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Neutron Captures
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The s-process: Where:

e WEAK (A<90): MASSIVE STARS - shell-He
burning (marginally), shell-C burning (mostly).

e MAIN (90<A<180): LOW MASS TP-AGB STARS
- In a thin pocket close to the top of the He-rich
Intershell during the interpulse period (mostly).
Also within the convective zone powered by a
thermal pulse (marginally).

e STRONG (A>180): LOW MASS TP-AGB STARS
(LOW Z) - as for the main component



Physical conditions
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Neutrons and neutron sources

WEAK : 22Ne(a,n)25Mg
n=10%-1011 cms

MAIN and STRONG: 13C(a,n)t*0O
n=10°107 cm™3
(marginal) 22Ne(a,n)*>Mg
n=10°-10%° cm3

Special cases: Proton Ingestions (CEMPs and
Sakurai’s objects) 13C(a,n)**0O with n=10% cm-3



s-Proess paradigm for low-mass AGB (1-3 M)
Straniero et al. 1995 - Gallino et al. 1998
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Bagnasciuga (wet&dry) sy

A 13C pocket shall form in the transition
strip between the sea (convective env.)
and the shore (core)



The formation of the 13C pocket in the
wet&dry transition zone

M=2M Z=Z

a) Maximum envelope
penetration (TDU);

b) 12C(p.1)N(B)C
13C(p,'Y)14N;

c) ““Ne(p,y)*Na;

d) The 3 pockets fully
developed

Later on, the 33C(a,n)°0
and the s-process




Full Network Stellar Evolution
Models

e Full network (700 isotopes) coupled to
stellar structure equations.

e Atomic & Molecular Opacity accounting for
dredge up (C and N variations).

e Mass loss calibrated on pulsating AGB
stars.

Straniero et al 2006 (Nucl. Phys. A)
Cristaoop et al 2009, 2011 (ApJ)
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Varing the metallicity: theory versus
observations

v' AGB stars undergoing TPs and Il TDU in the
Galactic Disk or in nearby Galaxies (either O- and C-
rich), like C(N type) stars. Tc detected (or low NDb).

v Post-AGB stars.

v' s-rich stars, dwarfs or giants (no Tc), like Ba stars or
CH stars (or CEMPS).

v AGB imprints in presolar grains (SIC or O-rich).

v AGB imprints in the Galactic Chemical Evolution.



Models Constraints

e hs/ls: Is a measure of the neutrons/seeds
ratio. It depends on the amount of neutrons
(13C), poisons (3*N) and seeds (Fe).

Better than X/Fe, which Is affected by several

uncertain quantities, such as mass-loss rate,
dredge-up ......

e Branching: Rb/Sr or °°Zr/*°Zr. They depends on
the neutron density and, in turn, on the temperature
of the stellar site where they are syntesized....

e AGB Luminosity Functions: depends on mass loss
and dredge up



The hs/ls: a 3 cards game

(neutrons-poisons)

seeds s



Combining heavy-s and light-s

—— M=1.5M, - M=2.0M, - - - M=2.5M, — — M=3.0M,
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Mixing by rotation depends on ®

I’Ot

e Mixing limited to the 13C pocket. In this case the
13C spreads out, The total amount of neutrons is
conserved, but 3C/Fe is lower - lower
neutrons/seeds and, in turn, lower hs/Is.

e Mixing extended up to the 4N pocket. Partial or
total overlap of 3C and *N. This is equivalent
to reduce the effective 3C_=13C-4N. The total
number of neutron is lower = lower
neutrons/seeds and lower hs/ls



s-process in a convective zone

e If the s-process takes place at the base of an
extended convective zone, the seeds
consumption is counterbalanced by the rapid
mixing of fresh material from outside. This
occurrence favors the light-s production.

e In massive AGB, we found an overproduction of
S, Indeed, because the s process is dominated
ny the 22Ne burning in the convective zones
generated by the TPs. A similar result is found
as a consequence of the proton ingestion in
extremely-metal-poor AGBs.
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