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Observations of stars:

Study of stellar pulsation modes

Information generally limited to the 
superficial layers

No direct constraints on stellar interior

Properties of the 
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in solar-like stars

1.6 A Pulsation HR Diagram 25

Fig. 1.12. A pulsation HR Diagram showing many classes of pulsating stars for
which asteroseismology is possible.

On the other hand, the shortest relevant time scale is the dynamical time
scale,
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in G-K giants
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Fig. 1.12. A pulsation HR Diagram showing many classes of pulsating stars for
which asteroseismology is possible.
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22 1 Introducing Asteroseismology

Fig. 1.9. A power spectrum of radial velocity variations in the Sun seen as a star
for 9.5 years of data taken with the Birmingham Solar Oscillation Network (BiSON)
telescopes. The equivalent amplitude noise level in this diagram is 0.5 mm s−1. Figure
courtesy of the BiSON team.

with them unambiguously such that the large and small separations may
be deduced with confidence. That step alone leads to determinations of the
fundamental parameters of mass and age for some kinds of stars.

Figure 1.11 shows an “asteroseismic HR Diagram” (Christensen-Dalsgaard
1993a) where the large separation clearly is a measure of mass (largely because
of the relationship between mass and radius), and the small separation is most
sensitive to the central mass fraction of hydrogen, hence age. Now that many
solar-type oscillators have been found, it is possible to begin to model them
using the large and small separations (see Section 7.2 for case studies). The
pattern of high overtone even and odd l modes is also observed in some roAp
stars, although their interpretation for those stars is more complex because of
the strong effects of their global magnetic fields on the frequency separations
(see Section 7.3.4).

BiSON data
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Solar-like oscillations: average parameters 
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Fig. 3. Fourier amplitude spectra for a sample of red giants observed by CoRoT. Black lines indicate a global model fit, and dotted lines show the
model plotted without the Gaussian component and serve as a model for the background signal. The center of the Gaussian is adopted to be the
frequency of maximum oscillation power, νmax. Error bars indicate the ±1σ uncertainties and diamond symbols correspond to the weighted mean
frequency after correcting for the background signal. Note the different amplitude scales in the different panels. Inserts compare the comb response
functions (grey) and marginal distributions (black) used to determine the large frequency separations.

specifically chose to define ∆ν as the average frequency separa-
tion in the frequency range of the maximum oscillation power.
To identify ∆ν we use again the Bayesian MCMC algorithm
(Gruberbauer et al. 2009). But instead of fitting a global model,
we fit a sequence of equidistant Lorentzian profiles to the power
density spectra

P(ν) = Pn +

2∑

i=−2

a2
i · τ

1 + 4[ν − (ν0 + ∆ν · i/2)]2 · (πτ)2 , (2)

where ai is the rms mode amplitude of the ith profile, ν0 cor-
responds to the frequency of the central mode, ∆ν is the spac-
ing, and τ is the mode lifetime which is assumed to be equal
for all five modes. In principle we do not expect all modes to
have the same lifetime, but this is a marginal assumption which
significantly stabilizes the fit and has very little impact on the de-
termination of ∆ν. The model obviously represents either three
consecutive radial modes with two interjacent dipole modes or
three consecutive dipole modes with interjacent radial modes,
depending on which mode the sequence is centered. In either
case, the fitted spacing corresponds to the large frequency sep-
aration in the frequency range where the maximum oscillation
power is seen. In our analysis the MCMC algorithm is allowed
to vary the central mode frequency within νmax ± σg. ∆ν and the
mode lifetime are sampled between 0.5 µHz and 2σg and 1 and

100 days, respectively. The individual mode amplitudes are al-
lowed to vary between zero and four times the highest amplitude
peak in the spectrum. After half a million iterations the algorithm
delivers probability distributions for all fitted parameters and we
calculate the most probable values and their uncertainties from
their marginal distributions.

The advantage of our method compared to, e.g., the comb-
response function (Kjeldsen et al. 1995) or an autocorrelation
spectrum is that it takes the Lorentzian-like form of the signal
into account and is therefore less sensitive to the stochastic na-
ture of the signal. Examples for the residual power density spec-
tra and the most probable fits are shown in Fig. 4. Interestingly,
the presence of additional modes which are not taken into ac-
count in our model does not influence the fit. This can be seen for
instance from the power density spectrum of star A, where the
MCMC algorithm correctly identifies the l = 0 and 1 modes and
does not consider the additional peaks at about 72 and 79 µHz,
which are most likely l = 2 modes. We compare the marginal
distributions for ∆ν from our MCMC algorithm with the comb-
response functions (both with arbitrary ordinates) in the inserts
of Fig. 3. Although for some stars both methods give consistent
results, the values can differ by more that 0.2 µHz.

We expect this ambiguity to be due to the stochastic nature
of the signal. The observed time series represent a single real-
isation of a damped and stochastically excited signal. Another
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Fig. 3. Fourier amplitude spectra for a sample of red giants observed by CoRoT. Black lines indicate a global model fit, and dotted lines show the
model plotted without the Gaussian component and serve as a model for the background signal. The center of the Gaussian is adopted to be the
frequency of maximum oscillation power, νmax. Error bars indicate the ±1σ uncertainties and diamond symbols correspond to the weighted mean
frequency after correcting for the background signal. Note the different amplitude scales in the different panels. Inserts compare the comb response
functions (grey) and marginal distributions (black) used to determine the large frequency separations.
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Figure 1. CMD of NGC 6791 (left-hand panel) and NGC 6819 (right-hand panel). Photometric data are taken from Stetson, Bruntt & Grundahl (2003) and
Hole et al. (2009), respectively. RGB stars used in this work are marked by open squares and RC stars by open circles. See Section 3.2 for a description of the
target selection.

et al. 1991; Kjeldsen & Bedding 1995; Mosser et al. 2010; Belkacem
et al. 2011), and therefore

νmax ! M/M"
(R/R")2

√
Teff/Teff,"

νmax," , (2)

where νmax," = 3100 µHz and Teff," = 5777 K.
These scaling relations are widely used to estimate masses and

radii of red giants (see e.g. Stello et al. 2008; Kallinger et al. 2010;
Mosser et al. 2010), but they are based on simplifying assumptions
that remain to be independently verified. Recent advances have been
made on providing a theoretical basis for the relation between the
acoustic cut-off frequency and νmax (Belkacem et al. 2011), and
preliminary investigations with stellar models (Stello et al. 2009)
indicate that the scaling relations hold to within ∼3 per cent on the
main sequence and RGB (see also White et al. 2011).

Depending on the observational constraints available, we may
derive mass estimates from equations (1) and (2) alone, or via their
combination with other available information from non-seismic ob-
servations. When no information on distance/luminosity is avail-
able, which is usually the case for field stars, equations (1) and (2)
may be solved to derive M and R (see e.g. Kallinger et al. 2010;
Mosser et al. 2010):
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)1/2
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In the case of clusters, we can use the distance/luminosities esti-
mated with independent methods (i.e. via isochrone fitting or eclips-
ing binaries) as an additional constraint. Including this information
allows M to be estimated also from equation (1) or equation (2)

alone (see equations 5 and 6, respectively), or in combination lead-
ing to a mass estimate with no explicit dependence on Teff (as in
equation 7):
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!

(
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)12/5 (
"ν

"ν"

)−14/5 (
L

L"

)3/10

. (7)

In the following sections, we use equations (3)–(7) directly to
estimate M (and R) without adding any extra dependence on stellar
models. As illustrated in detail e.g. by Gai et al. (2011), additional
(so-called ‘grid-based’) methods to estimate M and R can be de-
signed. These procedures are also based on equations (1) and (2)
but, by searching solutions for M and R in grids of evolutionary
tracks, have the advantage of reducing uncertainties on the derived
mass and radius, at the price of some model dependence that we
prefer to avoid in this study.

2.1 Error estimates

The formal uncertainties (σ i) on the masses (Mi) of the stars were
used to compute a weighted average mass for stars belonging to the
RGB and for stars in the RC:

M =
∑N

1 Mi/σ
2
i∑N

1 1/σ 2
i

.
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expected for this cluster, and to the lack of an independent and accurate distance determination.
In the near future, additional constraints from frequencies of individual pulsation modes and
spectroscopic effective temperatures will allow further stringent tests of the !ν and νmax

scaling relations, which provide a novel, and potentially very accurate, means of determining
stellar radii and masses.

Key words: asteroseismology – stars: late-type – stars: mass-loss – open clusters and associ-
ations: individual: NGC 6791 – open clusters and associations: individual: NGC 6819.

1 IN T RO D U C T I O N

The mass-loss rates of evolved stars are of primary importance for
stellar and galactic evolution models, but neither the theory nor the
observations are adequate to place reliable direct quantitative con-
straints. The mass-loss from asymptotic giant branch (AGB) stars
is reasonably well understood in terms of global pulsations lifting
gas out to distances above the photosphere where dust forms (e.g.
Wood 1979; Bowen 1988), and the action of radiation pressure on
the dust that further drives dust and gas away (e.g. Höfner 2009, and
references therein). In contrast, there is no reliable theory for the
mass-loss of cool, dust-free red giants, and even the wind accelera-
tion mechanism remains unknown for the red giant branch (RGB).
For these stars, no known mechanisms can yet satisfactorily explain
the observed wind characteristics (for further discussion, see Lafon
& Berruyer 1991; Harper 1996).

Indirect information is, however, available on the integrated mass-
loss on the first giant branch (see e.g. Catelan 2009, for a recent
review). This is important because it may involve a substantial
amount of mass, especially for the lower mass stars undergoing the
helium core flash, and thus may affect the initial to final mass rela-
tion and the amount of mass recycled into the interstellar medium.
In the case of globular cluster (GC) stars, mass-loss along the RGB,
and its spread, affects the distribution of stars along the horizontal
branch (HB). This is because the morphology of the core-helium-
burning track depends on the ratio between the helium core mass
and the hydrogen-rich envelope mass, or, in other words, on the
relative roles played by the core-helium-burning and the hydrogen
shell burning (e.g. Sweigart & Gross 1976). The indirect evidence
tells us that in GCs more mass is lost on the RGB than the AGB,
since the typical stellar mass on the HB is ∼0.6 M", with turn-off
masses of ∼0.8 M", and white dwarfs masses of ∼0.5–0.55 M"
(Kalirai et al. 2009).

The standard picture that the mass distribution along the HB
matches mass-loss on the RGB has been questioned in the last
decade. The ubiquitous presence of multiple populations in GCs
has now become evident (e.g. Gratton et al. 2001; Piotto et al. 2007;
Carretta et al. 2009), and the proposal that the stellar helium content
of the different populations also has a role in determining the HB
morphology (D’Antona et al. 2002; D’Antona & Caloi 2004) was
confirmed by the presence of multiple main sequences in some GCs
(Piotto et al. 2005, 2007).

In order to describe the mass-loss along the RGB, researchers rely
on empirical laws like that of Reimers (1975a,b) which is based on
observations of Population I giants, and which describes mass-loss
rates as a function of stellar luminosity, radius and surface grav-
ity. While subsequent work (Mullan 1978; Goldberg 1979; Judge
& Stencel 1991; Catelan 2000; Schröder & Cuntz 2007) led to
slight refinements, a variant of the ‘Reimers law’ is generally used
to compute stellar evolution models of cool stars at all ages and
metallicities.

Several observational indications on the RGB mass-loss have
emerged in recent years. Origlia et al. (2002) detected the circum-
stellar matter around GC red giants using the ISOCAM camera
onboard the ISO satellite, and derived mass-loss rates for a few
RGB stars. A first empirical mass-loss law was proposed by Origlia
et al. (2007), based on the observations by IRAC, onboard Spitzer,
of the GC 47 Tuc. They found mass-loss to be episodic, depending
less on luminosity than in Reimers law, and occurring predomi-
nantly in the upper ∼2 mag of the RGB (Origlia et al. 2010). These
findings were questioned by Boyer et al. (2010) and McDonald
et al. (2011a,b), who found no evidence for dust production in stars
with L < 1000 L". By comparing with HB models, they showed
that mass-loss on the RGB of 47 Tuc is likely to be smaller than
0.24 M". Constraints on the dust production and mass-loss are now
becoming available for giants belonging to other GCs (Boyer et al.
2009; McDonald et al. 2009, 2011c, and the survey by Origlia et al.),
and will eventually provide a complete investigation of the differ-
ential mass-loss among clusters with different metallicities and HB
morphologies.

Asteroseismology promises to shed new light on this problem by
directly measuring the masses of giant stars in open clusters. The
NASA Kepler mission, which was launched successfully in 2009
March, includes in its field of view two old open clusters, NGC 6791
and 6819. In these clusters, solar-like oscillations were detected in
about 100 giants (see Stello et al. 2010; Basu et al. 2011; Hekker
et al. 2011, and Fig. 1), providing independent constraints on the
masses and radii of stars on the RGB, as well as on the distance to
the clusters and their ages (Basu et al. 2011).

The goal of this paper is to constrain the RGB mass-loss by
comparing the average mass of stars in the red clump (RC) with
the low-luminosity portion of the RGB [i.e. with L ! L(RC)]. The
structure of the paper is as follows. In Section 2, we describe the
procedures used to estimate the masses of stars from the available
seismic and non-seismic constraints. We then address the specific
case of NGC 6791 in Section 3, and of NGC 6819 in Section 4. A
first comparison with model predictions is presented in Section 5,
while a brief summary and future prospects are given in Section 6.

2 ESTIMATING STELLAR MASSES

To estimate stellar masses, we use the average seismic parameters
that characterize solar-like oscillation spectra: the so-called average
large frequency separation (!ν) and the frequency corresponding
to the maximum observed oscillation power (νmax). The large fre-
quency spacing is expected to scale as the square root of the mean
density of the star:

!ν #
√

M/M"
(R/R")3

!ν", (1)

where !ν" = 135 µHz. The frequency of maximum power is ap-
proximatively proportional to the acoustic cut-off frequency (Brown
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Figure 1. CMD of NGC 6791 (left-hand panel) and NGC 6819 (right-hand panel). Photometric data are taken from Stetson, Bruntt & Grundahl (2003) and
Hole et al. (2009), respectively. RGB stars used in this work are marked by open squares and RC stars by open circles. See Section 3.2 for a description of the
target selection.
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√
Teff/Teff,"

νmax," , (2)

where νmax," = 3100 µHz and Teff," = 5777 K.
These scaling relations are widely used to estimate masses and

radii of red giants (see e.g. Stello et al. 2008; Kallinger et al. 2010;
Mosser et al. 2010), but they are based on simplifying assumptions
that remain to be independently verified. Recent advances have been
made on providing a theoretical basis for the relation between the
acoustic cut-off frequency and νmax (Belkacem et al. 2011), and
preliminary investigations with stellar models (Stello et al. 2009)
indicate that the scaling relations hold to within ∼3 per cent on the
main sequence and RGB (see also White et al. 2011).

Depending on the observational constraints available, we may
derive mass estimates from equations (1) and (2) alone, or via their
combination with other available information from non-seismic ob-
servations. When no information on distance/luminosity is avail-
able, which is usually the case for field stars, equations (1) and (2)
may be solved to derive M and R (see e.g. Kallinger et al. 2010;
Mosser et al. 2010):
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mated with independent methods (i.e. via isochrone fitting or eclips-
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allows M to be estimated also from equation (1) or equation (2)
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ing to a mass estimate with no explicit dependence on Teff (as in
equation 7):
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In the following sections, we use equations (3)–(7) directly to
estimate M (and R) without adding any extra dependence on stellar
models. As illustrated in detail e.g. by Gai et al. (2011), additional
(so-called ‘grid-based’) methods to estimate M and R can be de-
signed. These procedures are also based on equations (1) and (2)
but, by searching solutions for M and R in grids of evolutionary
tracks, have the advantage of reducing uncertainties on the derived
mass and radius, at the price of some model dependence that we
prefer to avoid in this study.

2.1 Error estimates

The formal uncertainties (σ i) on the masses (Mi) of the stars were
used to compute a weighted average mass for stars belonging to the
RGB and for stars in the RC:
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1 Mi/σ
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relation: (
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M

M!

) (
R

R!

)−2
(

Teff

Teff,!

)−0.5
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3 Estimation of M and R

3.1 Direct method of estimation

If ∆ν, νmax and Teff are known, Equations (1) and (2) represent two equations in two unknowns,
and we may therefore re-arrange and solve for M and R in what we call the “direct” method of
estimation of the stellar properties. This gives (S21):

(
R

R!

)
=

(
νmax

νmax,!

) ( ∆ν

∆ν!

)−2
(

Teff

Teff,!

)0.5

, (3)

and (
M

M!

)
=

(
νmax

νmax,!

)3 ( ∆ν

∆ν!

)−4
(

Teff

Teff,!

)1.5

. (4)

The results presented in the paper were estimated by the direct method. We used νmax,! = 3150µHz
and ∆ν! = 134.9µHz. Estimates of Teff were derived by An et al., (in preparation) from the
multicolor photometry available in the Kepler Input Catalog. The median fractional precision in the
temperatures is about 1 %.

We obtained from the direct method a median fractional uncertainty of just over 10 % in M and
about 5.5 % in R. That the fractional uncertainties on M are larger than those on R is apparent
from the propagation of the uncertainties on the observables, i.e.,

(
δR

R

)2

=
(

δνmax

νmax

)2

+
(

2
δ∆ν

∆ν

)2

+
(

0.5
δTeff

Teff

)2

. (5)

and (
δM

M

)2

=
(

3
δνmax

νmax

)2

+
(

4
δ∆ν

∆ν

)2

+
(

1.5
δTeff

Teff

)2

, (6)

The direct method is very attractive because it provides mass and radius estimates that are indepen-
dent of stellar evolutionary models, and this is clearly of great benefit for instructive comparisons
with the population synthesis models. However, the direct method does give larger uncertainties on
M and on R than would be obtained from a “grid-based” method of estimation (here about twice as
large; see Section 3.2 below). Although the uncertainties are larger than for the grid-based method,
this does mean that they are expected to largely capture any uncertainties in Equations (1) and (2)
due to, for example, metallicity effects.

For the present, the lack of precise independent constraints on the metallicities (e.g., on [Fe/H])
means that the grid method is vulnerable to systematic bias in the estimates of M (although not R).
Once we have those tight independent constraints on all the stars – from complementary ground-
based observations being made in support of Kepler – we will be able to take full advantage of the
grid-based method and the significantly better precision it offers, as we now go on to discuss.

3.2 Grid-based method of estimation

We also applied the so-called grid-based method to estimation of the M and R of the Kepler stars.
This is essentially the well-used approach in stellar astronomy of matching the observations to stellar
evolutionary tracks, but with the powerful diagnostic information contained in the seismic ∆ν and
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ABSTRACT

The frequency of maximum oscillation power measured in dwarfs and giants exhibiting
solar-like pulsations provides a precise, and potentially accurate, inference of the stellar
surface gravity. An extensive comparison for about 40 well-studied pulsating stars
with gravities derived using classical methods (ionisation balance, pressure-sensitive
spectral features or location with respect to evolutionary tracks) supports the validity
of this technique and reveals an overall remarkable agreement with mean differences
not exceeding 0.05 dex (although with a dispersion of up to ∼0.2 dex). It is argued
that interpolation in theoretical isochrones may be the most precise way of estimating
the gravity by traditional means in nearby dwarfs. Attention is drawn to the usefulness
of seismic targets as benchmarks in the context of large-scale surveys.

Key words: asteroseismology – stars: fundamental parameters – stars: late type

1 SOLAR-LIKE OSCILLATIONS AS A

POWERFUL GRAVITY INDICATOR

It is notoriously difficult to accurately estimate the stellar
surface gravity in late-type stars, with systematic differences
of the order of 0.2 dex being commonplace depending on the
technique used and its exact implementation. This large un-
certainty surrounding log g limits the accuracy with which
elemental abundances can be determined. This is especially
the case for purely spectroscopic analyses where the deter-
minations of the stellar parameters are intimately coupled.
In such a case, the use of a model atmosphere with an in-
appropriate gravity adversely impacts on the estimation of
the other parameters (i.e., effective temperature and micro-
turbulence) and, ultimately, chemical abundances.

However, the properties of the p-mode pulsations ex-
hibited by cool stars on the main sequence and during the
red-giant phase can be used to derive values that are precise
to a level rivaling that obtained for eclipsing binaries. Al-
though seismic gravities can also be derived using oscillation
frequencies and frequency separations, here we only consider
the frequency of maximum power, νmax, as a surface grav-
ity indicator (see, e.g., Kallinger et al. 2010a for definition
and further details on how this quantity can be derived). As
first suggested by Brown et al. (1991) and recently discussed
from a theoretical viewpoint by Belkacem et al. (2011), νmax

is expected to scale as the acoustic cut-off frequency:

νmax

νmax,!
=

(

M

M!

)(

R

R!

)−2 (

Teff

Teff,!

)−1/2

(1)

This leads to:

log g = log g! + log

(

νmax

νmax,!

)

+
1
2
log

(

Teff

Teff,!

)

. (2)

This relation is largely insensitive to the effective tem-
perature assumed (∆Teff = 100 K leads to ∆ log g ∼ 0.004
dex only for Sun-like stars). On the other hand, νmax

can usually be measured with an error below 5 per cent
from high-quality time series (e.g., Kallinger et al. 2010a;
Mosser et al. 2010). It follows that log g determined via
equation (2) can be precise to better than 0.03 dex. If
confirmed in terms of accuracy, this would be far bet-
ter than what can be achieved by other means in sin-
gle stars (except in stars with transiting planets, although
this method heavily relies on evolutionary models; e.g.,
Torres, Winn & Holman 2008). Indeed, seismic gravities are
beginning to be adopted in spectroscopic analyses as an al-
ternative to values derived from traditional methods in or-
der to narrow down the uncertainties in the other funda-
mental stellar parameters and chemical abundances (e.g.,
Batalha et al. 2011).

The high accuracy of the gravities obtained from as-
teroseismology is supported by a comparison with values
estimated using completely independent techniques (e.g., as
shown in the case of a few binaries by Bruntt et al. 2010,
as well as in red-giant cluster members by Stello et al. 2011
and Miglio et al. 2011). However, the validity of the scalings
relating the stellar parameters (mass, radius) and the seis-
mic observables has yet to be thoroughly investigated for
stars occupying different parts of the HR diagram and hav-
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3 Estimation of M and R

3.1 Direct method of estimation

If ∆ν, νmax and Teff are known, Equations (1) and (2) represent two equations in two unknowns,
and we may therefore re-arrange and solve for M and R in what we call the “direct” method of
estimation of the stellar properties. This gives (S21):
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and (
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)−4
(

Teff
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. (4)

The results presented in the paper were estimated by the direct method. We used νmax,! = 3150µHz
and ∆ν! = 134.9µHz. Estimates of Teff were derived by An et al., (in preparation) from the
multicolor photometry available in the Kepler Input Catalog. The median fractional precision in the
temperatures is about 1 %.

We obtained from the direct method a median fractional uncertainty of just over 10 % in M and
about 5.5 % in R. That the fractional uncertainties on M are larger than those on R is apparent
from the propagation of the uncertainties on the observables, i.e.,
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The direct method is very attractive because it provides mass and radius estimates that are indepen-
dent of stellar evolutionary models, and this is clearly of great benefit for instructive comparisons
with the population synthesis models. However, the direct method does give larger uncertainties on
M and on R than would be obtained from a “grid-based” method of estimation (here about twice as
large; see Section 3.2 below). Although the uncertainties are larger than for the grid-based method,
this does mean that they are expected to largely capture any uncertainties in Equations (1) and (2)
due to, for example, metallicity effects.

For the present, the lack of precise independent constraints on the metallicities (e.g., on [Fe/H])
means that the grid method is vulnerable to systematic bias in the estimates of M (although not R).
Once we have those tight independent constraints on all the stars – from complementary ground-
based observations being made in support of Kepler – we will be able to take full advantage of the
grid-based method and the significantly better precision it offers, as we now go on to discuss.

3.2 Grid-based method of estimation

We also applied the so-called grid-based method to estimation of the M and R of the Kepler stars.
This is essentially the well-used approach in stellar astronomy of matching the observations to stellar
evolutionary tracks, but with the powerful diagnostic information contained in the seismic ∆ν and
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