Trends in the Galactic disc from Open Clusters

Ricardo Carrera & Elena Pancino

Instituto de Astrofísica de Canarias (Spain) Departamento de Astrofísica, Unversidad de La Laguna (Spain) Osservatorio Astronomico di Bologna (Italy)

May 30th, 2012

Open clusters as Tracers of the Galactic Disc

Pros:

- Coeval groups of stars.
- Located at the same distance.
- Homogeneous chemical composition.

Cons:

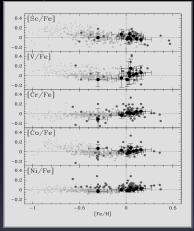
- > 2100 Known Open Clusters in the Milky Way.
- * Ages for ${\sim}70\,\%$ (mainly from isochrone fitting).
- Radial velocities for \sim 24%.
- $^{\circ}\,$ Metallicities for ${\sim}9\,\%$ (mainly from photometry, or low-resolution spectroscopy).
- Chemical abundances from high-resolution spectroscopy only for 89 systems (4%), but in a heterogeneous way and in most cases only for [Fe/H].

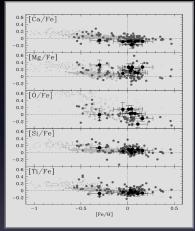
Observational Material

High Resolution Spectroscopy FOCES@CAHA 2.2m

- R~30000; S/N~50–100 per pixel
- Pancino et al. 2010 Cr 110; NGC 2099*, NGC 2420*, NGC 7789, M67
- Carrera & Pancino 2011
 Be 32; NGC 752*, Hyades, Praesepe

High Resolution Spectroscopy Literature

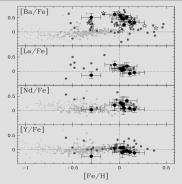

- R~18000
- 89 Open Clusters
- In most of the cases only Fe abundances.
- Hetereogenety: different data quality, techniques, etc.

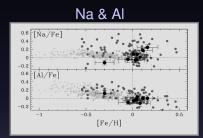


Chemical Patterns in the Galactic Disk

Fe-peak elements

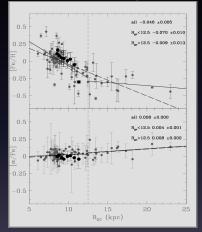
 α -elements


Carrera & Pancino 201

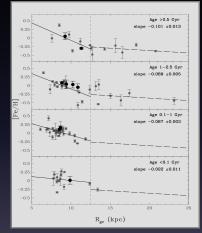

- Thick disk: Reddy et al. 2006
- Thin disk: Reddy et al. 2003
- Open clusters: literature
- Open clsuters: Carrera & Pancino 2011

Chemical Patterns in the Galactic Disk

s-process elements



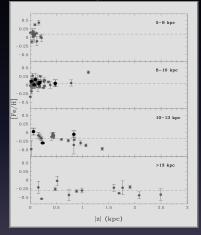
- Thick disk: Reddy et al. 2006
 Thin disk: Reddy et al. 2003
 Open clusters: literature
 Open clusters: Carrera & Pancino 2011
- ☆ Open Clusters: D'Orazi et al. 2009

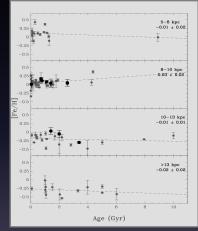


Existence of Trends in the Galactic Disk.

Existence of radial gradients

and its evolution with time


Open Clusters: Literature
 Open Clusters: Carrera & Pancino 2011


Carrera & Pancino 201

Existence of Trends in the Galactic Disk.

Vertical gradients

Age-metallicity relationship

Open Clusters: Literature
 Open Clusters: Carrera & Pancino 2011

Carrera & Pancino 201

Problems & Needs

- Only a handful of clusters have been studied homogeneously.
- · Larger samples are very heterogeneous.
- Larger and homogeneous samples are needed
 - \succ Ages from homogeneous datasets.
 - \succ Radial velocities and proper motions.
 - \succ Chemical abundances from homogeneous analysis.
 - $\succ\,$ Increase the number of clusters studied.

The Gaia Mission and Gaia-ESO survey

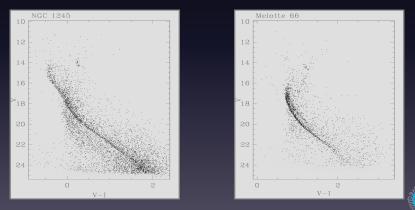
Gaia Mission (C. Jordi talk)

- Parallaxes and distances: precision 2% within 1.5 kpc.
- Proper motions and tangential velocities: 0.23 km s⁻¹).
- Radial velocities: 15 km s $^{-1}@$ G $_{RVS}$ ${\sim}17).$
- Chemical abundances: G_{RVS} <12.

Gaia-ESO Survey (S. Radich talk)

- 30–50 OC.
- Radial velocities (V<19).
- Multi-element chemical abundances (V<16.5).
- Limited to $\delta < +20^{\circ}$.

Open Clusters Chemical Abundances from the North


- Use of Facilities in Spain: CAFE@CAHA 2.2m; FIES@NOT 2.5 m; .HERMES@MECATOR 1.2m.
- Complement the UVES observations within the Gaia-ESO Survey.
- Limited to brightest targets V<15.
- \sim 6 red-clump stars in each cluster.
- \sim 20 OC: Be 17; NGC 6791; anticeter clusters, etc.

Col: Allende-Prieto, Aparicio, Balaguer-Nuñez, Gallart, Jordi, Pancino, Recio-Blanco

Homogeneous CMD database

- 100 OC older than 1 Gyr (60 North 40 South).
- Homogeneous CMD: same exposure times, analysis, etc.
- Similar instrument/telescopes both hemispheres: WFC@INT 2.5 m & WFI@MPIA/ESO 2.2m

Col: Aparicio; Conn; Gallart; Monelli; Murabito; Nöel; Pancino; Rosenberg; Rix; Stetson

Summary

- Open clusters are key particles to study the formation and evolution of the Galactic disk: i.e. chemical patterns; radial gradients, evolution of gradients with time, etc.
- The heterogeneity of available data forces us to be extremely cautious when drawing any conclusion.
- Homogeneous samples with larger number of clusters are needed.

