Dust formation in Asymptotic
Glant Branch stars
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Introduction

. AGB Stars considered to account for ~50-60% (Gehrz
89) ISM dust in the local Universe

mportant for analysis of evolved phases in Mid

nfrared HR diagrams

. Relevant for dust production at high redshifts
(Valiante et al. 09; Marchenko 05; Dwek &
Cherchneff10)

Dust formation in AGBs studied by many authors:
Bowen & Willson 91; Fleischer et al. 91; Gail & Sedlmayr 1999
(GS99); Lodders & Fegley 1999; Cherchneff 00; Willson 00;
Elitzur & lvezic 01; Jeong et al. 03; Winters et al. 03; Ferrarotti
& Gail 06 (FGO06); Hoefner 08; Ventura et al. 12

FGO6 (and GS99) provide basic set of equations of
dust growth coupled with a stationary wind
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without dust with dust
A

Dust/Gas assumed in these models



OLD used by FGO6

L=U.008, Marigo & Glrardl 20Ul

log L/Lg

3.7

We follow the FG06 scheme with new
AGB tracks by Marigo et al. 2012

Main Characteristics
After Marigo et al (2008), AGB phase reaches
lower effective temperatures (opacity):
Important for the dust formation process

Low effective temperatures also at low Z

4.5 -

log L/L,

3.5 b—

Marigo et al. 2012 based on new tracks (Bressan et al. 2012)
update input physics & different metal partitions



Dust formation & chemistry

1) When a dense gas cools down (expanding envelope) a
temperature is reached where large molecules aggregates form
(a few tens to hundreds of atoms) -> seeds nucleation process

2) Dust may grow on seeds by addiction of other molecules or
atoms -> accretion processes

3) Dust Chemistry dictated mainly by C/O ratio:
(Il Dredge UP + Hot Bottom Burning, see e.g. Hoefner 2009)

Small solid particles (1023 ym<a<0.1-0.2 um) of different composition:
Corundum (Al,O) & Silicates (Mg,SiO,, MgSiO;, SiO,) in M stars (C/O<1)
Amorphous carbon dust, Silicon Carbide (SiC) In C stars (C/0>1)
SIC, Silicates, FeSi In S stars (C/O~1)

Dust evolution (growth and/or destruction) may continue in the ISM



dMdt [Mg/vyr]

Input model ingredients:
- actual star mass
- effective temperature

- stellar luminosity

- mass loss (Vassiliadis &
Wood, 1993)
- elements abundances in the

atmosphere (including C/O)
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Output: circumstellar envelope

- dust composition

- condensation radius

- terminal wind velocity

- final dust sizes

- fraction of elements locked in dust
grains

- dust yields

- dust/gas ratio

A few differences with respect to
FGO06

 Opacities

 Number of Seeds (parameter)



Opacities & Wind
dynamics




Opacities

Scaled with the abundance of the key-element (with Z) for each dust type i:
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Final dust masses, a-ehnanced models
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vexp [Km/s]

Loup 1993, models Z=0.017, solar partition
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Loup 1993, models Z=0.017, solar partition
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Possible ways out (1): number of seeds

Intermediate Mass Loss : ~4x10°" Molyr
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Typical grain size (0.1 um) not reproduced (10 times smaller!) *3
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Possible ways out (2): H, chemisputtering
suppressed + sticking coefficient increased

Intermediate Mass Loss : ~8x107 Molyr
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Conclusions

1) The dust formation model + updated stellar AGB tracks is a fundamental
tool to study the contribution of AGB stars to the dusty ISM.

Applications: star clusters in nearby galaxies (Mid Infrared Colours) and galaxy
evolution (evolution of dust)

2) Observable properties of the AGB stars in the local Universe

a) The properties of C stars are nicely reproduced by delaying.

b) M star data are not so well reproduced (lower vexp than observed)
Preliminary tests : this point can be solved if the bulk of condensation happens
In an inner part of the stellar envelope.

3) AGB dust yields for a broad range of metallicities and partitions of heavy
elements, both with and without chemisputtering.

4) The model will soon be coupled with a radiative transfer code to predict the
MIR colours of these stars, in order to provide a direct consistent observable

for the mass loss rate.

15



