UNIVERSITY OF BIRMINGHAM

BRIDGING THE FIELDS OF ASTEROSEISMOLOGY AND GALACTIC STELLAR POPULATION STUDIES

Andrea Miglio School of Physics and Astronomy

ASTEROSEISMOLOGY

Observations of stars: • Information generally limited to the superficial layers

No direct constraints on stellar interior

Study of stellar pulsation modes

Properties of the propagation cavity

OBSERVATIONS

27cm telescope polar circular orbit at 896km launched December 27th 2006

OBSERVATIONS

95cm telescope

launched 7 March 2009

fixed field of view

~130k stars monitored for 3.5+3yrs magnitude range 7-16

Aerts, Christensen-Dalsgaard & Kurtz 2009

SOLAR-LIKE OSCILLATIONS

. in solar-like stars

- acoustic modes
- $\frac{\delta L}{L}$ ~ few ppm

Aerts, Christensen-Dalsgaard & Kurtz 2009

SOLAR-LIKE OSCILLATIONS

2. in G-K giants

- radial and non-radial modes discovery by CoRoT in 2009
- periods ~ hours
- modes: huge diagnostic potential

SEISMOLOGY OF RED GIANTS: HIGHLIGHTS

internal rotation rate

 $\Omega_{\rm core} \sim 10\,\Omega_{\rm env}$

Beck et al 2012 Nature

Bedding et al. 2011, Nature

evolutionary state

Solar-like oscillations: average parameters

 Δv : large frequency separation

Solar-like oscillations: average parameters

Vmax

$$\nu_{\rm max} \simeq \frac{M/{\rm M}_{\odot}}{(R/{\rm R}_{\odot})^2 \sqrt{T_{\rm eff}/T_{\rm eff},\odot}} \nu_{\rm max,\odot}$$

Brown et al. 1991 Kjeldsen&Bedding 1995

Solar-like oscillations: average parameters

average seismic parameters:

$$\Delta \nu \simeq \sqrt{\frac{M/M_{\odot}}{(R/R_{\odot})^{3}}} \Delta \nu_{\odot}$$
$$\nu_{\text{max}} \simeq \frac{M/M_{\odot}}{(R/R_{\odot})^{2} \sqrt{T_{\text{eff}}/T_{\text{eff}},\odot}} \nu_{\text{max},\odot}$$

mass and radius estimate: $\left(\frac{R}{R_{\odot}}\right) = \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{0.5}$

$$\left(\frac{M}{\mathrm{M}_{\odot}}\right) = \left(\frac{\nu_{\mathrm{max}}}{\nu_{\mathrm{max},\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\mathrm{eff}}}{\mathrm{T}_{\mathrm{eff},\odot}}\right)^{1.5}$$

GLOBAL STELLAR PARAMETERS RADIUS, MASS, SURF. GRAVITY

• M, R, age of planetary host stars

- improve spectroscopic analyses $\log g = \log g_{\odot} + \log \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) + \frac{1}{2} \log \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)$
- characterise stellar populations of giants in the MW (~15k stars)

THE ZOO OF RED GIANTS: A UNIQUE SNAPSHOT OF STELLAR EVOLUTION

Testing scaling relations

$$\left(\frac{R}{\mathrm{R}_{\odot}}\right) = \left(\frac{\nu_{\mathrm{max}}}{\nu_{\mathrm{max},\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\mathrm{eff}}}{\mathrm{T}_{\mathrm{eff},\odot}}\right)^{0.5}$$

$$\left(\frac{M}{\mathrm{M}_{\odot}}\right) = \left(\frac{\nu_{\mathrm{max}}}{\nu_{\mathrm{max},\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\mathrm{eff}}}{\mathrm{T}_{\mathrm{eff},\odot}}\right)^{1.5}$$

VS

models (Δv) and/or independent measurements of R and M

e.g. nearby stars, clusters

GLOBAL STELLAR PARAMETERS RADIUS, MASS, SURF. GRAVITY

age

Age-mass relation

GIANTS

• Mass

GLOBAL STELLAR PARAMETERS RADIUS, MASS, SURF. GRAVITY

Pulsating stars as distance indicators:

Solar-like oscillations

• Radius +
$$T_{eff} \rightarrow L$$

• apparent mag + BC $\rightarrow \ell$ $d^2 = L/\ell$

DISTANCES

uncertainty ~10%

CoRoT LRs: ~ 3000 stars Mosser et al. 2010

Kepler public data: ~ 10000 stars Hekker et al. 2011

Miglio et al. 2012

UNIVERSITY^{OF} BIRMINGHAM

DISTANCES

Miglio et al. 2012

Summary: asteroseismology of stellar populations

