

The radial metallicity gradient from OB star and HII region studies

Norbert Przybilla

NATURWISSENSCHAFTLICHE FAKULTÄT

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

HII regions

- emission-line spectra: He, C, N, O, Ne, S, Ar
- excited by OB stars
 present-day abundances
- $T_e \sim 10^4$ K, $n_e \sim 10^2 10^4$ cm⁻³

abundance determination from

- Recombination Lines (RL) or Collisionally Excited Lines (CEL)

- via direct method/requires measurement of weak [OIII] 4363 Å line
 - strong-line methods/calibration needed
 - photoionisation models

complications: dust depletion & ICF's

temperature fluctuations?

- dominate energy and momentum budget of ISM in galaxies
- key drivers for cosmic cycle of matter

•

•

- highly luminous - abundance indicators over large distances CNO/α-elements/iron-group
- short-lived **->>** present-day abundances
- simple atmospheres:
 radiative envelopes
 - weak winds
 - no diffusion
 - NLTE treatment required

Metallicity gradient from HII regions

• oxygen as metallicity substitute for HII regions and OB stars

Overview

Stasinska et al. (2012)	

$d \log(O/H) / dR$	$A(O)_0$	range	number	references
$[\text{dex } \text{kpc}^{-1}]$		[kpc]	of objects	
-0.13 ± 0.04	8.9	8-14	5	Peimbert <i>et al.</i> $(1978)^a$
-0.067 ± 0.017	9.38 ± 0.04	4 - 14	35	Shaver <i>et al.</i> $(1983)^b$
-0.064 ± 0.009	$\frac{9.15}{2} \pm 0.06$	0 - 12	34	Afflerbach <i>et al.</i> $(1997)^c$
-0.040 ± 0.005	$\frac{8.82}{\pm} \pm 0.05$	5 - 15	34	Deharveng et al. $(2000)^d$
-0.044 ± 0.010	9.04 ± 0.08	6 - 10	6	Esteban & Peimbert $(1995)^e$
-0.035 ± 0.006	$\frac{8.77}{\pm 0.05}$	6 - 10	6	Esteban & Peimbert $(1995)^f$
-0.060 ± 0.010	$\frac{9.19}{\pm 0.04}$	6 - 18	70	Rudolph et al. $(2006)^g$
-0.041 ± 0.014	$\frac{8.67}{\pm 0.05}$	0-15	68	Rudolph et al. $(2006)^h$
-0.030.07 azimu	uthal variation	5-22	133	Balser <i>et al.</i> (2011)

- 'steep' and 'shallow' solutions for abundance gradient
- wide variation of (extrapolated) central oxygen abundance

Stasinska et al. (2012)

Metallicity gradient from OB stars

					510311380	
17	Author	Range in R_g	# stars	# assoc.	$\Delta A({ m O})/\Delta R$	$A(O)_0$
2	[kpc]			$[\text{dex kpc}^{-1}]$	[dex]	30
	G85	8.5 - 17.0	10		-0.012 ± 0.024	
	F90	5.5 - 10.3	20	4	-0.015 ± 0.014	
	KM94	5.0 - 15.0	38	4 + loc	-0.021 ± 0.012	
	K94	7.0 - 16.0	16/55	10/20	-0.000 ± 0.009	
	SR97	6.0 - 18.0	80	22	-0.07 ± 0.01	
*	G98	5.0 - 14.0	16	10	-0.07 ± 0.02	9.16
*	R00	6.0 - 18.0	80	22	-0.067 ± 0.008	9.40
*	DC04	4.7 - 13.2	69	25	-0.031 ± 0.012	8.76
*	F11	7.0 - 9.8	35		-0.033 ± 0.005	

References: F90 (Fitzsimmons et al. 1990), SR97 (Smartt & Rolleston 1997), R00 (Rolleston et al. 2000), G85 (Gehren et al. 1985), KM94 (Kilian-Montenbruck et al. 1994), K94 (Kaufer et al. 1994), G98 (Gummersbach et al. 1998), DC04 (Daflon & Cunha 2004), F11 (Firnstein 2011).

- 'zero', 'steep' and 'shallow' solutions for abundance gradient
- wide variation of (extrapolated) central oxygen abundance

Metallicity gradient from OB stars

- large scatter > 0.5dex within single clusters/associations
- large scatter > 1 dex for clusters @ similar R_g ... effect of 12+Gyr GCE

Overview

Metallicity gradient from different indicators

HII region and stellar analyses from interpretation of observation

(spectro)photometry, spectroscopy

- plasma parameters: T_e, n_e
- elemental abundances
- fundamental stellar parameter: L, M, R
- atmospheric parameters: T_{eff} , log g, ξ , Y, Z, etc.
- elemental abundances

quantitative spectroscopy

- direct method (T $_{\rm e}$)

- model atmospheres

- strong line methods
- photoionization models

NGC300: abundance gradient from strong-line method

- HII regions vs. B-SGs
- different trends for HII-regions from 3 different R₂₃-calibrations

 R_{23} =([OII]_{$\lambda 3727$}+[OIII]_{$\lambda 4959,5007$})/H β

- independent verification and extension via stellar analyses
- systematic bias in published gradients!?

FAKULTÄT

Bologna - 30.05.2012

(Restricted) NLTE problem

transfer equation

$$\mu \frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = I_{\nu} - S_{\nu}$$

• statistical equilibrium:

$$n_i \sum_{j \neq i} (R_{ij} + C_{ij}) = \sum_{j \neq i} n_j (R_{ji} + C_{ji})$$

• radiative rates:

$$R_{ij} = 4\pi \int \sigma_{ij} \frac{J_{\nu}}{h\nu} \,\mathrm{d}\nu$$

• collisional rates:

$$C_{ij} = n_e \int \sigma_{ij}(v) f(v) v \,\mathrm{d}v \qquad \log v$$

local

non-local

 ^{2}S $^{2}D^{0}$ 2 D ^{2}G 1.3 1.1 1.0 ENERGY 1/CM *105

MgII: Przybilla et al. (2001)

• excitation, ionization, charge exchange, dielectronic recombination, etc.

model atoms ... required for many elements/ions

Atomic data

Quantitative Spectroscopy without Systematics ...

Diagnostics

Nieva & Przybilla (2012)

... Realisation of a Stellar Astrophysicists's Dream

1.2

1.0

1.2

NATURWISSENSCHAFTLICHE

FAKULTÄT

1.1 - 큧

Fell Fell 1.1 - 3 1.0 -.9 -.8 -1 1 1.2 telluric lines 1.2 ΞΞ .6 1.2 1.1 1 I 1.21 1.1 -1.0 -.9 -.8 ā 1 1 Several [™]10⁴ lines: [™]30 elements, 60+ ionization stages[™] **GREAT-ESF** Workshop FRIEDRICH-ALEXANDER UNIVERSITÄT ⁰⁷ Bତାତ୍ରିହାର – 30.05.2012 • complete spectrum synthesis in visual (& near-IR) ~70-90% in NLTE ERLANGEN-NÜRNBERG

NLTE Diagnostics: Stellar Parameters

using robust analysis methodology & comprehensive model atoms

systematics !

- ionization equilibria → T_{eff} elements: e.g. He I/II,C I/II, N I/II, O I/II, Ne I/II, Mg I/II, Si III/IV, S II/III, Fe II/III Δ T_{eff} / T_{eff} ~ 1...2% usually: 5...10%
- Stark broadened hydrogen lines → log g
 ∆ log g ~ 0.05...0.10 (cgs)

usually: 0.2

- microturbulence, helium abundance, metallicity
 - + other constraints, where available: SED's, near-IR, ...
- absolute Δlogε ~ 0.05...0.10 dex (1σ-stat.) usually: factor ~2
 abundances: Δlogε ~ 0.07...0.12 dex (1σ-sys.) usually: ???

fine ruler

Elemental Abundances

Elemental Abundances

Chemical composition of the solar neighborhood

X=0.715 Y=0.271 **Z=0.014**

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

FAKULTÄT

NATURWISSENSCHAFTLICHE

Milky Way: Oxygen Abundance Gradient

- large scatter @ every R
- complex picture from "simple" analysis

Some slides on work in progress removed

Quote, insted of conclusions

"It is also a good rule not to put overmuch confidence in the observational results that are put forward until they are confirmed by theory."

A.S. Eddington

