The fundamental role of the metallicity in the nucleosynthesis of heavy elements

Oscar Straniero, Sergio Cristallo, Luciano Piersanti & Roberto Gallino

INAF-Osservatorio AstronomicoTeramo

Bologna, 29-31 May 2012

The s-process: Where:

- WEAK (A<90): MASSIVE STARS → shell-He burning (marginally), shell-C burning (mostly).
- MAIN (90<A<180): LOW MASS TP-AGB STARS

 → in a thin pocket close to the top of the He-rich intershell during the interpulse period (mostly).
 Also within the convective zone powered by a thermal pulse (marginally).

 STRONG (A>180): LOW MASS TP-AGB STARS (LOW Z) → as for the main component

Neutrons and neutron sources

WEAK : ${}^{22}Ne(\alpha,n){}^{25}Mg$ n=10⁶-10¹¹ cm⁻³

MAIN and STRONG: ${}^{13}C(\alpha,n){}^{16}O$ $n=10^{6}-10^{7} \text{ cm}{}^{-3}$ (marginal) ${}^{22}Ne(\alpha,n){}^{25}Mg$ $n=10^{9}-10^{10} \text{ cm}{}^{-3}$

Special cases: Proton Ingestions (CEMPs and Sakurai's objects) ${}^{13}C(\alpha,n){}^{16}O$ with n=10 15 cm ${}^{-3}$

s-Proess paradigm for low-mass AGB (1-3 M_{\odot}) Straniero et al. 1995 - Gallino et al. 1998

Bagnasciuga (wet&dry)

A ¹³C pocket shall form in the transition strip between the sea (convective env.) and the shore (core)

The formation of the ¹³C pocket in the wet&dry transition zone

$$M=2M_{\odot}Z=Z_{\odot}$$

a) Maximum envelope penetration (TDU);

- b) ${}^{12}C(p,\gamma){}^{13}N(\beta){}^{13}C(p,\gamma){}^{14}N;$
- c) ${}^{22}Ne(p,\gamma){}^{23}Na;$
- d) The 3 pockets fully developed

Later on, the ${}^{13}C(\alpha,n){}^{16}O$ and the s-process

Full Network Stellar Evolution Models

- Full network (700 isotopes) coupled to stellar structure equations.
- Atomic & Molecular Opacity accounting for dredge up (C and N variations).
- Mass loss calibrated on pulsating AGB stars.

Straniero et al 2006 (Nucl. Phys. A) Cristaòòp et al 2009, 2011 (ApJ)

Varing the metallicity: theory versus observations

✓ AGB stars undergoing TPs and III TDU in the Galactic Disk or in nearby Galaxies (either O- and Crich), like C(N type) stars. Tc detected (or low Nb).

✓ Post-AGB stars.

 ✓ s-rich stars, dwarfs or giants (no Tc), like Ba stars or CH stars (or CEMPs).

✓ AGB imprints in presolar grains (SIC or O-rich).

✓ AGB imprints in the Galactic Chemical Evolution.

Models Constraints

- hs/ls: is a measure of the neutrons/seeds ratio. It depends on the amount of neutrons (¹³C), poisons (¹⁴N) and seeds (Fe).
 Better than X/Fe, which is affected by several uncertain quantities, such as mass-loss rate, dredge-up
- Branching: Rb/Sr or ⁹⁶Zr/⁹⁰Zr. They depends on the neutron density and, in turn, on the temperature of the stellar site where they are syntesized....
- AGB Luminosity Functions: depends on mass loss and dredge up

Combining heavy-s and light-s

Mixing by rotation depends on ω_{rot} :

- Mixing limited to the ¹³C pocket. In this case the ¹³C spreads out, The total amount of neutrons is conserved, but ¹³C/Fe is lower → lower neutrons/seeds and, in turn, lower hs/ls.
- Mixing extended up to the ¹⁴N pocket. Partial or total overlap of ¹³C and ¹⁴N. This is equivalent to reduce the *effective* ¹³C_{eff}=¹³C-¹⁴N. The total number of neutron is lower → lower neutrons/seeds and lower hs/ls

s-process in a convective zone

- If the s-process takes place at the base of an extended convective zone, the seeds consumption is counterbalanced by the rapid mixing of fresh material from outside. This occurrence favors the light-s production.
- In massive AGB, we found an overproduction of Is, indeed, because the s process is dominated by the ²²Ne burning in the convective zones generated by the TPs. A similar result is found as a consequence of the proton ingestion in extremely-metal-poor AGBs.

(Franec Repository of Updated Isotopic Tables & Yields)

On-line DataBase v. 1.2.b

- Select Data:

Mass	Metallicity	Nuclides Properties	Multiple Table	Single Table
(M _o)	(<i>Z</i>)		format ⁽⁶⁾	format ⁽⁷⁾
🐨		 Elements ^(1,2) Z: All Isotopes ⁽³⁾ A: All S-process ⁽⁴⁾: [hs/ls], [Pb/hs], Yields ⁽⁵⁾ A: All Z: All 	 All TDUs Final Composition Final 	 Final Composition Final

Reset

Search

Don't Show / Only files

Physical quantities corresponding to the AGB models (.PDF file)

http://www.oa-teramo.inaf.it/fruity