The metallicity distribution in the Milky Way discs Bologna, 29-31 May 2012

The radial metallicity gradient from Cepheids measurements

Bertrand Lemasle

Cepheids and gradients

- Classical Cepheids = pulsating variable stars in the thin disc
- Famous primary distance indicators (PL relations)
 - ⇒ <u>accurate distances</u>
- Very luminous ⇒ probe both the inner and outer disc
- FGK supergiants
 - Absorption lines for numerous elements
 - Lines are well defined ⇒ reliable abundances

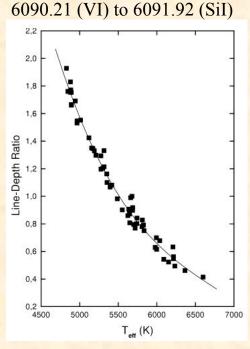
Outline

- Abundances
 - Are pulsations a problem?
- Distances
 - Excellent, can still be improved
- Current results
- Needs and perspectives

Abundances

- FGK supergiants ⇒ abundances of numerous elements
 - Iron peak
 - Alpha elements
 - r,s process elements
 - CNO + Na abundances modified after the 1st dredge-up
- ⇒ Useful to study the chemical evolution of the thin disc
- Easy comparison with open clusters
- O lines challenging, no He lines ⇒ comparison with PNe
 & HII regions more difficult

Age

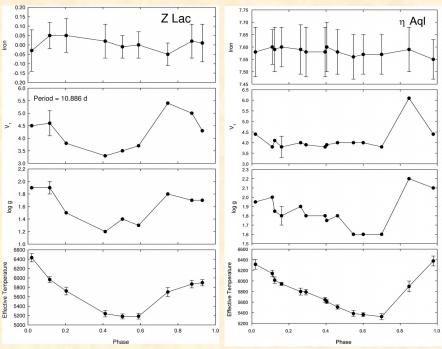

- Cepheids have ages from 20 to 300 Myr (Bono+2005)
 - Older than OB stars
 - Younger than Open Clusters, PNe
- How does the gradient evolve with time? Flattening? (Maciel+ 2006, 2010)
- Given this timescale (< 0.3 Gyr), what is the influence of radial migration on the Cepheids gradient?

Abundances & Pulsations (1)

- No simultaneous photometry
 - ⇒ atmospheric parameters derived from spectroscopy.

(Teff: exc. eq; log g: ion. Eq; Vt: [Fe/H] indep EW)

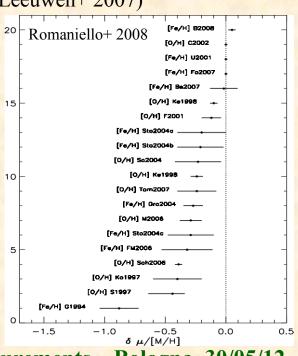
- Line depth ratios (Kovtyukh+ 2000,2007)
 - Calibration relations for ratios of carefully selected lines
 - Excellent relative scale (~20K)
 - Good absolute scale (<150K)



Abundances & Pulsations (2)

- No atmosphere models for pulsating stars
 Pulsation models (e.g. Fiorentino+ 2007) only have a simple atmosphere
- ⇒ Need to use classical (static) atmosphere models
- A few Cepheids belong to Open Clusters
 Same abundances for Cepheids and dwarf stars in M25
 (Fry+ 1997)

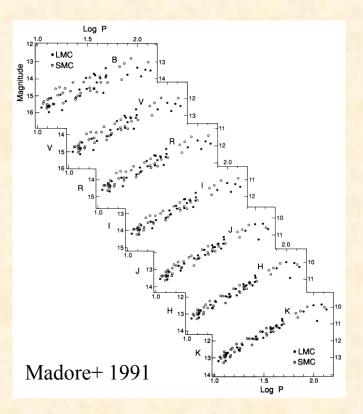
Abundances & Pulsations (3)


- No preferred epoch for observations along the period:
- Atm. param. vary but [Fe/H] very consistent (Luck+2004, Kovtyukh+ 2005, Andrievsky+ 2005, Luck+ 2008)

B. Lemasle - The radial metallicity gradient from Cepheids measurements - Bologna, 30/05/12

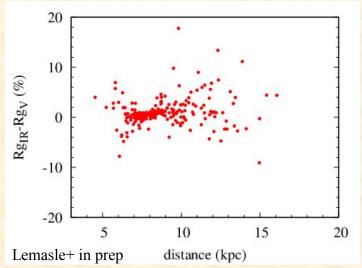
Distances: different methods

- Very accurate methods, but need numerous observations, apply only to stars close by... ⇒ not very suitable for gradients studies
 - Baade-Wesselink methods (integration of Vr + angular diameter variation from surface brightness relations, interferometry...) (Groenewegen+ 2008, Storm+ 2012)
 - HIPPARCOS, HST parallaxes (Benedict+ 2007, van Leeuwen+ 2007)
- « Historical » method: PL(V) relation
- BUT:
 - Intrinsic dispersion of the PL relation
 - Reddening is an issue
 - Metallicity effect on the PL relation



B. Lemasle - The radial metallicity gradient from Cepheids measurements - Bologna, 30/05/12

Distances: PL relations in the NIR


- PL relations in the NIR
 - Reduced intrinsic dispersion
 - Reduced reddening
 - Very weak (if any) metallicity dependence of PL relations in the NIR

- Used for gradients studies
 - Lemasle+ 2008, Pedicelli+ 2009
- Can still be improved

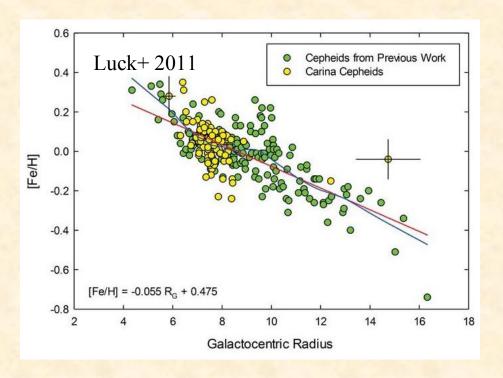
Distances: PW relations in the NIR

- Wesenheit index is a <u>reddening free</u> quantity by construction
- + dispersion reduced compared to corresponding PL relations
- Advantages studied from
 - Theory (Fiorentino+ 2007, Bono+ 2008)
 - Observations (Ngeow 2012, Inno+, in prep, Genovali+, in prep)

Error of 5% at 10 kpc

 \rightarrow 0.5 kpc error

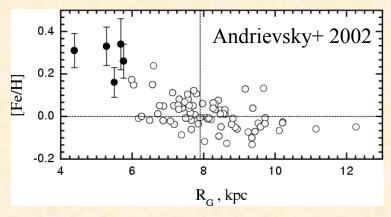
B. Lemasle - The radial metallicity gradient from Cepheids measurements - Bologna, 30/05/12


Sampling

- ~650 MW classical Cepheids in the GCVS (Samus+ 2007-2012)
- 32 new classical Cepheids toward the bulge (OGLE III, Soszyński+ 2011)
- Spatial repartition:
 - Solar neighbourhood OK,
 - inner and outer disk poorly sampled
 - Limited coverage in longitude
- To be compared to
 - LMC: 3361 (OGLE III, Soszyński+ 2008)
 - SMC: 4630 (OGLE III, Soszyński+ 2010)

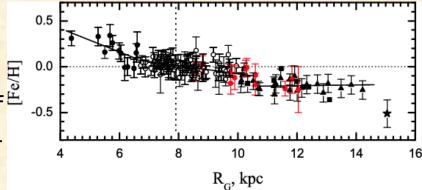
The radial gradient (1)

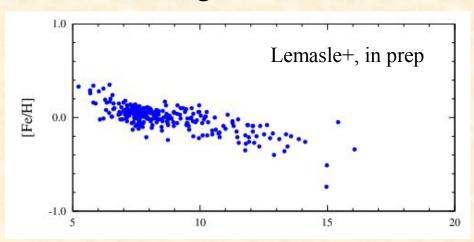
Radial gradient of ~-0.06 dex/kpc

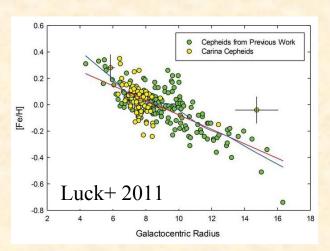

Harris 1984, Andrievsky+ 2002, Luck+ 2006, Lemasle+ 2008, Pedicelli+ 2009, Luck+ 2011

B. Lemasle - The radial metallicity gradient from Cepheids measurements – Bologna, 30/05/12

The radial gradient (2)


- Probably better described by 3 zones
 - Inner disc (< 6 kpc): steep gradient of ~ -0.1 dex/kpc, poorly sampled (Andrievsky+ 2002, Pedicelli+ 2009)


- Central region (6-10kpc): mild gradient of ~ -0.03 dex/kpc
- Outer disc (> 10 kpc), poorly sampled


The radial gradient (3)

- Increased dispersion?
- Metallicity step at 10 kpc?
 ring-shaped gap in the density of at the corotation radius (Lépine+

• Flattening?

B. Lemasle - The radial metallicity gradient from Cepheids measurements - Bologna, 30/05/12

Needs and perspectives

- Need of new targets from photometric surveys
 - VVV public survey (Vista Variables in the Via Lactea)
 - GAIA (6000 expected Cepheids, Eyer+2000)
- Need of spectra from 4-8m telescopes
 - R=20000, exp. time ~1h
 - MOS: only if borrowing 1-4 fibres to large surveys (GES, WEAVE, 4MOST)
- NIR spectra (CRIRES) for other quadrants?
 - Comparison with other tracers easier
 - Very few Fe II lines, no LDR...
 - Unlikely to get obs. time on a 8m single fibre spectrograph

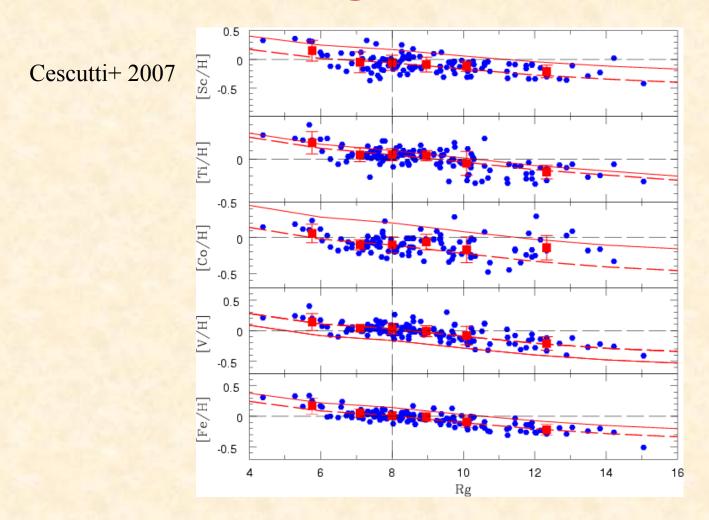
The Wesenheit index

Madore 1982

II. THE WESENHEIT FUNCTION

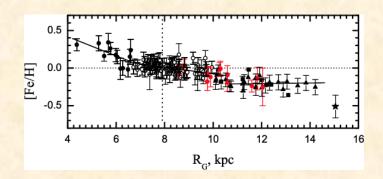
a) General Remarks

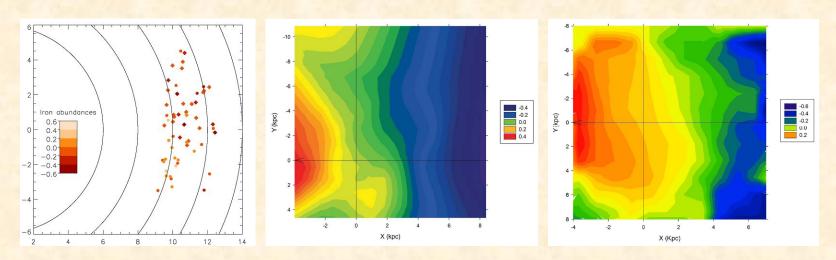
Only one linearly independent combination of V and (B-V) can be made that is itself independent of reddening. This is W, the Wesenheit function. If R is the ratio of total-to-selective absorption, then


$$W = V - R(B - V)$$

$$= V_0 + A_v - R(B - V)_0 - RE(B - V)$$

$$= V_0 - R(B - V)_0.$$
 (1)


This quantity W is formed from V and (B-V) as observed, and it is numerically equal to the *intrinsic* values of those two magnitudes and colors so combined. W is reddening-free.


The radial gradient: models

B. Lemasle - The radial metallicity gradient from Cepheids measurements - Bologna, 30/05/12

A metallicity island?

B. Lemasle - The radial metallicity gradient from Cepheids measurements - Bologna, 30/05/12