

T-REX Unit E-ELT HIRES

L. Origlia, E. Oliva, F. Zerbi, S. Cristiani INAF, Italy

R. Maiolino Cavendish Lab & Kavli, Cambridge, UK

past milestones ...

• oct 2011: given the new E-ELT/instrument roadmap & X-Shooter success the PIs, PMs & PSs of the CODEX (opt) & SIMPLE (IR) Phase-A studies met in Garching to start discussion (scientifically first and then technically) about the interest/opportunity for a high/medium res spectrograph with simultaneous wide spec coverage from opt to IR wavelengths

nov 2011: letter to M. Casali to inform ESO about HIRES activities

sept 2012: scientific workshop on E-ELT HIRES in Cambridge

involvement of the whole European high res spectroscopic community

✓ explored all science cases from planet atmospheres to stars & stellar pop out to the high-z Universe and fundamental constants

✓ <u>white paper</u> with science cases and top level requirements (being written)

Cambridge workshop: Towards the science case for E-ELT HIRES

12/17/12 5:02 PM

Presentations

	Lovis: Science requirements for the characterization of exoplanet atmospheres						
Presentations	Snellen: Exoplanet atmosphere characterization at high spectral resolution						
Haehnelt & Maiolino: Welcome and introduction	Santos: Prospects for the detection of reflected light from other worlds						
E-ELT PROJECT STATUS and OTHER FORTHCOMING HIGH RESOLUTION SPECTROGRAPHS	Udry: Radial Velocity Follow-up of terrestrial transiting planets Queloz: <u>Summary of requirements and discussion</u>						
Liske: E-ELT project status	E-ELT HIRES: SUMMARY and DISCUSSION						
Szentgyorgyi: G-CLEF: A General Purpose Optical Echelle Spectrograph for the GMT	Pasquini: summary of science requirements						
Da Costa: GMT instrument development	Oliva & Delabre: Technical issues						
Pepe: ESPRESSO, a taste of high-resolution spectrographs on extremely large telescopes	Maiolino & Haehnelt: Brief summary and next steps (white paper)						
Strassmeier: The PEPSI high-resolution spectrograph for the Large Binocular Telescope							
E-ELT HIRES SCIENCE CASES: STELLAR SPECTROSCOPY and YOUNG STARS							
E. Tolstoy: Chemistry and Kinematics of Stellar Populations							
de Laverny: Stellar evolution and galactic archaeology with ELT/HIRES: some possible projects							
Gustafsson & Korn: Raising the bar on stellar abundances: why and how?							
Larsen: Detailed chemical abundance analysis of semi-resolved stellar populations	> 90 participants even without advertising						
Testi: Disk-star interaction and evolution at the time of planet formation	the weeksher on the CANC service						
Origlia: Summary of requirements and discussion	the workshop on the CADC server						
E-ELT HIRES SCIENCE CASES: HIGH REDSHIFT GALAXIES and COSMOLOGY							
Petitjean: The interconnection between galaxies and the IGM							
Fynbo: Spectroscopy of Gamma-ray Burst Afterglows	> nice agreement among the different						
Tanvir: IGM and ISM in high-z galaxies through HIRES observations	communities on the top level requirement						
Cimatti: Observing the different phases of the formation and evolution of massive galaxies							
Bunker: High resolution at high redshift - galaxy evolution with HIRES/ELT	and on the basic instrument concept						
Murphy: Fundamental physics and cosmology with E-ELT guasar spectroscopy							
Cristiani: Summary of requirements and discussion							
E-ELT HIRES SCIENCE CASES: EXOPLANETS							
Gillon: Transiting planets atmospheric studies							

Page 1 of 2 http://www.ast.cam.ac.uk/ioa/meetings/elthires/Presentations.html

http://www.ast.cam.ac.uk/ioa/meetings/elthires/Presentations.html

Page 2 of 2

12/17/12 5:02 PM

T-REX Unit for the E-ELT HIRES science top level requirements

target sizes & spatial resolution:

➤ mostly point sources (stars, exo-planets, QSOs) or moderately extended (~1" galaxies) → seeing/GLAO PSF

> sub-structures at ~10mas scale (CS disks): DL in K

> point sources in very crowded fields: ~ tens mas

spectral range & coverage in one exposure:

> as wide as possible

simultaneous 0.37-2.45 micron highly desirable for complete line diagnostics & redshift coverage

spectral resolution(s) & multiplexing:

> R>=100k + single obj > exo-planets & chemical evol (stars, IGM)

➢ R~10k +10 obj → stellar pop, galaxy evolution, IGM tomography

> R~100k + IFU/MOS at ~DL → CS disks, dense stellar fields

a possible instrument concept (Oliva & Delabre)

- Fundamental approach: highly modular concept within reasonable technological limits.
- Modules and observing modes may be added or removed following a trade-off study between scientific priorities & tech/cost constraints.

- 4 independent fiber-fed modules (i.e. spectrometers) optimized over 4 spectral ranges (UBV, RI, YJH, K).
- Different observing modes are obtained using different and independent groups of fibers feeding each spectrometer.
- Observing mode is selected in the pre-slit section (fore-optics) of each module. No change inside the spectrometers.

fibers \rightarrow independent location of each spectrograph on the platform/other rooms

T-REX Unit for the E-ELT HIRES possible observing modes ...

- > pseudo-slit of 11" (138 pix) along the spatial direction Y
- > Y-pixels can be used for slicing (HR) or MOS/IFU
- > spectral format (cross-dispersed) is fixed, the same for all observing modes
- > different slit-widths (0.13" at R =100,000) are used to achieve different spec res

T-REX Unit for the E-ELT HIRES possible observing modes ...

Mode R	D-fib	N.obj	Size of Res. Element			
			sky	pixels	Comment	
HR	100,000	0.76″	$2 + \lambda_{cal}$	0.127" x 5.0"	2.8 x 63	1x6 slicing
MR MOS	14,500	0.86″	10	0.86" x 0.86"	20 x 11	MOS on ELT 10' fov
HR ² IFU	80,000	7mas	35	7mas x 7mas	3.5 x 2	SCAO fov 35x49 mas
Other options						
HR ² MOS	80,000	0.030"	35	.030" x .030"	3.5 x 2	MOS on MCAO 2' fov
LR MOS	7,000	0.89"	16	1.79" x 0.45"	40 x 6	2x1 slicing

- > MR-MOS for all modules/wavelengths with <u>full spec coverage</u>
- > HR² MOS/IFU only in IR where AO works
- > patrol field of MOS depends on where the fibers positioner is located
- > possible parallel modes, e.g. MR-MOS in optical while HR in IR on a single object

T-REX Unit for the E-ELT HIRES scheme of a spectral module

HR mode has fixed optics \rightarrow stability OK

YJH module: cross dispersed spectral format

F _{X000} /1.88, F _Y 2000	case/1.00, slit 11.0°, e	schelle R4(anar 50	n=1.5) 14.5 ll/m 1.490 1.455 470	im, CRD θ=33 [1.4 [1.460	145 103
1000	1.495 1.515 [1.530 1.550	[1.485]1.500 [1.535	1.505 120 1.540	90 [1.525 [1	1.495 510 545
xels from center	[i.565]ı [i.585]ı.605]ı.625]ı.645 [i.665	.570]1.590 [1.610 [1.630 [1.650 [1.670	[1.575 [1.595]1.615 [1.633 [1.655 [1.675	.580 [1.580 [1.	1.665 600 et [1.620 et [1.640 et] [1.660 et]
-1000 1.72	1.685 1.705 1.71 5 1.730 1.750 1.76 1.775]1.690 [0 [1.]1.735 [1.780	[1.695 715 [1.740 60 [1.	(1.700 .720 [1.7) 765	45
-2000 -2000 -2000	5 <u>]</u> 1.800 -1000	Pixels fro	0 m center	1.790 1.815 1000	2000

H 1.45-1.81 μm

orders 74-93

	1000		1000		2000
2000	1.360	1.365			
	1.35	0	1.355		100
-	1.345	<u>-</u>	10	1.34	5 -
-	1.335		<u></u>		-101
-		1.325	h	3900 -	-108
-1000	H apr		1.315		-100
-	1.305			1.305	
-	1.295	1 300	L.230		1.01
1 22	1.28	5	1 200	_ <u>h</u> ~200	1.02
	1.270	1.275		1 380	1.00
L L	1.260		1.265		1.07
	2-5-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	1.250	1.2	55	1.08
Cet	1.245	1.240		1.245	1.09
- tet	fi 235		1.230		110
	1 225		1.220		
-		1.205	13	210	- 114
1000 -	1.200 = = = = = = = =	1.195		1.200	_113
-	=======================================	1.185	******	r = .	-114
-	====1.170	1.17	5	- e	110
ŀ	1.160	1.10	5		- 1.
-	1.150		5 55	-	-114
	1.140	T			

2000 +		n 975 J	.970		- +
-	0.980	0.875	0.095	0.980	10
-		0.990	U.865		1
-	0.995		1.000	<u> </u>	- 6
-	<u> </u>	1.005		1 010	13
1000 -		1 020	1.015	esex.	-13
-	1.025	<u></u>	E 2	1.025	13
		035 = = = =	1.030		- 10
Ite			e====	1.040	
Leo L	1.050	222222		3222-1	
E		.080 = = =	=======		
ų į			=====	1.065	
	1.075		I AND -	1.075	12
Pix	1.08	5	1.080		1.2
		1 005		090	12
		1.085		1.100	18
-1000		1.105		1.110	12
-	_µ	l.f	15	1.110	12
-	1.120		1.125	1.120	
-	1.130				-1
-			1.135		- "
-2000 +	u.140	- n - to	1.145	and a second	
-2000	-1000	0		1000	2000

J 1.16-1.38 μm orders 99-119

.38 μm **Y** 0 9-119 orde

Y 0.97-1.14 μm orders 118-140

T-REX Unit for the E-ELT HIRES HIRES vs other MOS

 $A\Omega = constant \rightarrow N_{pix} = 160 (\theta'')^2 F^2$ Worse Detector area for 1 res-element (pix) EVE 300 DIORAM/ HIRES 200 Better 100 0.4 0.8 0.6 Spectrometer entrance aperture (sq-arcsec)

the large E-ELT aperture & the small pix size (15 μm)

necessarily imply

seeing/GLAO aperture spreads over many pixels

HIRES

fastest camera → lowest # of pix

T-REX Unit for the E-ELT HIRES funding ...

- > 4 FTEs (new contracts) & some travel support for 2013
- request for additional financial support in the next years

forthcoming activities ... next 2 months...

- > jan23-24,2013 -> HIRES Italian workshop in Trieste
- much scientific & technical interest/expertise in medium-high res spectroscopy Sarg, Harps-N & Giano @ TNG XShooter, Espresso, Crires & Moons @ VLT
- ✓ design, integration, tests, R&D of cryo-opto-mech systems
- ✓ design & development of low/high level software & control electronics
- ✓ R&D of fibers and related fore optics
- ✓ design, integration, tests of SCAO interfaces

➢ feb19,2013 → HIRES kickoff meeting in Cambridge