
REDUCING GIANO SPECTRA
with IRAF

v1.2.0
(February 2015)

F. Massi1 (fmassi@arcetri.astro.it), N. Sanna1, T. Pecchioli2

1INAF - Osservatorio Astrofisico di Arcetri
2Dipartimento di Fisica e Astronomia, Università di Firenze

Abstract
GIANO is a near infrared echelle spectrograph operating at Nasmyth focus A of Telescopio Nazionale

Galileo. It is a second generation instrument and allows obtaining spectra that cover most of the

range 0.9–2.5 µm with a single exposure. The spectral interval is covered through 49 orders and

only a few small windows fall outside the detector. This document explains how to reduce and

extract GIANO calibrated spectra by using routines available in any basic installation of IRAF, the

Image Reduction and Analysis Facility developed by the NOAO, plus a few ad-hoc scripts. IRAF

is one of the most commonly used scientific suites of software packages for reducing and analysing

images and spectra, freely downloadable, and offering many routines which are both fully optimised

and tested. Its versatile Command Language also allows scripting and easy customisation.

I

Reduction quick guide

Some IRAF basics for new users are dealt with in Sect. 2. The reduction pipeline described in this
handbook is summarised below.

1. Install the small set of scripts giano tools as explained in Sect. 3.1.

2. Open an IRAF session and load giano tools (which will have also astutil, imred, and
echelle loaded).

3. Move to your working directory where the data are stored.

4. Update the headers of the reference wavelength lamp frames, the target frames, the telluric star
frames, and the spectro-photometric star frames (if any) using giano header, as explained in
Sect. 3.3.

5. Average together the dark frames with the same integration time with imcombine.

6. Subtract the corresponding dark frame from the flat-field frames and the single science or cali-
bration frame which were not taken in AB cycles, i. e. by shifting alternatively the
target between fibres, using imarith.

7. Perform bad-pixel correction of all flat-field frames, reference lamp frames, science frames, and
calibrator frames with clean up as explained in Sect. 3.4.

8. Average together the flat-field frames with imcombine.

9. Set the echelle parameters as discussed in Sect. 3.9.

10. Find the traces after scattered light correction with giano find traces as explained in Sect. 3.10
and Appendix A. Set the parameters as in Fig. 11. See Fig. 10 for a typical map of scattered
light. See Figs. 20, 21, and 22 for a correct order numbering.

11. Fit the traces with apflatten and construct a normalised 2D flat-field frame from the average
flat-field frame as explained in Sect. 3.11 and Appendix B. See Fig. 12 on how to set the parameters
for apflatten. See Figs. 24, 26, and 25 for examples of actual trace fits. See Figs. 13 and 14
for an example of a 2D normalised flat-field frame. Skip the signal fit step if you decide on
performing a 1D flat-field correction (see Sect. 3.5 for details).

12. Divide all corrected reference lamp frames, science frames, and calibration frames by the nor-
malised flat-field frame using imarith. Skip this step if you decide on performing a 1D
flat-field correction (see Sect. 3.5 for details).

13. Subtract the corrected frame B in every AB cycle set from the corresponding corrected frame A
using imarith.

14. In case of more AB cycles on the same target, average or sum together the subtracted frames
using imcombine. See Appendix E to compute the effective exposure time, gain, and read-out
noise. Do the same with dark-corrected frames of sources not observed in AB cycles.

15. Sort the 4 × 49 traces retrieved to reflect the correct spectral order scheme, using the average
flat-field frame input to apflatten and the task split file, as explained in Sect. 3.14. The
task makes four copies of the flat-field frame and fix both the trace definition and the sky windows
(see Fig. 22) to use for background subtraction (if requested). The output file names will have

II

the following string added: “lowest” (i. e., the associated traces are only defined for the lowest
tracks in each four-track group with the correct spectral order numbering), “middown”, “midup”,
and “topmost”.

16. Make four copies of each corrected reference lamp frame, subtracted science frame and dark-
corrected science frames to reflect the lowest-middown-midup-topmost scheme of the reference
trace files. Use the task copy file as explained in Sect. 3.13. The name of the new files will
contain the strings “lowest”,‘middown”, “midup”, and “topmost”.

17. Assign the correct trace definition to the newly sorted science frames using apedit as explained
in Sect. 3.14. See Fig. 15 on how to set the parameters for apedit.

18. Extract and wavelength-calibrate the 1D spectra from the newly sorted “lowest” science frames
using doecslit as explained in Sect. 3.14. Set the parameters as in Fig. 16 for doecslit and
Fig. 17 for sparams. Skip the trace finding and trace fitting steps in the interactive session. It
is mandatory that you use the reference lines shown in Figs. 33, 34, and 35 to obtain
an accurate wavelength calibration. See Fig. 30 for a correct wavelength solution.

19. Use giano reidentify and the (now) wavelength-calibrated reference lamp “lowest” spectra
to also wavelength-calibrate the “middown”, “midup, and “topmost reference lamp spectra as
explained in Sect. 3.14.

20. Now extract and wavelength-calibrate the 1D spectra from the newly sorted “middown”, “midup,
and “topmost science frames using doecslit as explained in Sect. 3.14. Set the parameters as
in Fig. 16 for doecslit and Fig. 17 for sparams. Skip the trace finding and trace fitting steps,
and the wavelength calibration step in the interactive session.

21. If you have not flat-field corrected the spectra yet, you can do it now in 1D by using flat 1D, as
explained in Sect. 3.15.

III

Troubleshooting

This handbook also deals with a few problems that may arise during the reduction steps; just look
for specific boxes labelled as “Remark” or “Problem solving”. Here is a brief summary.

1. The graphic or image cursor does not work See the REMARK on page 4.

2. Error when loading giano tools in IRAF See the REMARK on page 6.

3. Some echelle tasks do not run using correct parameters See the REMARK on page 13.

4. giano find trace does not find the correct aperture sequence See the PROBLEM SOLV-
ING section on page 16.

5. The wavelength calibration is not correct in small intervals inside some orders Use all
the reference lines suggested in Appendix G for the preliminary wavelength fit with doecslit.

Figure 1: Frame with the spectrum (echellogram) of a continuum lamp obtained with GIANO

1 Starting point: GIANO raw data

A typical 2D output from a GIANO integration is shown in Fig. 1. The frame contains 49 groups of
4 arc-shaped tracks (plus a couple of groups of shorter segments actually), as clear in the zoom-in of
Fig. 2. Each group represents a spectral order and contains a part of the spectrum falling inside a
sub-range of the total pass-band. The wavelength intervals per order are listed in Appendix H. Any
group is composed of two pairs of arcs, each pair corresponding to the output of one of the two optical
fibres used to transfer the signal from the telescope focal plane to the spectrograph. Image-slicers split
each optical fibre output in two smaller spots arranged along the slit. Through the optical fibres, two
different sky areas 3-arcsec apart are fed into the spectrograph. The detector parameters are listed in
Table 1.

The lowest order (at the bottom of the frame) is the 32nd and the highest one (at the top of the
frame) is the 80st. Although you can count 200 arc-shaped tracks, which includes part of order 81,
as well, only orders 32 through 80 are offered. Within each order, wavelength increases from right to
left. In addition, wavelength decreases with increasing order (see Appendix H). One of the goals of the
reduction procedure is to find the curve that best fits the signal peak in each sub-track and to count
the signal as a function of position within “apertures” centred on these curves (called traces). More
information on the instrument can be found in [1]. The most important detector features are listed in
Table 1.

A run with GIANO will yield images recording the target spectra (2D spectra), as long as a few
additional “calibration” frames. These are needed to properly extract the target spectra. Below, we
list the sets of calibration frames necessary for accurate extraction and calibration.

1

Figure 2: Zoom-in on a Giano image of a continuum lamp. Note that each order is split in four parallel
tracks.

DARK FRAMES these are obtained by integrating a signal while holding the shutter closed.
Science targets are usually observed by nodding-on-fibres, i. e. by performing an integration with the
target in fibre A first and in fibre B next (hereby, a cycle AB). After subtracting B from A, the resulting
2D spectra will both exhibit the target signal in all sub-tracks and have most of the bias removed, so no
dark subtraction is required in this case. On the other hand, 2D spectra not taken in AB pairs (flats,
reference lamps, etc.) need being dark subtracted. Sets of dark frames will be acquired for all exposure
times of non-AB 2D spectra.

FLAT FIELD FRAMES these are obtained by illuminating the fibres with an intense continuum
lamp. Flat field frames are needed not only to remove the pixel-to-pixel inhomogeneities in the detector
response, but also to correct for the spectrograph response function (which depends on the order and,
within each order, on wavelength), and to obtain a trace template that will be then used on the usually
noisier and much fainter scientific 2D spectra to extract the 1D spectra.

REFERENCE LAMP SPECTRA reference lamp spectra are obtained by illuminating the fibres
with an intense EMISSION LINE lamp, (GIANO is currently equipped with a U-Ne calibration unit).
These frames are required for wavelength-calibration of the spectra.

TARGET AND CALIBRATOR (TELLURIC OR SPECTRO-PHOTOMETRIC STARS)
SPECTRA these are usually pairs of AB, nodded-on-fibres integrations, but you might also have 2D
spectra taken with the target in only one fibre (possibly with corresponding 2D spectra with pure sky
emission). If no sky frame is available, subtraction of dark frames with the same integration time are
mandatory. See [2, 3] for more details on the observational techniques and the recommended integration
times.

REMARK All GIANO observations are saved as FITS files.

2

Table 1: Main characteristics of the GIANO NIR detector (from Table 1 of [2]).

gain 2.2 e− ADU−1

Read-Out Noise 5 e−

Non-linearity 1500 × texp ADU
1 texp total integration time in sec.

Figure 3: The three basic interfaces used in a typical IRAF session: an xgterm window for running
commands and tasks (bottom left), an image tool (here ds9, right), and a graphic window (top left).

2 IRAF basics

This section is only intended as a quick introduction to allow new users to run a simple IRAF session.
For more information, we recommend that you should read [4] and [5].

You need to have IRAF installed in your PC or network. We also suggest that you install x11iraf
(providing you with xgterm terminal windows) and ds9 (to use as the image tool).

IRAF and x11iraf can be downloaded from
http://iraf.noao.edu
ds9 can be downloaded from
http://hea-www.harvard.edu/RD/ds9/site/Home.html.

Once IRAF is installed on your PC, you just need to create your IRAF home directory, the one
which you will always start up IRAF in to work on your data. Then, run mkiraf on that directory
and answer the questions. The most critical one is that about the terminal type. If you have x11iraf
installed, choose “xgterm”. Now all is set up for running IRAF.

Basic IRAF session: first, open an xgterm terminal window. Then, start ds9. On the xgterm
window, move to your IRAF home directory and type “cl”. The IRAF session will open up and you
will be shown the prompt “cl>”. From the prompt you can run line commands and tasks. A typical

3

IRAF session uses three windows (see Fig. 3): an xgterm one with the CL running, an image tool (ds9
in figure) and a graphic tool. The graphic tool will open up when you first run a task requiring it.

REMARK Lots of IRAF tasks are interactive and they cause either an image cursor or a
graphic cursor to open. These allow you to point specific features inside the image tool (image
cursor) or the graphic window (graphic tool) and issue interactive commands (usually by pressing
sequences of keys).

BE CAREFUL: if you need to run interactive commands, first take care to click the mouse
left button with the cursor inside the image tool or the graphic window, depending on whether you
are using the image or the graphic cursor. Then (and only then), issue the command. Remember
to always have the proper window active every time you run an interactive command! When you
need to return to the CL, use the interactive command “q”.

Once cl is running, you can move to your working directory by using “cd”. Some shell commands
like ls, mkdir, etc. are recognised within cl. In any case you can run any external command or program
by typing a “!” in front of the command line to be entered. Type in “logout” to quit cl.

IRAF is a bundle of layered programs divided into several packages. Only a limited number of
basic packages will be available and running (i. e. , “loaded”) as soon as cl is opened. To run any
task from any other package, you first need to load the whole package by simply typing its name
and pressing enter. In this case, the prompt changes from “cl>” to another string with the first
two characters of the package name. More than one package can be loaded simultaneously (this
increases memory allocation; it should be less than a problem on modern PCs but IRAF may meet
with some problems). The latest package loaded can be unloaded by typing “bye”. Here is an
example of loading a package (in this case, noao). Note that as soon as the package is loaded the
list of its packages and/or tasks will be shown. Note also that the prompt has changed:

cl> noao
artdata. digiphot. nobsolete. onedspec.
astcat. focas. nproto. rv.
astrometry. imred. observatory surfphot.
astutil. mtlocal. obsutil. twodspec.

no>

A help facility is available, just type “help nametask” in cl to find out the help pages about the task
nametask.

Most IRAF task need a few parameters being set before running. The simplest way to do this is by
using the IRAF parameter editor. You can access the nametask parameter file through the editor by
typing “epar nametask” in cl (for an example see Fig. 4). A number of fields will be shown in the cl
window. You can select any of them by using the arrow keys and edit it (just type in and press enter).
Press CTRL-d or type “:wq” to exit the parameter editor, or type “:go” to exit the parameter editor
and make the task run.

Alternatively, you can run a task by simply typing its name and pressing enter. IRAF remembers
the latest set of parameters entered for a given task through the parameter editor, so by default the task
will run using that set. Some tasks can run in verbose mode; in this case you will be asked to confirm
each parameter of the set. You will be able to either just confirm a parameter or enter a new value.
Parameters can also be passed to a task via a line command (e. g., by typing
“nametask par1 par2 ...”,

4

Figure 4: IRAF parameter editor opened on the parameter file of the task “precess”. You can move
through the fields by using the arrow keys and you can input some text in the field evidenced by the
cursor. The old text will automatically be replaced with the latest one after pressing ENTER.

or
“nametask field1=value field2=value ...”).

You can reset all the parameters of a given task to their default values by typing “unlearn nametask”
at the cl prompt.

REMARK Most IRAF tasks can accept, as input and output fields: single file names, multiple
file names separated by commas, single text file names including lists of files. The latter mode is
useful to operate on whole blocks of spectra in a single shot. Files have to be listed one per line in
the text file, then the task has to be informed that the given name refers to a list of files by typing
a “@” in front of the file name. For example, by typing:
cl> imstatistics @image.list
the task imstatistic is run to yield the statistics of all images listed in the file image.list.

5

3 Data reduction with IRAF

3.1 Setting up an IRAF session to reduce data from GIANO

After running mkiraf on your IRAF home directory (see page 3), you will be able to find a file called
“login.cl” there, containing some basic paths, a few settings, and the tasks to be loaded whenever cl is
run. Lines commented out have a hashtag # as the line first character, so they are not read by cl at
start time.

Edit your command.cl file, find the line

set stdimage = imt...

check that it is not commented out and if necessary modify it to:

set stdimage = imt2048

Then check that the line

set imtype = “imh”

is commented out, so that the default image file format is fits and not imh. You will no longer
need to type in the full name of an image including the extension “fits”, IRAF will now be able to
recognise a fits file unless it is a fits file using a different extension (e. g., fts; see page 7 to change
extension).

You will also need to install a small package (called giano tools) containing a few scripts which
we have developed to the purpose and is provided in the form of a tar file. Make a new directory to
store the package, move the tar file there and untar it. One of the extracted files is called giano tools.cl.
Edit giano tools.cl and change the line

set gianot = “put here the correct path to giano tools”

by inserting the actual full path between quotes. Make sure that the last character of the
path is a “/”. Finally, edit the login.cl file in your IRAF home directory and add the line

task $giano tools = path/giano tools.cl

where path is the full path to the directory where you have untarred the package. Now you will
be able to load the package by simply typing “giano tools” in cl. Note that the package also contains
a fits file with an updated map of detector bad pixels (badpix mask.fits), a fits file with an updated
wavelength-calibrated lamp spectrum (cl 29 jul UNe 300 ds lowest.ec.fits) and its wavelength-solution
file (eccl 29 jul UNe 300 ds lowest.ec), and a list of reference wavelengths for calibrating spectra using
a U-Ne-Ar lamp (U Ne Ar lines list cl.dat).

REMARK: INSTALLATION ERRORS Sometimes, after installing it we got error messages
when loading giano tools, due to hidden characters inserted in giano tools.cl by the text editor
used to edit it. Should this happen, just try editing the original file with a different text editor.

6

3.2 Giano tools

giano tools is a collection of IRAF scripts we have developed to adapt IRAF tasks and reduce GIANO
spectra. They are provided as a tar file and include the following files:
badpix mask.fits
cl 29 jul UNe 300 ds lowest.ec.fits
clean up.cl
copy file.cl
eccl 29 jul UNe 300 ds lowest.ec
fits2text.cl
flat 1D.cl
giano find trace.cl
giano header.cl
giano reidentify.cl
giano tools.cl
split file.cl
U Ne Ar lines list cl.dat

3.3 First reduction steps

Each night run will yield a number of dark frames, flat-field frames, line reference lamp frames and
scientific frames. We suggest that you should make a directory for each night and save the corresponding
frames there. We assume that you have taken one complete set of calibration frames per each night. If
possible, keep a copy of each of these directories in your disk, since a few tasks you are going to use will
modify the frames they operate on. If something goes wrong, it will sometimes be quicker to just erase
the directory, e. g. with “rm -r /path-to-yourdirectory/*”, and copy there the original frames again.

Open an xgterm window, change the current directory to your IRAF home directory in the new
window, and run cl. Within the cl prompt, change directory to the one where the data are stored. If
their extension is not fits, e. g. fts, you need to change it to fits. This is easy done by the line command:

cl> rename *.fts fits field=extn

Now, you need to load the packages astutil, imred, echelle, and giano tools. But typing gi-
ano tools is enough, since it will automatically load the other three packages.

Before starting to work on the spectra, you will also need to add a few fields to the headers of the
reference lamp spectra, the target spectra, and any calibrator spectra. Just list all lamp reference frames
in a text file (e. g., lamp.list), one per line. Then list all target and calibrator spectra in another one
(e. g., target.list). Edit the parameter file of the giano tools task called giano header (running
“epar giano header”) and set list obj to target.list, list com to lamp.list, obsvt to lapalma, and equi to
2000. Therefore, the editor page must look as follows:

PACKAGE = giano tools
TASK = giano header

list obj= target.list File listing the target spectra:
list com= lamp.list File listing the comparison spectra:
obsvt = lapalma Observatory (from the IRAF observatory db):
equi = 2000. Equinox which RA and DEC in the header are refferred to:

(mode = q)

Exit starting the task by typing “:wq”. Run the task twice, just to make sure everything is updated as
needed.

7

3.4 Dark subtraction and bad-pixel correction

Dark subtraction is only needed by those frames that have not been taken in AB cycles (i. e., pairs of
frames obtained by shifting the target from one fibre to the other will be subtracted from each other
and do not need dark-subtraction). These include flat-fields, lamp reference spectra, and every target
frame with spectra from one fibre only. We stress again that the dark frames to subtract must
have been taken with the same integration time as the image to be dark-corrected! Thus,
group together all dark frames according to their integration time. Check that none of the dark frames
exhibit any kind of problems by displaying them (use the task display) and having a look at the im-
age statistics (use the task imexamine). Let us assume that all darks with an integration time of 300
s (let us call them dark 300 1.fits, dark 300 2.fits, dark 300 3.fits) are listed in a file called dark 300.list:

cl> display dark 300 1 1
cl> display dark 300 2 2
cl> display dark 300 3 3
cl> imstat @dark 300.list

The last number in each of the display line command is a frame identifier. E. g., in practice IRAF
allows nine frames (1,2,3,4,5,6,7,8,9) to be displayed simultaneously on ds9. You can use the ds9 key
“blink” (in the menu “frame” of ds9, see Fig. 5) to iteratively display all open frames, or you can
shift from one frame to another by using “next” (in the menu “frame” of ds9). Drop any file from
the dark 300.list that exhibits some strange patterns or statistics. Then combine the remaining ones
together, using the task imcombine after updating the list of frames to be combined.

cl> imcombine @dark 300.list dark 300 combined combine=average

This will yield the file dark 300 combined.fits, which has to be subtracted from each frame with an
integration time of 300 s needing dark correction.

The quickest way of dark-correcting all frames that need it, is by listing them (one per line) in
a text file (let us call it to be dcorrected.list). Then do a copy of to be dcorrected.list (e. g., let
us call it dcorrected.list), edit this new file, and change the name of each item listed (e.g., by adding
the string “dc ” in front of each file name). Now you will be able to dark-subtract all files just by typing:

cl> imarith @to be dcorrected.list - dark 300 combined @dcorrected.list

This construct the dark-subtracted frames and saves them adding a “dc ” in front of their original
file names (e. g.,target 1.fits will yield dc target 1.fits).

After dark subtraction, We suggest that you apply bad-pixel corrections to all flat-field frames,
calibration-lamp frames, target frames and calibrator frames. Bad pixels cause a lot of annoyance when
using tasks that perform fits to pixel rows or columns. The correction can be done by using the gi-
ano tools task clean up. Just make a text file listing all frames to be bad-pixel corrected (let us
call it to be flatted.list). Then open the clean up parameter file by typing “epar clean up”. Set the
fields as below:

PACKAGE = giano tools
TASK = clean up

8

Figure 5: How to run “blink” on ds9: first click on frame on the upper part of the bar above the image.
This will change the lower part of the bar and allow you to click on blink. Click on single to exit from
blink.

imlist= to be flatted.list File with list of images:
outstr= cl String to be added to input image name:
badima= gianot$badpix mask.fits Bad pixel image:
xbox= 40 Size of median-filter box along X:
ybox= 1 Size of median-filter box along Y:
fix= no Use fixpix?:
fixfile = List of bad pixel masks for fixpix:

(mode = q)

When you have finished, exit by typing “:go” to start the task. It will construct bad-pixel corrected
frames and save them adding the string “cl ” (you can choose any string you want, just update the field
outstr) in front of the names of the input frames. The task uses a bad-pixel map already provided with
giano tools (badpix mask.fits) to replace each mapped bad pixel with an xbox-by-ybox median value
around it. If you want, you can also have clean up run the IRAF task fixpix (by setting fix to yes) to
correct groups of pixels whose coordinates are to be listed in a file (by entering its name in fixfile). See
the IRAF help for further information on fixpix and the file format.

9

Figure 6: Cut along the middle column of a typical 300 s flat-field frame.

3.5 Learning more about flat-field frames

A typical flat-field frame is shown in Fig. 1. You can have a look at a 1D section of the frame by using
the task implot. Just choose one of your flat image, e. g., flat 1.fits, and type “implot flat 1.fits”
followed by enter. This will open the graphic window. Activate the window by clicking on it, and type
“:c 1024” followed by enter. This will display an image cut along the middle column of the frame, like
in Fig. 6. This flat was exposed for 300 s, thus the top counts are roughly those you should expect when
using the same integration time. Note how the spectrograph efficiency varies with the spectral order
(remember that the lowest order corresponds to the bottom-most track, hence the left-most in figure).

To look more carefully, just zoom-in on a smaller section: move the graphic cursor to the left-bottom
corner of the area you want to display and press “e”. Then move it to the right-top corner and press
“e”. You will be displayed something like in Fig. 7. Note the four different sub-tracks in each order, as
explained at the beginning. The differences in peak counts between the four tracks of each order are
due to the different efficiencies of the two fibres and to the positioning of the source in the fibre. To
go back to the previous display, type “a”, and then “a” again. Type “q” to return to the command
language prompt.

There is another important effect to be aware of about flat-field frames. Try subtracting a flat-field
frame form a different one, provided both belong to the same set of exposures (e. g., by running “imarith
flat 1.fits - flat 2.fits flat 1-2.fits”). You will obtain an image like the one shown in Fig. 8. Clearly, each
track in each order exhibits both a positive and a negative peak, although with different values. This is
due to very small intensity source variations between the two exposures (less than few percent), and to
micro-shifts of the fibres (fraction of a pixel). These are acceptable and you should not worry about it.

3.6 2D or 1D flat field correction?

CCDs and NIR detectors exhibit pixel-to-pixel variations in their quantum efficiency. These need being
corrected for in order to increase the signal-to-noise ratio. The issue is more complicated for images

10

Figure 7: Zoom-in on a segment of the middle column of a typical 300 s flat-field frame.

Figure 8: Zoom-in on a small area around the middle column of a typical 300 s flat-field frame.

11

Figure 9: Ratio of spectra from the same exposure on Deneb, after 1D flat correction and 2D flat
correction. The spike at ∼ 1694 nm is due to bad pixels.

of echelle spectra, due to the large fraction of the detector area (between orders) exposed to a very
low flux. To avoid various degrading effects on the noise statistics, flat-field corrections should only be
made inside each aperture (i. e., the detector areas impinged by the signal from the fibres and image
slicers).

In addition, since GIANO is a fibre spectrometer, no spatial information is preserved inside each
order. So, two ways of flat-field correcting the spectra are possible:

1. construct a 2D flat-field map by deriving a flat field correction only inside the apertures (setting
the pixels outside the apertures to 1) and divide each frame by this map;

2. extract the 1D spectrum from each aperture of the flat-field image, normalise it, and divide
all extracted (1D) unflatted spectra by the corresponding normalised flat-field 1D spectra (see
Sect. 3.15 for detail).

The results are quite similar, so the 2D technique is redundant. This is demonstrated in Fig. 9; a
spectrum of the star Deneb was extracted and flat-field corrected in the two ways. The ratio of the
resulting spectra is displayed in Fig. 9. Disregarding the low frequency component (the large scale,
smooth variation from 1.1 to 0.9), the high-frequency variations are below ∼ 1 %, which means that
both techniques lead to the same level of accuracy. None the less, making a 2D flat-field frame allows
you to define the traces for all orders and check that the subsequent spectrum extraction is ok. So,
We will describe here the 2D technique. Due to the very high signal-to-noise ratio in all orders of the
continuum lamp frames, they are the best images to derive the traces that will be used to extract any
other spectrum. This works fine since the spectrograph unit does not move during the observing run
and the traces are then not expected to change. On the other hand, science target spectra are often
faint in most orders and are thus not suitable to derive their own accurate traces.

3.7 Averaging the flat-field frames

First of all, you have to combine together all flat-field frames (after dark subtraction and bad-pixel
correction) to enhance the signal-to-noise ratio. Using the image tool and the task imexamine, check

12

all flat-field frames and discard those displaying any problem. Then list the good files (one per line) in
a text file (let us call it “to be flatted.list”). The frames can be combined together by using the task
imcombine:

cl> imcombine @to be flatted.list flat cmb combine=average

In this case, the averaged final frame will be called “flat cmb.fits” (second argument in the line com-
mand). This is the image you will use not only to construct the 2D flat-field map, but also to find and
fit the traces.

3.8 Handling spectra: IRAF packages to use

The package we will use to handle GIANO spectra (i. e., to construct flat-field frames, extract spectra,
etc.) is called echelle. So remember to load it. To do it, first you have to load imred, then you can
load echelle (just type “imred”, enter, “echelle”, enter). However, if you already have giano tools

loaded, echelle has been automatically loaded, as well (see page 7).

REMARK IRAF has other packages that make use of some of the routines managed by
echelle (e. g., onedspec, twodspec, etc.). Be careful, if you have one of these packages
loaded over echelle and run one of this common routines, IRAF will read its parameters from
a different parameter file than the one associated with echelle! Thus MAKE SURE that either
giano tools or echelle are the only spectrum analysis packages loaded when using echelle

routines.

3.9 Setting an ECHELLE session to extract GIANO spectra

After loading echelle (or having giano tools already loaded), a few critical parameters need to
be set once and for all. Hereafter, a list of the necessary steps are summarised. Be aware that many
echelle tasks will output new fits files, write some new information in the frame headers, and save a
lot of parameters in text files. These text files are saved in a subdirectory called (by default) “database”
that will be made by echelle itself. This is why removing a newly-created frame is often not enough
to go one step back in the reduction process. echelle keeps memory of what has been done through
header fields and text files, and ALWAYS uses this information any time you re-run a given task from
the same directory.

Setting the dispersion axis (i. e., is dispersion along rows or columns ?) and changing the name
of the subdirectory “database”: run “epar echelle” and set the field dispaxis to 1 (mandatory) and the
field database to the name you want to assign to the database subdirectory. In the following, we will
always assume that the subdirectory name is “database” (recommended).

Setting the number of apertures to be found. Run “epar apfind” and set the following fields as
shown:
(nfind = 196) Number of apertures to be found automatically
(minsep = 3.) Minimum separation between spectra
(maxsep = 52.) Maximum separation between spectra

Setting the parameters for background subtraction. Run “epar apdefault” and set the fol-
lowing fields as shown:

13

(lower = -2.) Lower aperture limit relative to center
(upper = 2.) Upper aperture limit relative to center
...
(b funct = chebyshev) Background function
(b order = 2) Background function order
...
(b naver = -100) Background average or median
(b niter = 3) Background rejection iterations
(b low = 1.) Background lower rejection sigma
(b high = 1.) Background upper rejection sigma

Setting the aperture resize parameters. If resize is set to yes, the corresponding aperture bound-
aries along each column will be defined for each order by the pixels showing a number of counts equal
to 10 % of the corresponding peak. However, we do not use this algorithm, so run “epar apresize” and
set the following fields as shown below:
(resize = no) Resize apertures?
...
(nsum = 1) Number of dispersion lines to sum or median
...
(peak = yes) Is ylevel a fraction of the peak?

Setting the parameter for the aperture editor. Run “epar apedit” and set the following fields as
shown:
(nsum = 10) Number of dispersion lines to sum or median
(width = 4.) Profile centering width
(radius = 4.) Profile centering radius

Setting the parameters for aperture tracing . Run “epar aptrace” and set the following fields as
shown:
(line = 1000) Starting dispersion line
(nsum = 10) Number of dispersion lines to sum
(step = 10) Tracing step
...
(functio= spline3) Trace fitting function
(order = 3) Trace fitting function order

3.10 How to find traces

Following Sect. 3.7, you will have obtained a final, average flat-field image. Hopefully, you will have one
per night. Flat-field images have by far the highest signal-to-noise ratio of all and none of the orders
is depressed, as it happens to science frames due to the strong atmospheric absorption between the
YJHK bands. Since, unlike the telescope, the spectrograph does not move at all during an observation
run, flat-field images are the best choice to fit polynomials to the signal tracks with accuracy. These
polynomials define the traces associated to each track. Usually, traces can be easily retrieved from any
flat-field image. We ran across few cases, however, where a high level of scattered light, following a
smooth distribution which peaks at the centre of the detector (see Fig 10), can drive small spurious
peaks between the central orders to exhibit more counts (resulting from peak plus scattered component)
than the peaks at the highest order. These spurious peaks are therefore counted as real signals and this
leads to a wrong aperture numbering. This occurrence is extremely rare, nevertheless we have
developed a simple script which removes the scattered component before trace finding.
This task is called giano find trace and combines 1D fits (along image columns), obtained with the
IRAF task fit1d, and trace detection performed by the task apfind. The output of giano find trace

is needed as a reference file (storing the trace information) by apflatten (Sect. 3.11).

14

Figure 10: Map of scattered light over the GIANO detector area obtained by a simple spline3 fit of
order 2 along columns (after discarding the signal inside the orders).

Fig. 11 explains how to set the parameters (with epar) of giano find trace. Set the first field
to the name of your final flat-field frame. You can also set save sc to yes, so that the derived map
of scattered light can be saved in a fits file (whose name is output on the cl window by the task in
run time). This can be then compared with Fig 10 for consistency. You will now be able to start
giano find trace. At the beginning, it will take a few minutes to construct the scattered light map.
Then, you will be asked some questions through the prompt, answer yes to all of them. You will have
the graphic window opened and an interactive graphic session started. Check aperture locations and
widths; if you want you can change them interactively see appendix A. However, we do not advice
changing widths, just check that each aperture is centred on a track peak and that all apertures follow
the correct numbering scheme. The correct aperture numbering is shown in Figs. 20, 21, and 22 (i. e.,
all four sub-tracks inside all orders but the highest one must be labelled and numbered, no aperture
must be labelled between orders. Note that the current version of giano find trace erases the
highest order, unused peaks from the image, so you will not be able to see them anymore
in the graphic window). When satisfied, press “q” with the graphic window active.

15

Figure 11: Parameters to be set before running giano find trace.

GIANO FIND TRACE problem solving Check that all four apertures in every four-track
group have been found and correctly numbered. The apertures must be numbered from 1 to 196 (i.
e., 4 × 49).

Most of the problems we have found were caused by frames that had not been cleaned from
bad-pixels appropriately and so exhibited spikes that interfered with the peak finding algorithm.
Should any peaks in any order group not happen to be marked, or should some peaks other than
the real ones happen to be marked, try first to change the parameter displine (but keep it in the
range 900–1010). This will change the column searched for by the trace-finding algorithm and fix
the problem if it is caused by a bad pixel. Should this not fix the problem, try changing gminsep

(keep it in the range 3–6).
Sometimes we had all relevant peaks detected, but incorrectly numbered (e.g., 1–2–3–4, then

6–7–8–9, 5 missing). This was caused by spectral profile variations that resulted in slightly larger
separations between the top track of an order group and the bottom one of the next order group
than set by default in parameter gmaxsep. Try setting gmaxsep to a slightly larger value.

3.11 Using apflatten to fit traces and construct a 2D flat-field frame

REMARK The next step is critical, not so much in order to obtain a reliable flat-field map of
the detector, but especially because apflatten will determine the traces that will then be used to
extract the spectra from any other frame.

Having found the positions, along the reference column, of the traces with giano find trace, you have
to derive a polynomial curve fitting the corresponding signal across the detector by using apflatten.
By default, the width of the apertures centred on the traces has been set in Sect. 3.9 (via apdefault)
to be 4 pixel in the direction orthogonal to the dispersion axis. apflatten will allow you to construct
a 2D flat-field image where the normalised values are only set inside the apertures, while the pixels
outside them are set to 1. As explained in [6], this preserves the noise distribution all over a flat-field
corrected frame, as needed by any bad-pixel removal algorithm based on a knowledge of the noise
distribution. This is actually pointless in the NIR: NIR frames usually undergo several modifications
and do not maintain the original information on the noise. So, we recommend that you do not use

16

any of these algorithms. In addition, a 2D flat is useful only if some spatial information is still present
inside the apertures. Using fibres as GIANO does, such information is erased. Anyway, hereby we will
show how to apply the 2D flat correction as an alternative to the 1D flat-field correction (see Sect. 3.6).
Furthermore, you can take advantage of the spectrum fit session to check that all apertures
are correctly retrieved, by comparing the extracted 1D spectra to those shown in Figs. 27,
28, and 29.

Summary of APFLATTEN actions: First, based on the aperture locations found by gi-

ano find trace, it runs an algorithm which sums all image columns nsum by nsum and finds
all peaks along every step columns following the signals along the various orders. Secondly, it fits
a polynomial curve to each string of peaks corresponding to a given order sub-track. It displays
the fit results on the graphic window, and you can control this step interactively, as well. Finally,
it extracts a spectrum from each trace and fits a polynomial to it. Again, you can review the fit
results interactively. These fits are used inside each trace to normalise the signal. If you
want the spectrograph response to be also removed by the flat, just use a polynomial of order 1 (see
Sect. 3.16 and Appendix C). In principle, the wavelength range of each order is narrow enough so
that the spectral density of a continuum source does not change appreciably inside.

To begin with, have a look at Fig. 12, which lists how to set the parameters (with epar) for apflat-

ten. Only five field settings have to be adapted: input (set it to the name given to the final combined
flat-field frame to normalise), output (set it to the name you want to give to the normalised flat-field
frame), and referen (set it to the output file of giano find trace). If you want to use a polynomial
of order 1 (as said above), also set functio to chebyshev and order to 1.

All other fields should be set as in figure. We note that, being the field clean set to “no”, there is no
need to set the fields saturat, readnoise, and gain. In addition, the imaged GIANO orders are actually
49, but split in four traces each (two per fibre). So, apflatten must be tricked into looking for 196
orders. At this stage, this is irrelevant.

You are now able to start apflatten. Answer yes to all questions that are asked at the cl prompt.
You will have the graphic window opened and an interactive graphic session started. In the following,
the session steps are summarised. Each one is further detailed in the appendix. Just follow the appendix
descriptions.

1. You can skip this step by pressing “q” with the graphic window active, you just did it with
giano find trace. Alternatively, you can change aperture locations and widths interactively
(see appendix A). The correct aperture numbering is shown in Figs. 20, 21, and 22 (i. e., all four
sub-tracks of all orders but the last one labelled, no aperture labelled between orders)). When
satisfied, press “q” with the graphic window active.

2. Check the trace fits (one per sub-track, i. e. four per order), you can change the parameters
interactively (see appendix B). An example of correct fit for most of the 196 traces is shown in
Fig. 24. Some of the highest number apertures exhibit a little problem like that shown in Fig. 25.
Orders 48–49 will look like Fig. 26. In both cases, just delete the deviant points and redo the fit
as explained in Appendix B. When done, press “q” with the graphic window active.

3. Check the spectrum fits (one per trace), you can change the parameters interactively (see appendix
C). Examples of correct fits (and correctly extracted spectra) are shown in Fig. 27 (lower orders),
Fig. 28 (central orders), and Fig. 29 (higher orders). Note that the signal peak shifts in position
towards the right edge in moving from the lowest to the highest orders. When done, press “q”
with the graphic window active.

17

Figure 12: Parameters to be set for apflatten. Note that the fields “input”, “output”, and
“referen” have to be adapted (see text). If necessary, change also “functio” and “order”.

A normalised flat frame obtained from apflatten (and displayed with display) will look like the
one in Fig. 13. Note the perfectly flat areas between orders. This is why you need to use the same
traces for normalised flat images and target 2D spectra, to make sure that all extracted signal is flat-field
corrected. You can obtain a view along a column by using implot, which will look like that in Fig. 14.

3.12 Flat-fielding the targets in 2D, and final steps before spectrum ex-
traction

FLAT-FIELD CORRECTION If you decide on flat-field correcting your spectra in 1D,
skip this step and go on to the point FRAME SUBTRACTION below. 1D flatting will then
be performed later as described in Sect. 3.15.

As for 2D flatting, following the steps outlined in the above section yields a frame that is hereby
named flat cmb norm. This is the normalised 2D frame to use for flat-field correction. Now, list all
dark-subtracted, bad-pixel cleaned comparison lamp spectra, and all bad-pixel cleaned science frames
in a single text file (e.g., to-be-flatted.list). Make a new text file (e. g., call it flatted.list) and list, in
the same order, the names you want to allot to the flat-field corrected frames. To flat-field correct them
all, just type:

cl> imarith @to-be-flatted.list / flat cmb norm @flatted.list

This will divide (pixel-by-pixel) each frame listed in to-be-flatted.list by the normalised flat, assign-
ing the corresponding name found in flatted.list to the output frame.

FRAME SUBTRACTION After you have corrected the science frames, subtract frame B from
frame A for every AB cycles with the target alternatively in each of the fibres. This will remove any
residual scattered and diffuse light contribution. Do this again using imarith, e. g.:

18

Figure 13: Normalised flat-field image obtained with apflatten.

19

Figure 14: Cut along the central column of a normalised flat image obtained with apflatten.

cl> imarith star1-lower-fibre - star1-upper-fibre star1 sub

Of course, this can be done for all frames simultaneously by using three list files (and an @ in front of
the file names in the command line, as usual). The frame star1 sub.fits will have positive and negative
peaks. The signal from the lower fibre will be positive (two tracks per order), and the signal from the
upper fibre negative (two tracks per order). Thus, you need to multiply star1 sub.fits by −1 before
extracting the spectra from the upper-fibre tracks (see Sect. 3.13). You might also have either pairs
of on-source and off-source frames or single target frames, i. e. with the source spectrum in only one
fibre. In the former case, subtract the off-source frames from the on-source ones, as explained above.
In the latter case, you have no other choice but a dark-subtracted, flat-field corrected, background
contaminated spectrum.

On the other hand, if you have more than one subtracted AB pair of frames from the same target,
combine them together with imcombine before extracting the spectra. Alternatively, you could first
extract the spectra from every single AB frame and then, if necessary, combine the spectra from the
same targets with sarith as explained in Sect. 3.17. As already explained, list them all in a text file
(e. g., target1 A-B.list) and run IMCOMBINE:

cl> imcombine @target1 A-B.list.list target1 A-B comb combine=average

this will yield the file target1 A-B comb.fits as the average of all frames listed in target1 A-B.list.list.

3.13 Cloning frames

As explained above, we have found 196 traces, but the orders are actually only 49. In fact, for each
order there is a bottom trace, a mid-lower one, a mid-upper one and a topmost one. We will need a
different frame for each of the 4 sets of traces to extract the 1D spectra, i. e., we need to make four
copies of each frame. In addition, all AB subtracted frames will have to be multiplied by −1 before

20

extracting 1D spectra from the two upper (or lower) trace pairs per order. This may seem redundant,
but by allowing the four traces of each order to be separately extracted, they will be independently
wavelength-calibrated and this will also correct for the slit image not being perfectly vertical within the
traces.

This “frame cloning” can be done in one shot by using the task copy file of giano tools. First,
list all subtracted files in a text file (e. g., subtracted.list) and all frames with only positive traces (which
do not need multiplication by −1, e. g., those of the calibration lamps) in another (e. g., lamp.list).
Then run “epar copy file” and set the fields as below:

PACKAGE = giano tools
TASK = copy file

anysub = yes Are there any subtracted (A–B) frames?
inlist = subtracted.list File listing subtracted (A–B) frames:
inmark = 1 Positive peaks are at the lower (1) or upper (2) two tracks?:
nonodd = lamp.list File listing frames with positive peaks at all tracks (calibration lamps, etc.):

(mode = q)

If you only have frames with positive traces (i. e., not subtracted), just set anysub to no and dis-
regard inlist and inmark. Only set inlamp to the name of the list of frames. If you also have AB
subtracted files, set anysub to yes and inlist to the name of the list of subtracted frames. If you only
have subtracted files, set anysub to yes, set inlist to the name of the list of subtracted frames, and set
inlamp to an empty string. Then set inmark according to whether the traces with positive counts in
each order are the lower two (set it to 1) or the upper two (set it to 2). Finally, run the task.

The task makes four copies of each file found in the two lists. Two of the copies of the AB subtracted
frames are also multiplied by −1. The four copies will have a name composed of that of the original
frame plus the strings: lowest, middown, midup, topmost (e. g., target1.fits will be copied into
target1 lowest.fits, target1 middown.fits, target1 midup.fits, and target1 topmost.fits). Each of the four
copies will be used with the corresponding trace reference frame obtained as explained in Sect. 3.14.

3.14 Spectrum extraction

The task that you will use for extracting spectra is doecslit. However, you will first need to run
apedit to associate the traces already found through giano find trace and apflatten to each
cloned frame. As a consequence, doecslit will skip the trace finding session, but will wavelength-
calibrate the spectra after extracting them and before saving them in fits format. Flux calibration will
not be performed with doecslit.

Remember having tricked apflatten in considering any suitable signal track in a frame (196 in
total) as a single spectral order. So you will have to “split” the traces found and re-arrange them in
the correct order. To this purpose, you can use the giano tools task split file. The task operates
on the non-normalised flat-field frame, for which trace definitions have been saved by apflatten, and
makes four new fits files (and a few associated files in the subdirectory database), the trace parameters
for the actual 49 orders of each fibre. It also set the correct “sky” windows around each trace to allow
background subtraction, if requested. Run “epar split file” and set the fields as below:

PACKAGE = giano tools
TASK = split file

imtrace = flat cmb Reference image for traces:
numf = 4 Number of traces per order (2,4)
dir = database Directory holding the aperture files (default database)
mode = ql)

remember to set the field imtrace to the name of the flat-field frame version before normalisation
(i. e., the input to apflatten), and the field dir to the name you have assigned to the subdirectory
database (of course, only if you have changed it and do not use the default one). The field numf must

21

be set to 4. The other possible value (2) was only used for the very first GIANO observations (which
adopted no image slicers).

After the task has run, this will output: a reference frame for the traces from the lowest sub-track of
every order group (input name with the string “ lowest” added at the end, e. g. flat cmb lowest.fits), a
reference frame for the traces from the mid-lower sub-tracks (input name with the string “ middown”
added at the end, e. g. flat cmb middown.fits), a reference frame for the traces from the mid-upper
sub-tracks (input name with the string “ midup” added at the end, e. g. flat cmb midup.fits), and
a reference frame for the traces from the topmost sub-tracks (input name with the string “ topmost”
added at the end, e. g., flat cmb topmost.fits). In addition, the trace parameters can now be found in
four new files held in the subdirectory database, with the same names as the corresponding new fits
file plus an “ap” string in front (and without extension); e. g., apflat cmb lowest, apflat cmb middown,
apflat cmb midup, and apflat cmb topmost.

It is mandatory that you also make four copies of each flat-field corrected calibration-
lamp frame, following Sect. 3.13. In fact, during the wavelength-calibration step, doecslit will
assign a set of traces to the lamp frames. So, you need a set of lamp frames per each of the four
sub-track sets.

Including the strings added by copy file and split file to the frame names, list all the science
frames with the “lowest” label in a new file (e.g., lowest.list), all the science frames with the “middown”
label in a second file (e.g., middown.list), all the science frames with the “midup” label in a third file
(e.g., midup.list), and all the science frames with the “topmost” label in a fourth file (e.g., topmost.list).
Do the same for the calibration lamp frames (e.g., lowest lamp.list, middown lamp.list, midup lamp.list,
and topmost lamp.list).

Before extracting the 1D spectra, you need to associate the correct traces to each set of frames. This
will be done by using the task apedit. First, associate the traces of the lowest sub-tracks of each order
to the “lowest” frame set. The main steps are listed below and further described in the appendices.

1. Run “epar apedit” and set the fields as in Fig. 15. Note that input and referen need to be adapted.

2. Run apedit and follow the instructions given in appendix A. Just check that the aperture loca-
tions have been set correctly for each frame.

Repeat the two steps for the other three track groups (middown, midup, and topmost), so that every
frame will have its trace set associated.

Use the task doecslit to extract and wavelength-calibrate the 1D spectra. First, extract the 1D
spectra from the 49 lowest sub-tracks. The main steps are listed below and further described in the
appendices.

1. Run “epar doecslit” and set the fields as in Fig. 16. the fields to adapt to your own setting
are: objects, apref, arcs, readnoi, gain, datamax, and backgrou. As for the first three
fields, input the name you have assigned to the file listing the “lowest” science frames, the reference
frame for the “lowest” traces (obtained from split file), and the name you have assigned to the
file listing the “lowest” calibration lamp frames. Compute the values to input into fields readnoi

(effective frame readout noise) and gain (effective frame gain) as explained in appendix E. Compute
the maximum data value to input into field datamax from Table 1. If you do not want to carry
out any background subtraction, set backgrou to none.

2. Note that the field sparams in Fig. 16 is empty. This is because sparams does not require a
value, it is just a link to another parameter file. You have to access it by entering “:e” (followed
by return) into the field. Alternatively, you can exit the parameter editor and type “epar sparams”
to access the file. Edit sparams and set ONLY the field shown in Fig. 17 as shown in figure,
keeping the default value for the others. There is no need to change any of the fields not shown

22

Figure 15: Parameters to be set for apedit. Note that the fields “input” and “referen” have to
be adapted (see text).

in the figure. Only parameters in the “AUTOMATIC ARC ASSIGNMENT PARAMETERS”
section can be adapted in alternative ways; see appendix F.

3. Run doecslit and follow the instructions given in appendix G. At the end, the task splot will
be invoked by doecslit and you will be shown the final spectra. See appendix D on how to use
splot, the 1D spectrum editor.

4. When doecslit has finished, the extracted spectra will be saved in fits files having the same
name as the input file plus the string “.ec.” at the end (e. g., input file “target1 lowest.fits”,
output file “target1 lowest.ec.fits”).

Let us now turn to extract 1D spectra from the “mid-lower” trace set. The main steps are the same
as for the “lowest” set, with few small changes. Note that you should also go through the wavelength
assignment stage for all remaining three sets of traces, which may be quite boring. Thus, this step can
be made faster by using the echelle task ecreidentify. Once you have extracted the “lowest” set
of spectra with doecslit, you can use ecreidentify to automatically find a new wavelength solu-
tion for the remaining trace sets. To this purpose, we have developed a giano tools script, called
giano reidentify, which makes this step as easy as possible. doecslit will have extracted at least
one of the “lowest” lamp spectra and saved it in a file ending in “.ec.fits”. E. g., the spectra extracted
from the image “lamp 1 lowest.fits” are saved in “lamp 1 lowest.ec.fits”. To run giano reidentify,
you need one of the lamp “ec.fits” files as a reference. In addition you need a text file listing the lamp
images to calibrate (e. g., middown lamp.list; These are images, not spectra, so do not use a
label “ec” in the file names!). Note that the lamp frames input to giano reidentify must have
the corresponding aperture reference image set (e. g., flat cmb middown.fits for the “middown” set).
Run “epar giano reidentify” and input the required parameters as follows:

PACKAGE = giano tools
TASK = giano reidentify

refimage = lamp 3 lowest.ec Wavelength-calibrated lamp reference spectrum:
imlist = middown lamp.list File list with lamp spectra to extract and calibrate:
referen = flat cmb middown Aperture reference image:
database = database Database

23

Figure 16: Parameters to be set for doecslit. Note that the fields objects, apref, arcs, readnoi,
gain, datamax, and backgrou have to be adapted (see text).

(mode = q)

Now run the task and check the output information (for each lamp: number of lines reidentified,
number of fit reidentified lines, r.m.s., etc.). This will resemble the following:

ECREIDENTIFY: NOAO/IRAF V2.14.1 fmassi@oberon Tue 14:46:24 24-Sep-2013
Reference image = lamp 3 lowest.ec, Refit = yes

Image Found Fit Pix Shift User Shift Z Shift RMS
test.ec 288/290 269/288 −0.387 0.319 4.17E−6 0.00137

In particular, note that 288 out of 290 lines have been retrieved in the new spectrum, of these 269
have been fitted. The r.m.s. is quite low (0.00137) as well. Values like these are ok.

After giano reidentify has run successfully, you can run doecslit repeating the same steps as
for the “lowest” set of tracks:

1. Run “epar doecslit”, keep the fields set as in Fig. 16, but update the fields: objects, apref,and
arcs. Input the name you have assigned to the file listing the “mid-lower” target frames, the
reference frame for the “mid-lower” traces, and the name you have assigned to the file listing the
“mid-lower” calibration lamp frames.

2. You do not have to change any setting in sparams. Keep them as explained above for the “lowest”
case.

3. Run doecslit and follow the instructions given in appendix G. At the end, the task splot will
be invoked by doecslit and you will be shown the final spectra. See appendix D to use splot.

4. When doecslit has finished, the extracted spectra will be saved in fits files with the same name
as that of the input file plus the string “.ec.”.

Rerun giano reidentify and repeat the above steps (1 through 4) for the mid-upper and topmost
traces, as well.

24

Figure 17: Parameters to set in sparams. Only for “AUTOMATIC ARC ASSIGNMENT
PARAMETERS” you might want to use a different set-up (see text).

giano reidentify as a shortcut provided you have run doecslit once and have reference
images for at least one trace set, you can use giano reidentify to wavelength-calibrating every
other lamp set taken in any other date. E. g., you can use the reference lamp frame already provided
with the giano tools package. Just copy cl jul UNe 300 ds lowest.ec.fits to your working directory
and eccl 29 jul UNe 300 ds lowest.ec to its subdirectory database, and follow Appendix G to see
how to use doecslit when a wavelength solution is already available.

3.15 Flat-field correcting the spectra in 1D

If you have decided on performing a flat-field correction on the extracted spectra (1D) rather than on
the corresponding 2D images, now it is time to do it. To make things easier, giano tools provides still
another task that will enable you to both construct the flat-field 1D spectra and apply the correction
to the target 1D spectra. It is based on the echelle task continuum (see Sect. 3.16) and its name
is “flat 1D”. As usual, run epar flat 1D and set the parameters as follows. Be aware that flat 1D

requires that you have followed all the reduction steps explained so far, in particular having already
used split file and copy file. It needs the same information input to split file and copy file,
but actually uses their output files.

25

iinput the final reduced flat-field 2D image used as input to split file. The task will translate the
file name into the corresponding “lowest”, “middown”, etc., names.
jinput either a file listing all target frames to flat-field correct, or a single fits file. It is mandatory
that you should use the file names input to copy file, the task will translate the file names into the
corresponding “lowest.ec”, “middown.ec”, etc., names.
lampname The calibration lamp frame or a file listing the calibration lamp frames. Again, use the file
names input to copy file, the task will translate the file names into the corresponding “lowest.ec”,
“middown.ec”, etc., names.
trac1d f set it to yes if you want to use the same traces associated to the flat-field frame input to
iinput (default). If another frame is to be used, set it to no.
trac1 d Reference frame to use for aperture definition if trac1d f is set to no. Again, omit “ lowest”,
“ middown”, etc., in the name, but the reference frame needs having passed the steps for aperture
definition (i. e., it needs the associated files in the subdirectory database and the labels “ lowest”,
“ middown”, etc., added to its name to denote the actual reference frame names).
inter1d set it to yes if you want to follow interactively the fits to the continuum lamp spectra.
order1d set it to yes if you want to normalise the flat-field 1D spectra to a constant value (to remove
the spectrograph response) or to no to normalise the flat to a fitted polynomial.
dir1d set it to the name of the subdirectory where the reduction information is stored (default is
database).
del1d set it to no if you want to save the normalised flat-field 1D spectra.

By setting del1d to no, four fits files with the normalised flat-field 1D spectra will be saved in
your working directory: namely, tmp flat corr lowest nrm.ec.fits, tmp flat corr middown nrm.ec.fits,
tmp flat corr midup nrm.ec.fits, and tmp flat corr topmost nrm.ec.fits. Take care to change their names
before any further run of flat 1D. If you only want to construct 1D normalised spectra, set jinput to a
void string and del1d to no. Be aware that the flat-field correction is performed trace by trace After-
wards, each flatted 1D spectrum will be saved and assigned the name from the list input to jinput, plus
the string “ lowest fl.ec.fits”, “ middown fl.ec.fits”, etc., at the end.

3.16 Normalising the extracted 1D spectra to the continuum

You might want to have your spectra normalised to the continuum, i. e. to have the continuum level
set to a constant value. You can do it by using the task CONTINUUM. However, it is often difficult
to identify the continuum level in a spectrum exhibiting lots of absorption lines. Thus, we suggest two
approximate ways of normalising your spectra. Taking into account that the flat-field spectra are those
with the best signal-to-noise ratio, since all orders span a limited range in wavelength, the spectral
shape in the flat-field apertures is mostly due to the spectrograph efficiency.

The simplest way to operate is by fitting a Legendre polynomial of order 1 (i. e., a horizontal
straight line) when constructing a normalised 2D flat (Sect. 3.11) or 1D flat (Sect. 3.15). After flat-field
correction, your extracted spectra will already be approximately normalised to the continuum.

Alternatively, if you fit a higher order polynomial to normalise the continuum lamp 1D spectra,
you will have to perform a new fit to the non-normalised flat-field frames. The drawback is that
you risk adding small oscillations to the extracted 1D spectra in both steps. Try always to keep the
order of the fitted polynomial as low as possible. To perform (and save) the fit, we will use the task
“continuum”. First, make a copy of flat cmb lowest.fits, flat cmb middown.fits, flat cmb midup.fits and
flat cmb topmost.fits (e. g., call them lowest continuum.fits, middown continuum.fits, midup continuum.fits,
and topmost continuum.fits). Extract their 1D spectra with doecslit, using the appropriate setting
as explained in Sect. 3.14. If you have already wavelength calibrated all traces, this step will be skipped
by the task. When you start doecslit, you will have to confirm all the questions you will be asked
(no calibration session will be opened). Then, you need to fit all the 49 1D spectra from all the four

26

Figure 18: Parameters to be set in continuum.

trace sets (in this case, lowest continuum.ec.fits, middown continuum.fits, midup continuum.fits, and
topmost continuum.ec.fits). Run “epar continuum” and set the parameters as in Fig. 18. Note that the
field type is set to fit in order to save the fitted polynomial in the output frame. Set the fields functio

and order to the same parameters as used in apflatten. Run continuum and repeat for the other
three fibre settings.

To normalise the target spectra, we will use the task sarith, which is the analogue of imarith for
spectra; sarith handles spectra and deals automatically with issues such as differences in sampling in-
tervals and wavelength ranges. List the fits files with the extracted 1D spectra for each of the four trace
sets in a text file (e. g., let us call them to be normalised lowest.list, to be normalised middown.list,
to be normalised midup.list, and to be normalised topmost.list). Make four other lists with the names
to assign to the normalised 1D spectra (e. g., normalised lowest.list, normalised middown.list, nor-
malised midup.list, and normalised topmost.list). Then run sarith on all pairs of files:

cl> sarith @to be normalised lowest.list / lowest continuum.ec.fits @normalised lowest.list

cl> sarith @to be normalised middown.list / middown continuum.ec.fits @normalised middown.list

cl> sarith @to be normalised midup.list / midup continuum.ec.fits @normalised midup.list

cl> sarith @to be normalised topmost.list / topmost continuum.ec.fits @normalised topmost.list

3.17 Combining the extracted 1D spectra together

At this point, you will have four different 1D spectra of every target (each per sub-track group). You
need to combine them together to increase the signal-to-noise ratio. This can easily be done using the
task scombine, which is the analogue of imcombine for spectra; scombine handles spectra and deals
with issues such as differences in sampling intervals and wavelength ranges. Actually, we found more
suitable using sarith, which apparently does a better job with handling wavelengths. Of
course, sarith only allows operations on pairs of spectra, so it needs to be repeated several times when
averaging a number of spectra.

First, have a look at the 1D spectra to sum up with splot (see appendix D) to identify the maximum
and minimum (in principle, the minimum should be zero) signal level throughout the sample. Be also
aware that the two fibres have slightly different efficiencies.

27

Then, list all spectra to be combined, in a text file (e. g., call it target1 ec.list). Now you will have
to use the fits files of the extracted 1D spectra (the “ec.fits” files) obtained from doecslit,
or after normalisation. Run “epar scombine” and set the parameters as in Fig. 19. The only fields
you may want to set are lthresh and hthresh. You need to put a value slightly below the lowest
signal level you have identified into lthresh, and a value slightly above the highest signal level you have
identified into hthresh. This will clean off a few annoying spikes. The parameter fields listed by the
parameter editor lying below lthresh are not used in our case, so you can leave them untouched. As
for combine, We always prefer using the average, but see the remarks on the effective exposure
time.. And, of course, output should be set to the name you want to give to the output combined 1D
spectrum. Finally, run scombine.

REMARK: EFFECTIVE INTEGRATION TIME OF COMBINED SPECTRA
Remember that the output of each fibre is split into two spots, both feeding the slit. This

means that the exposure time WILL BE EXACTLY THAT OF THE SINGLE A or B FRAME
after summing together the pair of 1D spectra corresponding to the same fibre. Consequently, if
you add together all four 1D spectra extracted from an AB subtracted frame, the effective exposure
time will be twice that of the single A or B frame. If you average together the four 1D spectra, the
exposure time will be HALF that of the single A or B frame (but the effective gain will be larger).
See Appendix E to compute effective exposure time, gain, and read-out noise in a number of cases.

3.18 Viewing the final 1D spectra

To look at your final extracted 1D spectra you can use splot, as explained in appendix D. You can
also use splot to perform several operations on spectra (see the splot help in IRAF). However, the
simplest way to handle a 1D spectrum is translating it into a text file (a two-column list with wave-
lengths and counts). To do this, you can use the giano tools script called fits2txt, which is based
on the iraf.onedspec task wspectext. We will explain how to use fits2txt first, and then how to
use wspectext itself. Run “epar fits2txt”, the editor page will look like that below:

PACKAGE = giano tools
TASK = fits2txt

specin = @spec.list Input fits spectrum
startnum = yes Start output from 1(yes) or 32(no)?
sphed = no Include header?

(mode = q)

The field specin has to be set either to the name of a single fits file or to a text file (remember to
put “@” followed by the file name into the field) listing a number of 1D spectrum fits files. The task
output consists of 49 new text files each with one spectral order, having the same name of the input
fits file but ending in “ tN.txt” instead of “.fits”. Note that N is a number from one (the lowest order,
i. e. the largest wavelength) to 49 (the highest order, i. e. the smallest wavelength). If you want,
you can number the text files starting from 32 (i. e., the real number of the lowest order) just setting
startnum to no. If you want to have the fits header saved in the text files, as well, set sphed to no. For
the wavelength ranges covered in each order, see Appendix H.

Alternatively, you can use wspectext by yourself. You first have to load the package:
cl> onedspec
Note that wspectext allows you to convert only one order of a spectrum at a time. E. g., to convert
the first trace of a spectrum named target1.ec.fits into a text file named target1 n1.txt, you will have
to set the wspectext parameters as follows (note the [*,1] at the end of the input file name):

PACKAGE = onedspec
TASK = wspectext

28

input = target1.ec.fits[*,1] Input list of image spectra
output = target1 n1.txt Output list of text spectra
header = no Include header?
wformat = Wavelength format

(mode = q)

The good news is, you can make a script to convert all traces in one shot. Just write a text files
with the following lines (one per aperture):

wspectext target1.ec.fits[*,1] target1 n1.txt header=no
wspectext target1.ec.fits[*,2] target1 n2.txt header=no
wspectext target1.ec.fits[*,3] target1 n3.txt header=no
...

Then run the script typing:
cl> cl < nomefile

Needless to say, there is also a task rspectext, which allows you to convert text spectra in fits files
(see the help in IRAF). After using wspectext, unload the package onedspec by typing “bye”
to avoid messing up the parameter files associated with the package echelle.

Figure 19: Parameters to be set in scombine. Fields lthresh and hthresh need being adapted
as explained in the text.

29

4 Bibliography

[1] Oliva, E., et al. 2012, SPIE, 8446
[2] Origlia, L., Oliva, E., & Scuderi, S. GIANO cookbook for observers,
http://http://www.tng.iac.es/instruments/giano
[3] Origlia, L., & Oliva, E. GIANO cookbook for proposers,
http://http://www.tng.iac.es/instruments/giano
[4] Barnes, J. 1993, “A Beginner’s Guide to Using IRAF”,
http://iraf.noao.edu/docs/recommend.html
[5] Shames, P., & Tody, D. 1986, “A User’s Introduction to the IRAF Command Language”,
http://iraf.noao.edu/docs/recommend.html
[6] Wilmarth, D., & Barnes, J. 1994, “A Users Guide to Reducing Echelle Spectra with IRAF”,
http://iraf.net/irafdocs/ech.pdf
[7] Oliva, E., et al. 2013, A&A 555, A78
[8] ESO Sky Model Calculator: http://www.eso.org/observing/etc/

30

Appendix A: Checking the apertures
After starting giano find trace, apflatten, or doecslit, you will be asked a few questions,

always answer “yes”. Then, the graphic window will open and the first thing you will be shown is a
section of the frame along the central column, like in Fig. 20. You can see all orders as peaks and,
on top of the panel, the aperture intervals marked by horizontal segments joining small vertical bars
and labelled by numbers. You may want to check that the aperture intervals are correct, so you had
better zoom in on parts of the image. In Fig. 21, the zoom-in shows the correct numbering: all four
peaks corresponding to the sub-tracks of the same order must be labelled and numbered for every order
(sometimes order 81 is also visible; it must not be labelled), and no aperture interval segment must fall
in areas between subsequent orders. Figure 22 shows a zoom-in on the highest orders; order 81 is not
marked, this is ok (sometimes even half of order 52 is also visible), and the four sub-tracks of order 80
are numbered from 193 to 196, this is ok as well. If not so, the aperture finding algorithm failed for
some reason and you must check in depth.

Hereafter, a list of the relevant graphic commands, always to input with the graphic window
active.

Figure 20: Graphic window showing the apertures selected by the algorithm. The signal is plotted
along the reference column; each peak represents a sub-track, each group of four close-by sub-tracks
represents a spectral order. The numbered segments on top of the panel mark the selected apertures
and must always correspond to the peaks.

1. to start the help page, type “?”. The cl window will display a list of commands that you can
scroll down. After you have finished, type first “q” and then “return” to return the cursor to the
graphic window.

2. to enlarge the view, first type “w”; then move the cursor marker to the lower left corner of the
area you want to enlarge and type “e”. Finally, move the cursor marker to the upper right corner
of the area you want to enlarge and type again “e”. Figure 21 shows an example of the result of
this sequence of commands.

3. to return to the largest view, type “w” and then “a”.

31

4. to enlarge the width of the current aperture (at the beginning, aperture number 1, i. e. order
32), move the cursor marker to the lower end of the interval and type “l”. Then move the cursor
marker to the upper end of the interval and type “u”.

5. to move to the next aperture, type “+”. To move to the previous aperture, type “-”.

6. to enlarge the width of all apertures simultaneously, move the cursor marker to the lower end of
the interval at the current aperture and type “L”. Then move the marker to the upper end of the
interval and type “U”.

We advice that you do not display another frame column (which is possible) during the
trace fitting session, it may cause errors in the trace centring.

Figure 21: Graphic window showing the apertures found, after zooming using the graphic commands
as explained in the text.

If you are using apedit, you may also want to review the two intervals outside each aperture that
define the windows that will be used to estimate the background to subtract. This can be done for the
current aperture by typing “b”. This will move you to the background session. You can enlarge the
view as explained above. In Fig. 23, the graphic window displays the background intervals (horizontal
segments at the bottom of the panel) for aperture 1. Be aware that the intervals are defined as pixel
distances from the aperture centre along a column (e. g., −a : −b, c : d). If you want to change
background intervals, type “:sample −a : −b, c : d”. Then, go back to the aperture editing session by
typing “q”. Note that you can only change aperture from the aperture editing session.

32

Figure 22: Graphic window showing the highest order apertures found, after zooming using the graphic
commands as explained in the text. Note that order 81 is not labelled and the four sub-tracks of order
80 are numbered from 193 to 196.

Having finished with aperture editing, you need to move to the next step by typing “q”. You will
be asked other questions, just answer yes to all.

Figure 23: Graphic window showing the selected background window for aperture 1 (i. e., the two
horizontal bars at Y ∼ 20000).

33

Appendix B: Fitting traces
Once out of the aperture editing display of apflatten, you will be shown the fits to the tracks

(trace fits), one by one, in the graphic window; the first display will show the curve fit to aperture 1
(see Fig. 24). By typing “q”, it will move to the next aperture. The long and short of it is, an algorithm
finds all peaks along columns, then polynomials are fitted to each string of peaks corresponding to the
same track. The fit parameters are listed on top of the graphic window. Keep an eye on the RMS, it
must be less than few hundredths of a pixel for the fit to be good enough. Otherwise, you may need to
increase the fit order. The graphic commands to do this are listed below. Be aware that after changing
any parameter, you will have to redo the fit by typing “f”. A good fit looks like that in Fig. 24. Large
number apertures may exhibit problems like that in Fig. 25; just delete the deviant points on the top
right corner and redo the fit as explained below. This is ok and due to the low signal level at the
highest orders near the right edge of the frame. Should something like this happen on the central part
of the detector, where the signal is always strong, the most likely cause being the presence of bad pixels,
check that the frame has been cleaned correctly. A low signal in the central parts of the detector would
indicate that the frame has some major problems. Finally, order 80 do not cover the whole range of
pixel columns across the detector (Fig. 26), so just delete the deviant pixels as explained below.

Figure 24: Graphic window showing a typical trace fit.

1. to start the help page, type “?”. The cl window will display a list of commands that you can
scroll down. After you have finished, type first “q” and then “return” to return to the graphic
window.

2. to enlarge the view, first type “w”; then move the cursor marker to the lower left corner of the
area you want to enlarge and type “e”. Finally, move the cursor marker to the upper right corner

34

of the area you want to enlarge and type again “e”.

3. to return to the largest view, type “w” and then “a”.

4. to delete a deviant point, put the cursor marker as near as possible to it and type “d”.

5. to undelete a deleted point, put the cursor marker as near as possible to it and type “u”.

6. to change function, type “:function fname”, where fname can be chebyshev, legendre, spline3, or
spline1.

7. to change polynomial order, type “:order value” where value is the chosen order.

8. to change low (high) rejection threshold, type “:low reject value” (“:high reject value”), where
value is the rejection threshold in sigma units.

9. to change the number of rejection iterations, type “:niterate value”, where value is the number of
rejection iterations.

10. to redo the fit after changing any parameter, type “f”.

When you are satisfied with the current fit, type “q” to move to the next aperture (answer yes to
every question). You will be shown all trace fits one by one. Note that the fit parameters are
global, so the last parameters input are used to update the fits to all traces. After the last
aperture has been fit, typing “q” will move the display to the next graphic session.

Figure 25: Graphic window showing a typical trace fit at high orders. Note the deviant points on the
top right corner of the panel, which need being deleted and refitting.

35

Figure 26: Graphic window showing the curve fit to aperture n. 196. Note that this order does not
span the whole range of pixel columns across the detector.

36

Appendix C: Fitting spectra
When using apflatten, after the trace fit session is over, the spectrum extraction process will start.

For each trace, all pixels in a column within a given distance (according to the selected parameters)
from the trace centre (i. e., falling inside the corresponding aperture)) are summed together, and a
1D spectrum is constructed. The graphic window will display the spectrum extracted from aperture
1 and the fit results. As can be seen in Figs. 27 and 28, the fit parameters are listed on top of the
graphical window, whereas the polynomial fit is overlaid on the spectrum, and the rejected points are
marked. If you are not satisfied with the fit results, you may want to change polynomial order and refit
as explained below. Otherwise, by typing “q” you will move to the next aperture. Be aware that after
changing any parameter, you will need to type “f” to perform a new fit.

IMPORTANT REMARK Flat-field spectra are only intended to remove the pixel-to-pixel
response variations of the detector. So, you don’t have to fit every small oscillation of the spectrum.
You will need to use a polynomial of order 5 to follow the spectrum at the highest orders, but
be careful not to exceed this value. Alternatively, you can simply use an order 1 to also remove
the spectrograph response (during the flat-fielding phase) normalising the target 1D spectra to the
continuum.

1. to start the help page, type “?”. The cl window will display a list of commands that you can
scroll down. After you have finished, type first “q” and then “return” to return to the graphic
window.

2. to enlarge the view, first type “w”; then move the cursor marker to the lower left corner of the
area you want to enlarge and type “e”. Finally, move the cursor marker to the upper right corner
of the area you want to enlarge and type again “e”.

3. to return to the largest view, type “w” and then “a”.

4. to delete a deviant point, put the cursor marker as near as possible to it and type “d”.

5. to undelete a deleted point, put the cursor marker as near as possible to it and type “u”.

6. to change function, type “:function fname”, where fname can be chebyshev, legendre, spline3, or
spline1.

7. to change polynomial order, type “:order value” where value is the chosen order.

8. to change low (high) rejection threshold, type “:low reject value” (“:high reject value”), where
value is the rejection threshold in sigma units.

9. to change the number of rejection iterations, type “:niterate value”, where value is the number of
rejection iterations.

10. to redo the fit after changing any parameter, type “f”.

When you are satisfied with the current fit results, type “q” to move to the next aperture (answer
yes to every question). You will be shown the curve fit to all extracted spectra one by one. Note
that the fit parameters are global, so the last parameters input are used to update the
fits to all spectra. After the last spectrum has been fit (aperture 196), typing “q” will move you
to the next graphic session. Note that the topmost four apertures (number 193–196) do
not span the whole column range across the detector, so you will obtain something like

37

in Fig. 29. You need to delete the points in the area with signal 0 to avoid the fitted
polynomial diverging too much from the signal around column 2000. On the other hand,
the polynomial oscillation inside the area without signal is irrelevant.

Figure 27: Graphic window showing a polynomial fit to one of the extracted spectra from the lowest
spectral orders.

Figure 28: Graphic window showing a polynomial fit to one of the extracted spectra from the central
spectral orders.

38

Figure 29: Graphic window showing the polynomial fit to aperture n. 196. Note that the corresponding
spectral order (i. e., apertures 193–196, order 80) does not span the whole column range across the
detector, so take care to delete the points inside the area without signal and refit, to avoid oscillations
at the edge.

39

Appendix D: Editing spectra using SPLOT
To edit the extracted (wavelength-calibrated) 1D spectra, i. e. the fits files with a string “.ec.fits”

added to the name, just use the task splot. This task is also invoked by doecslit at end of the job to
allow you to revise the extracted spectra. To run splot on a spectrum, just type “splot specname”,
where specname is the name of the fits file with the extracted 1D spectra. You will be asked which
aperture you want to review (of course, from 1 to 49). Input its number and enter “return”. Below, a
list of basic graphic commands to allow handling splot.

1. to start the help page, type “?”. The cl window will display a list of commands that you can
scroll down. After you have finished, type first “q” and then “return” to return to the graphic
window.

2. to enlarge the view, first type “w”; then move the cursor marker to the lower left corner of the
area you want to enlarge and type “e”. Finally, move the cursor marker to the upper right corner
of the area you want to enlarge and type again “e”.

3. to return to the largest view, type “w” and then “a”.

4. to change aperture, type “# value”, where value is the aperture number.

5. to quit, type “q”.

The task also allows you to perform some operations on the spectrum, see the help for more infor-
mation.

40

Appendix E: Computing effective gain and readnoise
Readout noise and gain of a single raw GIANO frame are listed in Table 1. However, since a final

GIANO 2D image gets somewhat modified, due to subtraction, sum, average, etc., its effective readnoise
and gain (before 1D spectrum extraction) are also modified. To compute them, simply apply recursively
(i. e., after each step) the following rules:

Sum of N frames:
effective exposure time = N x exposure time
effective gain = gain (e−/ADU)

effective readout noise =
√

(N)× readout noise (e−)

Subtraction of 2 frames:
effective exposure time = exposure time
effective gain = gain (e−/ADU)

effective readout noise =
√

(2)× readout noise (e−)

Average of N frames:
effective exposure time = exposure time
effective gain = N× gain (e−/ADU)

effective readout noise =
√

(N)× readout noise (e−)

Median of N frames:
effective exposure time = exposure time
effective gain = 2 × N× gain /3 (e−/ADU)

effective readout noise =
√

(2 × N/3)× readout noise (e−)

The final subtracted (and combined) frames will then have exposure time teff , gain geff , and read-
out noise Reff . However, when combining together the four sets of 1D spectra extracted from a typical
frame you have to keep in mind that the signal from each fibre has been split in two and that each
aperture has a width of four pixel. Hence, by applying again the formulae above one obtains for the
final 1D spectra:

Single trace out of a four-trace order

effective exposure time = teff/2
effective gain = geff (e−/ADU)
effective readout noise = 2 × Reff (e−)

Summing two traces from the same fibre (out of a four-trace order)

effective exposure time = teff
effective gain = geff (e−/ADU)
effective readout noise = 2.83 × Reff (e−)

41

Averaging two traces from the same fibre (out of a four-trace order)

effective exposure time = teff/2
effective gain = 2 × geff (e−/ADU)
effective readout noise = 2.83 × Reff (e−)

Summing all four traces out of a four-trace order

effective exposure time = 2 × teff
effective gain = geff (e−/ADU)
effective readout noise = 4 × Reff (e−)

Averaging all four traces out of a four-trace order

effective exposure time = teff/2
effective gain = 4 × geff (e−/ADU)
effective readout noise = 4 × Reff (e−)

42

Appendix F: Automatic arc assignment parameters
The wavelength-calibration is performed by doecslit. The task allows selecting the lamp spectra

to use for calibrating each science spectrum based on several possible criteria (nearest in time, average,
etc.). The field arcs must be set to a list of calibration lamp 2D spectra. The criterion to select
(“assign”) a spectrum from the list is controlled by the value in the field select, in the “Automatic arc
assignment” parameter section of the parameter file sparams. Detailed assignments are possible (see
the help), but the most useful values are the following. These are based on the observation date and
time (in Julian day, having set sort to “jd”).

1. average The average of the first two spectra in the list is used. If only one reference spectrum is
specified then it is assigned with a warning. If more than two reference spectra are specified then
only the first two are used and a warning is given.

2. following Select the nearest following spectrum in the reference list based on the sorting parameter
(in our case, time). If there is no following spectrum it uses the nearest preceding spectrum.

3. interp Interpolate between the preceding and following spectra in the reference list based on the
sorting parameter. If there is no preceding and following spectrum it uses the nearest spectrum.
The interpolation is weighted by the relative distances of the sorting parameter (in our case, time).

4. nearest Select the nearest spectrum in the reference list based on the sorting parameter (in our
case, time).

5. preceding Select the nearest preceding spectrum in the reference list based on the sorting parameter
(in our case, time). If there is no preceding spectrum it uses the nearest following spectrum.

43

Appendix G: Wavelength-calibration
After confirming the choice of the apertures (just confirm, they will have already been selected

through apedit), doecslit will move you to the wavelength-calibration session. There is no trace-
fitting session, since we will use the traces from apflatten. The graphic window will display a 1D
spectrum extracted from one of the spectral orders of the calibration lamp frame (see Fig. 30). You
need to identify a few lines and input their wavelength for a few orders. We advice you to use aperture
number 1, 2, 10, 11, 33, 35, 38, 49 and to input the wavelengths of the lines shown in Fig. 33, 34,
and 35. We have checked against the wavelengths of telluric absorption and emission lines ([7,8]) that
using all the lines in the figures results in a wavelength accuracy < 0.01 nm on the whole passband (see
Fig. 31; note that the pixel sampling interval is ∼ 0.02 nm).

Figure 30: Graphic window showing the spectrum extracted from an aperture of the calibration lamp
frame, waiting for the lines displayed to be identified.

The line wavelengths must be input in nm (as they are listed in the reference file list). Note also
that doecslit refers to the apertures or traces as orders. Actually, aperture 1 corresponds to order
32 of the echelle spectrum. This task uses the line catalogue file indicated in the field coordli of the
sparams file. This file is part of the giano tools package, so do not worry about it. If a wavelength
solution already exists (e. g., if you have already used giano reidentify), then the graphic
window will display a calibrated spectra with identified lines already marked. Skip the
line identification stage and have a look at the fit results by pressing “f” (as a graphic
command). Check the fit results as explained below. If not satisfied, you can unmark all
lines and redo the line assignment. But usually you should be able to leave the session
without any action at all.

44

Figure 31: Wavelength difference (in nm) between observed absorption or emission telluric lines and
their counterparts identified from [7] or [8]. We note that differences > 0.01 nm usually arise due to
heavy blending or low s/n of the line in the spectrum, making it difficult to locate its centre. Note that
the pixel sampling interval is ∼ 0.02 nm).

In order to identify the lines and input their wavelengths, use the following graphic commands:

1. to start the help page, type “?”. The cl window will display a list of commands that you can
scroll down. After you have finished, type first “q” and then “return” to return to the graphic
window.

2. to enlarge the view, first type “w”; then move the cursor marker to the lower left corner of the
area you want to enlarge and type “e”. Finally, move the cursor marker to the upper right corner
of the area you want to enlarge and type again “e”.

3. to return to the largest view, type “w” and then “a”.

4. to enter the wavelength of a line, first move the graphic cursor marker onto the line, then type
“m”. The line will be marked and the graphic window will ask for the wavelength. Type the
wavelength (in nm) and enter “return”.

5. to delete an identified line, first move the graphic cursor marker onto the line, then type “u”.

6. to change aperture, type “o” and enter the aperture number.

After all the lines recommended have been identified, type “f” to perform a preliminary fit. The
graphic window will display the fit results (fit residuals vs. pixel scale) as in Fig. 32. As usual, the fit
parameters are listed on the top of the graphic window. It is mandatory that you check that the field
offset displayed in the graphic windows is offset=31 (i. e., aperture 1 corresponds to order 31 + 1 = 32,
as it must be).

45

If the offset is not 31, return to the previous step by typing “q”. Check the line identifications and,
where needed, delete the incorrect ones by typing “u”, then mark them again with “m” and assign the
correct wavelengths.

The next result to check is the rms, which must be less than few hundredth of a nm. To get a better
fit, you can perform the following operations:

1. to start the help page, type “?”. The cl window will display a list of commands that you can
scroll down. After you have finished, type first “q” and then “return” to return to the graphic
window.

2. to change the x-axis scale from pixel to order, type “x” and then “o”.

3. to change the x-axis scale from pixel to wavelength, type “x” and then “w”.

4. to go back to the x-axis scale in pixel, type “x” and then “p”.

5. to delete a deviant point, put the cursor marker as near as possible to it and type “u”.

6. to change function, type “:function fname”, where fname can be chebyshev or legendre.

7. to change polynomial orders, type “:xorder value” or/and “:yorder value” where value means the
order.

8. to change low (high) rejection threshold, type “:lowreject value” (“:highreject value”), where value
means the rejection threshold in sigmas.

9. to change the number of rejection iterations, type “:niterate value”, where value means the number
of rejection iterations.

10. to redo the fit after changing any parameter, type “f”.

Be aware that you need to redo the fit (by typing “f”) after any change of parameters. When you
are satisfied with the fit, return to the line identification display by typing “q”.

Now you can run the automatic finding procedure that browses into the line catalogue and try to
identify as many lines as possible. Just type:
“:maxfeatures 500” followed by ENTER and then
“l”.
After this, you can move the display within orders (with “o” as explained above) to verify that many
more lines have been marked. Perform a new fit by typing “f”. You will return to the fit result display.
Follow the explanations above to obtain a better fit. Check again that offset is equal to 31. When
satisfied, type “q”. You will be again moved to the line identification display (like Fig. 32). Type “q”
again and you will be through.

46

Figure 32: Graphic window showing the preliminary wavelength solution after the reference line iden-
tification step.

47

Figure 33: Calibration lamp lines to be used for wavelength calibration.Note that the wavelength
scale is reversed so that it mimics the pixel scale shown in the graphic windows.

48

Figure 34: Calibration lamp lines to be used for wavelength calibration. Note that the wavelength
scale is reversed so that it mimics the pixel scale shown in the graphic windows.

49

Figure 35: Calibration lamp lines to be used for wavelength calibration.Note that the wavelength
scale is reversed so that it mimics the pixel scale shown in the graphic windows.

50

Appendix H: Wavelength range per order
Order 32 2.3699–2.4224 µm
Order 33 2.2979–2.3490 µm
Order 34 2.2302–2.2799 µm
Order 35 2.1664–2.2146 µm
Order 36 2.1062–2.1531 µm
Order 37 2.0492–2.0948 µm
Order 38 1.9952–2.0396 µm
Order 39 1.9440–1.9872 µm
Order 40 1.8953–1.9375 µm
Order 41 1.8490–1.9902 µm
Order 42 1.8049–1.8451 µm
Order 43 1.7629–1.8021 µm
Order 44 1.7228–1.7611 µm
Order 45 1.6844–1.7219 µm
Order 46 1.6478–1.6844 µm
Order 47 1.6126–1.6486 µm
Order 48 1.5790–1.6142 µm
Order 49 1.5467–1.5812 µm
Order 50 1.5157–1.5495 µm
Order 51 1.4860–1.5191 µm
Order 52 1.4573–1.4898 µm
Order 53 1.4298–1.4616 µm
Order 54 1.4033–1.4345 µm
Order 55 1.3777–1.4084 µm
Order 56 1.3531–1.3832 µm
Order 57 1.3293–1.3589 µm
Order 58 1.3063–1.3354 µm
Order 59 1.2841–1.3127 µm
Order 60 1.2627–1.2908 µm
Order 61 1.2419–1.2696 µm
Order 62 1.2219–1.2491 µm
Order 63 1.2024–1.2292 µm
Order 64 1.1836–1.2100 µm
Order 65 1.1654–1.1913 µm
Order 66 1.1477–1.1732 µm
Order 67 1.1305–1.1557 µm
Order 68 1.1138–1.1387 µm
Order 69 1.0977–1.1221 µm
Order 70 1.0819–1.1060 µm
Order 71 1.0667–1.0904 µm
Order 72 1.0518–1.0753 µm
Order 73 1.0374–1.0605 µm
Order 74 1.0233–1.0461 µm
Order 75 1.0096–1.0321 µm
Order 76 0.9963–1.0185 µm
Order 77 0.9833–1.0053 µm
Order 78 0.9707–0.9923 µm
Order 79 0.9584–0.9797 µm
Order 80 0.9464–0.9675 µm
Wavelengths are in vacuum.
(from Table 2 of GIANO cookbook for proposers)

51

Index

2D or 1D flat field correction?, 10

Appendix A: Checking the apertures, 31
Appendix B: Fitting traces, 34
Appendix C: Fitting spectra, 37
Appendix D: Editing spectra using SPLOT, 40
Appendix E: Computing effective gain and read-

noise, 41
Appendix F: Automatic arc assignment parame-

ters, 43
Appendix G: Wavelength-calibration, 44
Appendix H: Wavelength range per order, 51
Averaging the flat-field frames, 12

Bibliography, 30

Cloning frames, 20
Combining the extracted 1D spectra together, 27

Dark subtraction and bad-pixel correction, 8
Data reduction with IRAF, 6

First reduction steps, 7
Flat-field correcting the spectra in 1D, 25
Flat-fielding the targets in 2D, and final steps be-

fore spectrum extraction, 18

Giano tools, 7

Handling spectra: IRAF packages to use, 13
How to find traces, 14

IRAF basics, 3

Learning more about flat-field frames, 10

Normalising the extracted 1D spectra to the con-
tinuum, 26

Reduction quick guide, I

Setting the ECHELLE session to extract GIANO
spectra, 13

Setting up an IRAF session to reduce data from
GIANO, 6

Spectrum extraction, 21
Starting point: GIANO raw data, 1

Troubleshooting, III

Using apflatten to fit the traces and construct a
2D flat-field frame, 16

Viewing the 1D final spectra, 28

52

