The Gaia-ESO Spectroscopic Survey

Survey Co-Pls

Gerry Gilmore (IoA, Cambridge) Sofia Randich (INAF/Arcetri)

>300 Cols

The Gaia-ESO Public Spectroscopic Survey

Gerry Gilmore^{1,*} Sofie Rendich2* Martin Asplund^{3,*} James Binney^{4,+} Piercerlo Bonifecio^{6,*} Janet Drew^{8,+} Sophia Feitzing^{7,*} Annette Ferguson^{8,*} Rob Jeffries^{0,4} Giusi Micela^{10,+} Ignecio Negueruela^{11,+} Timo Prusti^{10,+} Hans-Walter Rix^{13,*} Antonella Vallenari^{54,+} Emilio Alfaro^{16,‡} Carlos Allende-Prieto^{10,2} Carine Babusiaux^{5,2} Thomas Bensby^{7,‡} Ronny Blomme^{17,‡} Angela Bragaglia^{18,2} Ettore Flaccomio^{10,2} Patrick François^{5,2} Mike Irwin^{1,2} Sergey Koposov^{1,‡} Andrees Korn^{19,‡} Aleesandro Lanzafame^{20,‡} Elena Pancino^{17,2} Ernst Paunzen^{21,2} Alejandra Recio-Blanco^{39,4} Giuseppe Sacco^{2,2} Rodollo Smiljanic^{23,‡} Sophie Van Eck^{94,‡} Nicholes Welton 1.2

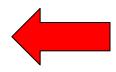
- Institute of Astronomy, University of Cambridge, United Kingdom
- INAF-Osservatorio Astrofisico di Arcetri, Italy
- Mount Stromic Observatory, Australian National University, Canberra, Australia
- Dept. of Theoretical Physics, University of Oxford, United Kingdom
- GEPI, Observatoire de Parie, France Centre for Astronomy Research,
- University of Hertfordshire, United Kingdom
- Lund Observatory, Sweden
- Institute for Astronomy, University of Edinburgh, United Kingdom
- Astrophysics Group, University of Keele, United Kingdom
- INAF-Osservatorio Astronomico di Palermo, baly
- ¹ Departamento de Fisica, Universidad de Alicante, Spain
- ESTEC, ESA, the Netherlands
- Max-Planck Institut für Astronomy, Heidelberg, Germany

14 INAF-Osservatorio di Padova, Italy ¹⁵ Instituto de Astrofísica de Andalucia-

- CSIC, Granada, Spain ¹⁰ Istituto Astrofísica de Canarias, Tenerífe,
- Spain 17 Royal Observatory of Belgium, Brussels,
- Belgium 19 INAF-Osservatorio di Bologna, Italy
- 19 Dept. of Physics and Astronomy, University of Uppeals, Sweden
- 30 Dipertimento di Fisice e Astronomia. Università di Catania, Italy
- ³¹ Institut f
 ür Astronomie, Universit
 ät. Wien, Austria
- ²² Observatoire de la Côte d'Azur, Nice. France
- 22 ESO
- ³⁴ Institut d'Astronomie et d'Astrophysique, Université Libre de Bruesele, Belgium 1 Co-Pl
- * Steering Committee member * Working Group coordinator

The Gala-ESO Survey Team Co-Pis: G. Gimore⁴, S. Randich⁴ Cols: M. Asplund⁴, J. Binney⁴, P. Bonitacio⁴, J. Drew⁴, S. Feltzing⁷, A. Ferguson⁸, R. Jeffries⁹, G. Micela⁴⁴, I. Negueruela¹⁴, T. Prusti¹⁰, H.-W. Rix¹⁰, A. Valenari¹⁴, D. Aden², C. Aerts¹⁴, L. Affer¹⁶, J.-M. Alcala¹⁸, E. Altaro¹⁷, O. Allende Prieto⁴⁸, G. Altavila¹⁹, J. Alves³⁰, T. Antoja⁶¹, F. Arenou⁴, G. Argiroff⁵⁰, A Asensio Ramos¹⁴, C. Babuslaus⁴, C. Baller-Jones¹⁰, L. Balaguer-Nurez⁴⁹, A.Bayo¹⁴, B. Barbuy²⁸, G. Barisevicius⁴⁸, D. Barrado y Nevascues⁴⁷, Battistini7, I. Bellas Velidis P. M. Bellazzin/P. V. Belokurov¹, T. Bensby⁷, M. Bergemann³, G. Bertell⁴ K. Blazzo^H, O. Blenayme³⁰, J. Bland-Hawthom³¹, R. Biomme³⁰, C. Boeche³⁰, S. Bonito⁴⁰, S. Boudreault⁴⁴ J. Bouvier³⁴, A. Bragagia³⁴, I. Brandao³⁴, A. Brown³⁵ J. de Bruijne¹⁰, M. Burleigh³⁸, J. Caballero¹⁰, E. Caltau³⁰, F. Calurs⁴⁰, R. Capuzzo-Dokoetts⁴¹, M. Caramazza¹⁰. G. Canaro²⁴, L. Casagrande³, S. Casewell⁵⁸, S. Chapman¹, G. Chiappini⁴⁹, Y. Chorniy⁴⁴, N. Christileb⁴⁰, M. Cignoni⁴⁶, G. Cocozza⁴ M. Colless⁴⁴, R. Collet³, M. Collins⁴³, M. Corrent/³⁰ E. Covino⁴⁴, D. Crocjevic⁴, M. Cropper⁴⁴, M. Cunha³⁶, F. Damiani⁴⁶, M. David⁴⁶, A. Delgado⁴⁷, S Duffau³⁰, S. Van Eck⁴⁷, B. Edwardsson⁴⁶, J. Eldridge H. Enkerik, K. Erikssoniki, N.W. Evansi, L. Eyerik, B Famaey³⁰, M. Felhauer⁶⁰, L. Ferreras⁴⁸, F. Figueras⁴⁰ G. Rorentino²⁴, E. Riscognio⁴⁰, G. Rynn²⁶, C Folha³⁴, E. Franciceini⁹, P. Francole⁴, A. Franca⁸⁴, K. Freeman⁴⁹, Y. Fremat³⁰, E. Friel⁴⁰, B. Gaensicke⁴⁴ J. Gameiro³⁴, F. Garzon⁴⁸, S. Geler⁴⁸, D. Gelsler⁴⁰ O. Gerhard⁴⁸, B. Gibson⁴⁰, A. Gomboc⁴⁷, A. Gomez⁴ C. Gonzalez-Fernandez⁴⁴, J. Gonzalez Hernandez⁴⁶ E. Gosset⁴⁶, E. Grebel¹³, R. Greimel⁴⁹, M. Groenewegen³⁰, F. Grundahl⁴⁶, M. Guarcello⁴⁶, B. Gustafsson⁴⁰, P. Hadrava⁴⁰, D. Hatzidimitriou⁴⁰, N. Hambly⁸, P. Hammersley⁸⁴, C. Hansen³⁰, M. Haywood⁶, U. Heber⁴⁸, U. Helter⁴⁸, E. Held⁴⁴, A. Heimi²⁰, G. Hendler²⁰, A. Henero¹⁶, V. Hill⁴⁰, S. Hodgkin⁴, N. Huelamo³⁰, A. Husor¹⁰, R. Ibata³⁰, M. Irwin¹, R. Jackson², R. de Jong⁴¹, P. Jonker⁴⁴, S. Jordan³⁰, C. Jord⁶¹, A. Jorissen⁴⁷, D. Katz⁴, D. Kawatawi, S. Kellerik, N. Kharchenkowi, R. Klementik

A. Klutsch^F, J. Knutle^H, A. Koch^H, C. Kochukhov^H M. Konštastik, S. Koposovi, A. Komill, P. Koubskyll, A. Lanzatame²⁹, R. Lallement⁶, P. de Laverne⁴⁶, F. van Leeuwen⁴, B. Lemasle²⁸, G. Lewis²⁸, K. Lind³, H P. E. Lindstrom⁴⁴, A. Lobel⁴⁴, J. Lopez Santiago⁴⁷, P. Lucas⁶, H. Luciwig²³, T. Luettinger²⁰, L. Magrin⁶, J. Marcon²⁴, A. Marcon²⁴, A. Marino³, C. Martavan³⁴, I. Martinez-Valouesta⁴⁴. G. Matlevic⁴⁷, R. McMahon¹, S. Messina[®], M. Meyer⁴⁸, A. Miglio⁴⁹, S. Mikolalás²⁸, I. Minchev⁴⁹, D. Minniti²⁴, A. Mollitho³⁴, Y. Momany⁴⁴, L. Monaco⁴⁴ M. Montalto³⁸, M.J. Monteho³⁸, R. Monier³³, D. Montes⁴⁷, A. Mora¹⁶, E. Moraus¹⁴, T. Morel⁴⁸, N. Mowlavi²⁸, A. Mucclarell¹⁸, U. Munari⁴⁴, R. Naplwotzki⁴, N. Nardetto⁴⁸, T. Naplor¹⁸, Y. Naze⁴⁹ G. Nelemans²⁷, S. Cikamoto²⁸, S. Ortolani¹⁹, G. Pace³⁴, F. Palis⁴, J. Palous⁴⁴, E. Pancino³⁴, R. Parker⁴⁹, E. Paurgan⁴⁰, J. Penamubia³⁸, I. Pilitteri⁴ G. Piotto⁴⁴, H. Posbio⁴, L. Prisingano¹⁴, E. Puperas²⁴ A. Quirrenbach¹⁰, S. Ragaini⁴⁰, J. Read⁴⁰, M. Read⁵, A. Recio-Blanco⁴⁰, G. Reale⁴⁰, J. De Ridder⁴⁰, N. Robichon#, A. Robin#, S. Rosser19, D. Romano#, F. Royer⁸, G. Rucht⁹, A. Ruzicka⁴⁴, S. Ryan⁸, N. Pyde⁷, G. Sacco⁸¹, N. Santos¹⁸, J. Sanz Forcada¹⁸ L. M. Savo Baroff, L. Shordone49, E. Schibach49, 5. Schmeja³⁰, O. Schnurr⁴⁰, R. Schoenrich³, R.-D. Scholz⁴², G. Seabroke⁴⁸, S. Sharma³¹, G. De Silva⁴ R. Smiljanic⁴⁴, M. Smith⁷⁶, E. Solano³⁶, R. Sordo¹⁴, C. Soubitan⁴⁹, S. Sousa¹⁸, A. Spagna⁸⁴, M. Stellen⁴⁶ M. Steinmetz⁴², B. Steizer⁴⁰, E. Stempelz⁴⁸, H. Tabernero⁶⁷, G. Tautvaisiene⁶⁸, F. Thevenin⁶⁸, J. Torra²⁹, M. Toel²⁸, E. Tolstoy²⁸, C. Turon⁶, M. Walker⁴⁶, N. Walton¹, J. Wambeganes³³, C. Worley⁴⁶ K. Vern⁴⁰, J. Vink⁴⁰, R. Wyte⁴⁰, S. Zapgia⁴⁰, W. Zellinger⁴⁰, M. Zoccali⁵¹, J. Zorec⁴⁰, D. Zucker⁴⁰ T. Zwitter#

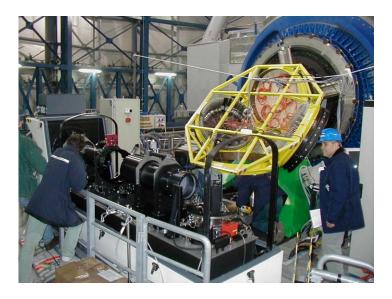

Institutes: NoA: RINAF-Obs. Arcetti: RMPA: #Univ. Outord; ⁴Obs. Paris: ⁴Unix. Hertforshire; ²Lund Univ; ⁶Univ. Edinburgh; ⁹Univ. Keele: ¹⁶Obs. Palermo 11 Univ. de Alicante; 1/ESTEO; 19 MPIA; 1/INAF-Obc. Padova: ⁴⁸Kath, Unix Leuven: ⁴⁸INAF-Obs. Capodimonte; ⁴⁷ IAA-OSIC; ⁴⁶ IAC; ⁴⁶ Univ. Bologna; 19 Univ. Vienna; 29 Kapteen Inst.; 49 Univ. Palermo: 49 Univ. Barcelona; 24 ESO Santiago; 24 Univ. Granada; 48 Inst. Theo Phys & Astro., Lithuaria; 47 Calar Alto Obs.; ²⁸ National Optical Obs., Greece: ³⁹ INAF-Obs. Bologna: ³⁰Obs. Stranbourg; ³⁴Univ. Sydney; ³ Royal Obs. Belgium: ²⁸ Univ. Heidelberg: ²⁴ Univ. J. Fourier; ³⁴INAF-Obs. Bologna; ³⁴OAUP Porto; ³⁷ Univ. Leiden; ⁵⁸Univ. Leicester; ³⁰Centro de Astrobilogia, Madrid; 49Univ. Central Lancashine: ⁴¹ Univ. Rome; ⁴² AIP Potsdam; ⁴⁰ Univ. Heidelberg. ** AAO; ** MSSL, UCL; ** Univ. Antwerg: ** ULB, Brussels: # Uppsala Unix; ##ETH Zurich: # Unix. Conception; # INAF-Obs. Catania; # ANU; # Univ. Boston: ⁸⁴ Univ. Warwick: ⁸⁶ Bamberg Clos.; ⁸⁸ MPE: 47 Univ. Ljubliana; 49 Univ. Llege; 49 Karl-Franzens-Univ: ⁴⁰Univ: Aarhus: ⁴¹OiA: ⁴⁰Astr. Inst. Acad. Sci., Prague: 49 Unix, Athene; 54 ESO Garching; 45 OGA Nos; 44 SRON, Utrecht; 47 Unix: Madrid; ** Copenhagen Univ. Obs.; ⁶⁶ Unix, Athens; ³⁰ Univ. Catania; ¹¹ Univ. Catolica; ¹² Univ. Lisbor; ¹³ Univ. Nice Sofia Ant.: ¹⁴ESAC: ¹⁸Obs. de Geneve: ¹⁹Univ. Eveler: ¹⁷Univ. Nimeger: ¹⁹KIAA. Balino: ¹⁹Univ. Patiova: ⁴⁰Obs. Besancorc ⁸¹Rochester Inst. Technology; ⁶⁰ UNED, Madrid; ⁶⁰ Univ. Bordeaux; ⁶⁰ NAF-Obs. Torring: ^{MUNV}, Victoria: ^MArragh Obs.; # Johns Hopkins Univ; # IAP; # MacQuarie Univ.

Gaia-ESO survey – context and motivations

(conclusions and key words of several talks)

- Chemistry and kinematics
- Ages
- Large (spectroscopic) datasets
- Uniform analysis (also across different populations)

GAIA + GB SPECTROSCOPY


OUTLINE

- Survey overview
- Survey data products
- Core science
- Targets and strategy
- First light, spectra, "results"

Gaia-ESO survey (GES) overview (1)

- Public large spectroscopic survey with FLAMES@VLT
- Proposal approved in 6/2011, SMP in 10/2011, contract with DG signed in 2/2012
- 300 (240+60) nights (30n/semester) over 5 (4+1) years; start 12/2011 (P88), end 9/2016 (P97)++; visitor mode
- All populations of the MW: Halo; Bulge; Thick & Thin discs; open clusters and associations

Gaia-ESO survey overview (2)

Giraffe (130 fibers) for faint targets (V<19)

UVES (8 fibers) for 'bright' stars (V<16.5)

>10⁵ Giraffe spectra (R~16,000-25,000)
 > RVs, APs, [Fe/H], [X/Fe], stellar properties

>10⁴ UVES spectra (R~47,000)

precise multi element abundances

+ **ESO archive** exploitation/re-analysis

Survey data products

- 1D, λ calibrated, sky-subtracted spectra
- Radial and rotational velocities
- APs: T_{eff}, log g
- [Fe/H], [α/Fe], [X/Fe] (Li, C, O, Na, Mg, ...Ni, ...Ba, Y.)
- Average RV, [Fe/H], [X/Fe] for the clusters
- Stellar properties: e.g, accretion rates, mass loss
- Photometry used to select the targets
- Semester, annual, and final data releases
- First releases: 01/2013 and 06/2012

CORE SCIENCE

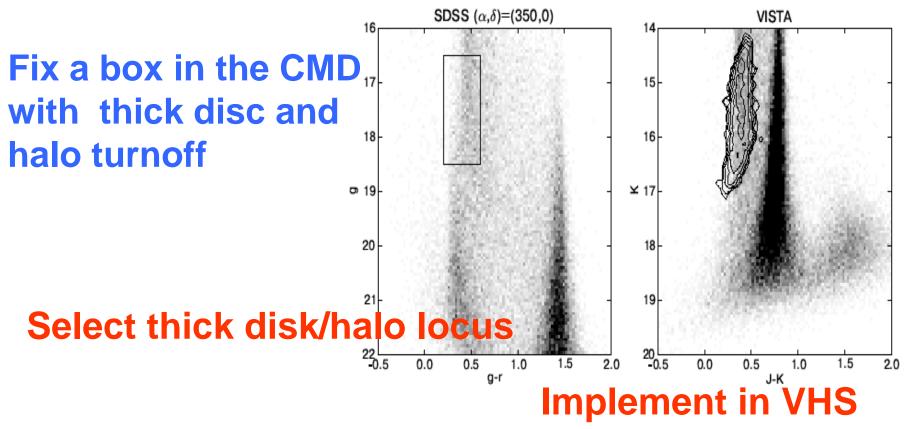
The formation and evolution of the MW and its component stars and stellar pops.

- The (dynamical) evolution of clusters: from birth to disruption
- Stellar evolution (ages, masses)
- Halo substructure, Dark Matter, Extreme stars (very low metallicity)
- Nature and formation of the bulge
- Formation and ev. of the thick and thin discs (field stars and clusters)

SAMPLE AND STRATEGY

What samples – 1. Field stars

GIRAFFE


- Bulge: mostly giant stars (clump and RGB), I=15
- Halo /thick disc: FG TO stars (17 < r < 18); giants in known streams, predominantly NGC and SGC
- Thin disc –only RVs for dynamics; I<19

UVES parallel

 Solar neighborhood: complete unbiased 5000star sample. Look at Mv~5.5, → unbiased survey to 1kpc at V=15. Plus subgiants...
 At V=15, survey 2000 thin disk, 2000 thick disk, 1000+ halo

What samples – 1. Field stars

Selection based on CMDs using VISTA+ SDSS

What samples – 2. Open Clusters

PMS clusters (10-100 Myr)

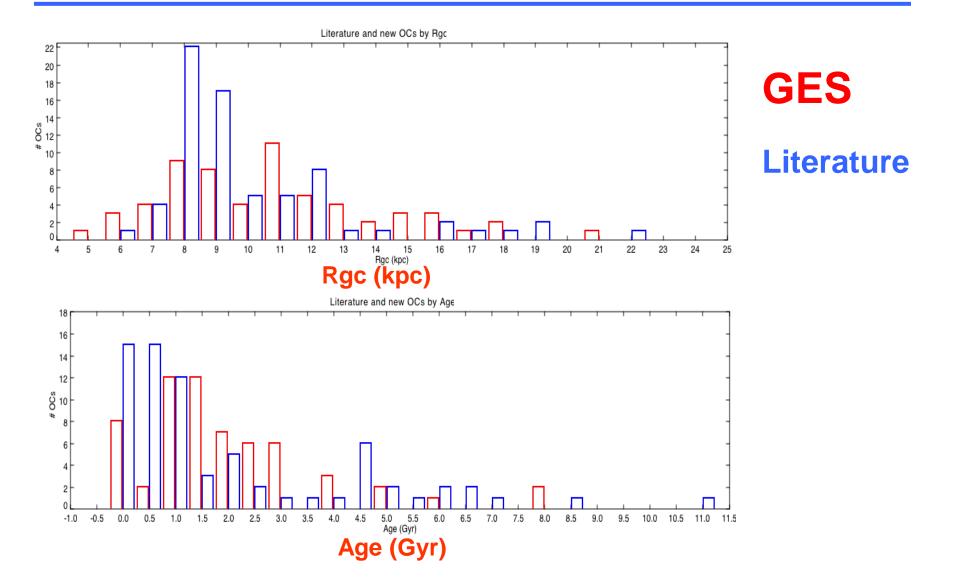
Very young clusters, star forming regions, associations

Intermediate-age and old clusters (100 Myr – 8 Gyr)

Nearby (< 1.5 kpc) and distant Relevant populations covered

What samples – 2. Open Clusters

~ 100 OCs in all phases of evolution (~1 Myr \rightarrow several Gyr), sampling the agedistance-R_{GC}-density-mass-metallicity parameter space


OB type stars \rightarrow M dwarfs plus evolved stars (mostly clump giants)

S

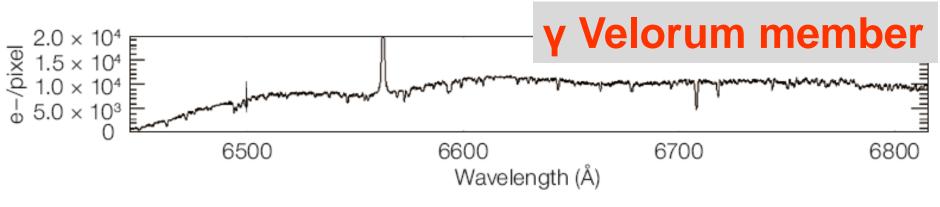
а

Relevant populations covered

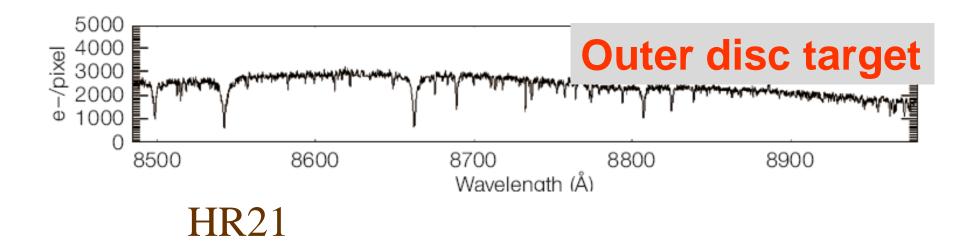
OCs in the Gaia-ESO survey

What samples/stars. 3 –calibration fields

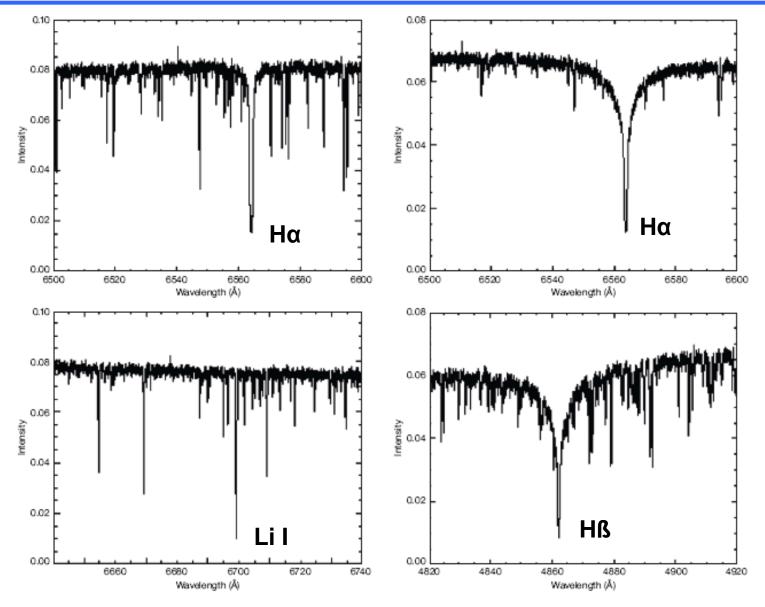
- RV standards
- (Gaia) Benchmark stars
- COROT fields
- Targets observed by other surveys (e.g. Apogee)
- COROT fields
- Well studied open & globular clusters


Set-ups and spectral ranges

- UVES: CD3 -520/580 (416-617/475-678 nm) for hot/cool stars
- Giraffe: Cluster/field stars:
- HR03/05A /06/09B/14A (403-476, 514-536, 631- 670 nm) for hot (down to A-type) stars:
 H lines, Si IV, He I, O II,...
- HR10/15N/21 (534-562; 647-679; 848.4-900)
 for cool stars: Teff/gravity indicators, Hα, Li,
 Fe I and II lines, Ca IR triplet, a few other el.
 lines;

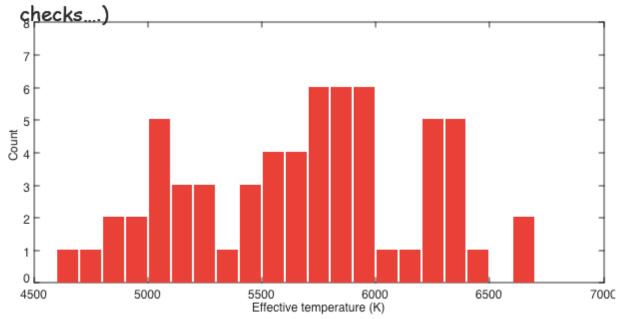

Observations

- First light: Dec. 31 2011-Jan 5
 2012
- Another five runs carried out (30 nights in total)
- Five clusters completed covering different characteristics
- Several MW fields –thick disc, bulge

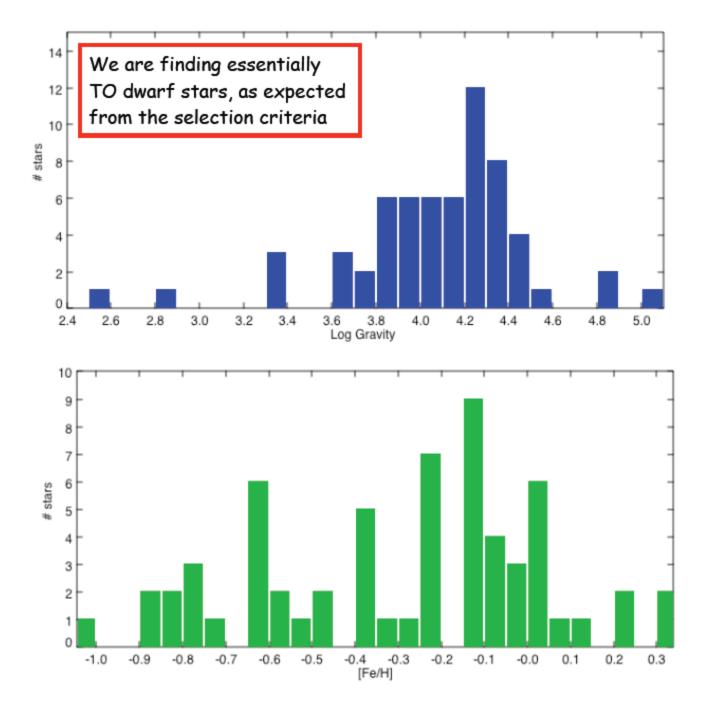

First spectra -Giraffe

HR15N

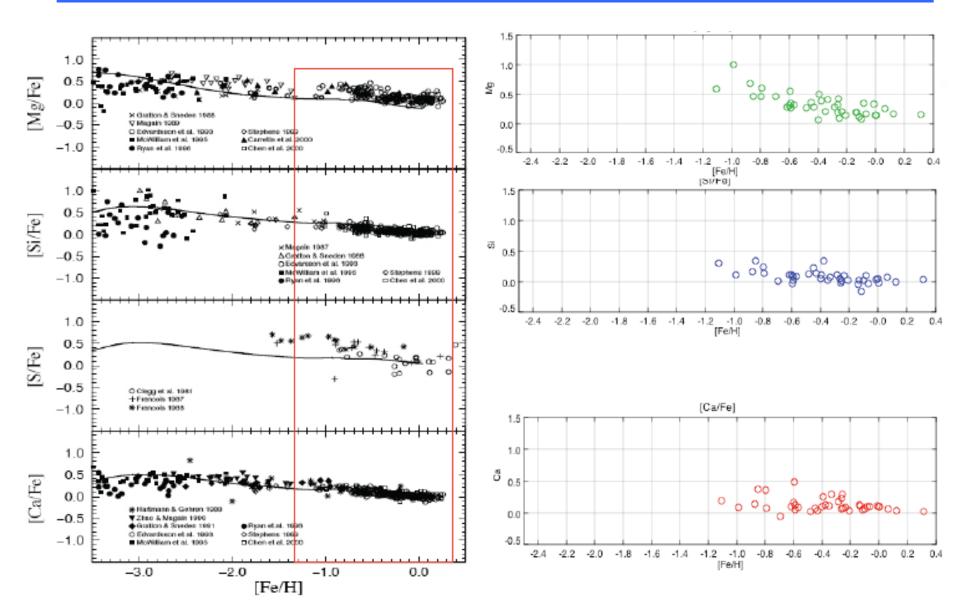
First spectra - UVES


y Vel member

MW target


First analysis results promising

Run 1 and 2 results from MW UVES spectra


After solving some problems, the analysis of all MW fields taken in Run1-2 took ~2hrs CPU (preliminary analysis with few

Courtesy Laura Magrini – Arcetri-Bologna-Padova-Indiana-ESO node

α elements

Conclusions and perspectives

- Gaia-ESO Survey among the largest and most ambitious ground based spectroscopic surveys ever attempted by European astronomy –the largest on a 8m telescope
- First homogeneous overview of the distributions of kinematics and element abundances in the MW
- end data taking >2016++? gives overlap with first Gaia data release. Combined → full 6D phase space f(x,y,z,v_x,v_y,v_z), plus stellar parameters, and chemistry for a very large number and variety of stars: core science plus legacy science

THANK YOU!