUTSHELL (1/2)

 Large <u>Public</u> Spectroscopic Survey – FLAMES
300 (240+60) nights over 5 (4+1) years; 12/2011 (P88) - 9/2016 (P97)++; <u>VM</u>

GAIA-ESO SURVEY IN A NUTSHELL (2/2)

- \succ Giraffe and UVES spectra \rightarrow
 - RVs (0.2-0.3 km/s), and vsini's,
 - APs, [Fe/H], [X/Fe]
 - stellar properties (M_{acc} , \dot{M} , etc.)
- Uniform analysis: → homogeneous overview of the distributions of <u>kinematics and element abundances</u> in the Galaxy

CORE SCIENCE (1/2)

Key open issues in the formation and evolution of the MW and its component stars and stellar pops.

 The (dynamical) evolution of clusters: from birth to disruption into the field

 Stellar evolution (ages, masses)

CORE SCIENCE (3/3)

- Galaxy phase-space substructure
- Formation and evolution of the thin and thick discs
- Halo substructure, Dark Matter
- Formation and nature of the Galactic bulge

Dynamics of spiral arms

Complexity of inner bulge

MILESTONES (AND STATUS)

9/2010-11/2011: LoIs, consortium building, proposal approval by PSSP and OPC, SMP **New year eve 2011/2012:** observations started

2012-2013: observations, spectrum processing and analysis; several meetings 7/2013: first analysis cycle completed → internal release of APs and abundances 8/2013: first release of spectra to ESO

archive (6 month, ~4000 objects)

(MILESTONES AND) STATUS

- **20** observing **runs** completed (100+ nights); about 85 % of time useful
- Large variety of targets observed, including 20 clusters and several <u>calibration targets</u> (GCs, benchmark stars, COROT, etc.)
- **18 month spectra** along with metadata internally released for the **analysis** (iDR2)
- **Beginning of 2014:** iDR2 APs and abundances internally released
- July 2014 (?): next release to ESO

ORGANIZATION, DATA FLOW, ANALYSIS

SPECTRUM ANALYSIS

Gaia-ESO explicitly includes all proven abundance methodologies \rightarrow systematics a wide range of techniques is essential to cover the range of stellar types

Calibration targets: internally consistent internal and understood external scale

The Gaia-ESO Survey

Science verification and results

(focus on Aps, [Fe/H] and abundances)

UVES RECOMMENDED iDR1 PARAMETERS

THE INNER RADIAL METALLICITY GRADIENT

- Currently, our understanding of the disk gradient is:
- limited/biased by too small or too inhomogeneous cluster samples
- based (in part) on clusters with too fev members/ too large errors
- largely ignoring possible radial migrati effects
- The combination of
- Cluster membership, fundamental parameters
- RV's, orbits, dynamical studies &
- Homogeneous element abundances (chemical tagging)
- provided by GES will fix a lot of this!

Jacobson et al.

THICK TO THIN DISK TRANSITION

THICK TO THIN DISK TRANSITION

Recio Blanco et al.

THICK TO THIN DISK TRANSITION

YOUNG CLUSTER KINEMATICS

SUMMARY

- GES is meeting its ambitious goals
- First results show the potential of the GES
- First science papers will appear over the next few months
- GES end data taking >2016++? gives overlap with first Gaia data release. Combined → full 6D phase space f(x,y,z,v_x,v_y,v_z), plus AP, and chemistry for a very large number and variety of stars: core science plus legacy science