Inferences on Chemical Evolution from the Composition of Dwarf Galaxies

Matteucci & Brocato (1990) predictions

FIG. 4.—A sketch of the predicted [O/Fe] vs. [Fe/H] relations in different systems as a consequence of their different [Fe/H]-t relations.

time-delay

Star-formation rate determines [Fe/H] of the knee

Chemical abundance analysis of 3 RGB stars in the Sagittarius dwarf galaxy (Sgr)

- Differential, line by line, relative to Arcturus (reduces errors), LTE model atmosphere analysis.
- Compare to results from Bonifacio et al. (2000, 2004), Smecker-Hane & McWilliam (2002), Sbordone et al. (2007), and Carretta et al. (2010).
- Motivation: the chemistry of different environments (e.g. Bulge, disk, halo, GCs, galaxies of all types) can test our ideas of chemical evolution and galaxy evolution.

See <u>arXiv:1309.2974</u> for many more results than discussed here

Main Conclusions:

- •Sgr [alpha/Fe] deficiencies result from an IMF missing the most massive stars, not from delayed SNIa iron (cf Weidner & Kroupa 2005).
- •Other dwarf galaxies (Fornax, IC1613, and the LMC) show similar [Eu/O] ratios, also indicating a top-light IMF or steep IMF slope.
- The r-process is associated with lower-mass SNII.
- The [Eu/Fe] trend with [Fe/H] is similar, or identical, in the MW bulge, disk and Sgr; this is a challenge for the SNIa time delay scenario.

Sgr hydrostatic [X/Fe] compared to MW thick disk

0.43+/-0.04 dex deficiency

Table 1. Sgr-Thick Disk Element Differences

Species	$\Delta [{ m X/Fe}]$	Δ Fe
	(dex)	(dex)
[0.7]		
[O I]	-0.43 ± 0.03	-0.7
Na I	-0.50 ± 0.09	-0.5
Mg I	-0.34 ± 0.05	-0.5
Al I	-0.39 ± 0.04	-0.5
Si I	-0.14 ± 0.06	-0.2
Ca I	-0.16 ± 0.05	-0.2
Ti I	-0.20 ± 0.07	-0.35
Ti II	-0.21 ± 0.08	-0.35
Cu I	-0.50 ± 0.11	-0.4

Sgr explosive [X/Fe] compared to MW thick disk

0.17+/-0.03 dex deficiency

 A low hydrostatic/explosive ratio can occur if there is a deficit of high mass SNII progenitors — sensitive to IMF slope

Different alpha-elements made by different mass SNII

O-Mg >25 Msun Si-Ca 15-25 Msun

- •O, Mg, Na, Al, Cu hydrostatic burning
- •Yield increases with mass.
- •Si-Ca made explosively. Fallback reduces yield at high mass.
- •Si,Ca,Ti uncertain SNIa yields (e.g. Maeder et al. 2010)

top-light Sgr IMF?

Eu behaves like an alpha-element in the Solar neighborhood

Woolf & Lambert (1995) (but see McWilliam & Rich 1994)

Suggests a SNII origin

Eu is ~95% r-process

R-Process [Eu/Fe]r trend*

- same as MW thick disk(* corrected for s- fraction)

But [O/Fe] is deficient!

[O/Fe] and [Eu/Fe] require two processes (can't explain both with SNIa iron)

N.B. SM02 enhanced Eu: I thought it was s-process Eu

(cf MW disk: Bensby et al. 2005)

[Eu/O]r and $[Eu/Mg]r \sim +0.4$ dex

HOW CAN THIS BE?

Two reasonable scenarios to explain enhanced [Eu/O]r:

- 1. [O/Fe] low due to top-light IMF, while [Eu/Fe]r decline due to SNIa iron.

 Suggests a similar SFR for MW thick disk and Sgr.
- 2.[O/Fe] due to top-light IMF, metallicity-dependent [Eu/Fe]r yield, while delayed SNIa iron had **no** significant effect.

Weidner & Kroupa (2005), Kroupa (2011): dwarf galaxies should have a top-light IMF, due to a paucity of the most massive molecular clouds.

Note: metal-dependent SNIa r-process origin is difficult to contrive and requires an additional mechanism.

Conclusion 1:

The low [alpha/Fe] ratios in Sgr are due to a top-light IMF (or steep IMF slope), not the delayed addition of Fe from SNIa.

[Eu/O]r depends on the IMF.

Conclusion 2:

The r-process is associated with lower-mass SNII

Enhanced [Eu/O]r can occur with an IMF deficient in high-mass SNII

•Similar [Eu/O] enhancements are seen in other dwarf galaxies:

LMC has low alpha, high [Eu/Fe] (e.g. van der Swaelmen et al. 2013)

Also: Fornax (Letarte et al. 2010, 2013) IC 1613 (Tautvaisiene et al. 2007)

Conclusion 3:

[alpha/Fe] deficiencies due to top-light (or steep slope) IMF are common in dwarf galaxies.

Note: Tolstoy et al. (2003) claimed top-light IMF for 4 dSphs, based on hydrostatic/explosive alpha-element ratios.

However, the same group (Venn et al. 2004) abandoned this claim due to the possibility of explosive alphas from enhanced SNIa nucleosynthesis.

Concern #1:

The [Eu/Fe] trend is similar in the MW bulge, disk, and Sgr, (and LMC?), despite their putative different formation timescales.

Normal [Eu/Fe] in the MW bulge

How can this be?

Isochrone fits to cmds (Zoccali et al. 2003; Clarkson et al. 2008) and low [La/Eu] ratios (Fulbright/McWilliam et al. 2010; Johnson et al. 2012)

→ high SFR and rapid formation timescale for the bulge.

LMC
Van der Swaelemen et al. LMC zero-point problem?

Concern #2

Radial abundance gradients in the MW disk (Yong et al. 2012) show the same [alpha/Fe] trend with [Fe/H], independent of Galactocentric radius, despite the expected lower SFR in the outer disk.

•Depends on expected SFR differences at the observed Galactic radius

The nearly identical [Eu/Fe] trend of Sgr and the MW disk and bulge (and possibly LMC) contradicts expectations of the SNIa time-delay scenario.

If correct, it would be necessary to explain the [alpha/Fe] trend in the MW by alternate means, or with help from effects such as stellar winds, or IMF modulation.

▶ More Sgr Eu abundances (and other elements) are required

Main Conclusions:

- •Sgr [alpha/Fe] deficiencies result from an IMF missing the most massive stars, not from delayed SNIa iron (cf Weidner & Kroupa 2005).
- •Other dwarf galaxies (Fornax, IC1613, and the LMC) show similar [Eu/O] ratios, also indicating a top-light IMF or steep IMF slope.
- The r-process is associated with lower-mass SNII.
- The [Eu/Fe] trend with [Fe/H] is similar, or identical, in the MW bulge, disk and Sgr; this is a challenge for the SNIa time delay scenario.

Neutron-capture elements in dwarf galaxies

Nearby dwarf galaxies show neutron-capture enhancements.

Sagittarius dSph Stars (with Smecker-Hane)

Fe commonly used as metallicity indicator. Difficulties for modelling...

Solar system r-process

[La/Eu] toward the s-process ratio

Dilution curves – remove Fe from the problem

Solar system r-process

Solid and dashed lines show the locus of pure s-process added to a starting composition. The dot-dashed line shows 95% s-process plus 5% r-process.

Can't get a much simpler theory than this!

Sgr dSph started close to pure r-process composition, then at [La/H]~-0.4 added pure s-process

Dilution curve fixed at -2.2,-0.6

Dilution curve fixed at -2.2,-0.6

Geisler et al. (2005) Sculptor dSph

Dilution curve fixed at -2.2,-0.6

Geisler et al. (2005) Sculptor dSph

AMcW/TSH (2005) Sgr dSph (notice lower envelope)

Dilution curve fixed at -2.2,-0.6

Geisler et al. (2005) Sculptor dSph

AMcW/TSH (2005) Sgr dSph (notice lower envelope)

Letarte et al. (2010) Fornax dSph (lower envelope?)

Dilution curve fixed at -2.2,-0.6

Geisler et al. (2005) Sculptor dSph

AMcW/TSH (2005) Sgr dSph (notice lower envelope)

Letarte et al. (2010) Fornax dSph (lower envelope?)

Mucciarelli et al. LMC GCs (two epochs of SF)

Some conclusions:

- 1. At least five dwarf galaxies show an early r-process dominated phase, followed by a pure s-process phase. Leaky Box chemical evolution...
- 2. Possible signature of weak s-processing from massive stars present (lower envelope).
- 3. Can identify the end of the r-process dominated phase with 1 point.
- 4. Useful for tracing late-time accreted dSphs in the Galaxy.