

#### **PCS: E-ELT Planet finder**

#### Raffaele Gratton INAF-Osservatorio Astronomico di Padova

T-REX Meeting, Bologna, 14/01/2013



## PCS

- Results of the EPICS phase A study
- PCS within the E-ELT instrumentation plan
- The PCS roadmap
- Italian activity for PCS



## **EPICS – high-contrast imaging of Exoplanets with the E-ELT**

Markus Kasper ESO

Results of Phase A study Oct 2007-Mar 2010

- Funded in parts by ESO and by the European Framework Programme 7 (FP7)
- About **20 FTEs** were invested by the consortium.



### Consortium

**ESO**: Markus Kasper, Emmanuel Aller-Carpentier, Norbert Hubin, Florian Kerber, Natalia Yaitskova, Patrice Martinez, Enrico Fedrigo

LAOG: Jean-Luc Beuzit, Christophe Verinaud, Visa Korkiaskoski, Patrick Rabou, Jacopo Antichi, Olivier Preis

Padova Observatory: Raffaele G. Gratton, Mariangela Bonavita, Dino Mesa

ASTRON: Lars Venema, Ronald Roelfsema, Rieks Jager, Hiddo Hanenburg

University of Oxford: Niranjan Thatte, Mattias Tecza, Graeme Salter

LESIA: Pierre Baudoz, Anthony Boccaletti NOVA: Christoph Keller ETH Zürich: H.M.Schmid FIZEAU: Lyu Abe LAM: Kjetil Dohlen







#### **Science Goals**



ESO 1002, Janson et al.

Exoplanet atmospheres



#### **Science Goals**





## **Contrast requirements**

 a) Contrast requirements Y-H band (10h telescope time, reference seeing conditions, 5σ detection):

| Brightness ratio   | 30                                          | 100                                          | 300                                             | Limiting stellar |  |
|--------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------------|------------------|--|
| at distance. [mas] |                                             |                                              |                                                 | Magnitude I      |  |
|                    |                                             |                                              |                                                 | band:            |  |
| Science Case 1     | 10 <sup>-6</sup>                            | 10 <sup>-6</sup>                             | 18-6                                            | 9 (goal: 10)     |  |
| Science Case 2     | $\frown$                                    | 2 10 <sup>-9</sup> (goal 10 <sup>-9</sup> )  | 10 <sup>-9</sup> goal 4 10 <sup>-10</sup> )     | 7 (goal: 8)      |  |
| Science Case 3     | 10 <sup>-8</sup>                            | 10 <sup>-9</sup>                             | 10                                              | 7 (goal: 8)      |  |
| Science Case 4     | 2 10 <sup>-9</sup> (goal 10 <sup>-9</sup> ) | 10 <sup>-9</sup> (goal 4 10 <sup>-10</sup> ) | 5 10 <sup>-10</sup> (goal 2 10 <sup>-10</sup> ) | 5 (goal: 6)      |  |

**b)** Contrast requirements I band (10h telescope time, reference seeing conditions,  $5\sigma$  detection, for differential signal contrast (I<sub>1</sub>(planet)-I<sub>2</sub>(planet))/(I<sub>1</sub>(star)+I<sub>2</sub>(star)) where I<sub>1</sub> and I<sub>2</sub> are fluxes in two spectral bands (on/off CH<sub>4</sub> absorption) or I(parallel) and I(perpendicular) for polarimetry]:

| Brightness ratio   | 30                                          | 100                                          | 300                                             | Limiting stellar |
|--------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------------|------------------|
| at distance: [mas] |                                             |                                              |                                                 | Magnitude I      |
|                    |                                             |                                              |                                                 | band:            |
| Science Case 2     |                                             | 2 10 <sup>-9</sup> (goal 10 <sup>-9</sup> )  | 10 <sup>-9</sup> (goal 4 10 <sup>-10</sup> )    | 7 (goal: 8)      |
| Science Case 4     | 2 10 <sup>-9</sup> (goal 10 <sup>-9</sup> ) | 10 <sup>-9</sup> (goal 4 10 <sup>-10</sup> ) | 5 10 <sup>-10</sup> (goal 2 10 <sup>-10</sup> ) | 5 (goal: 6)      |









# **Concept Highlights**

- 1. <u>Superb XAO and wave-front control</u>
- Turbulence residual halo  $\sim 10^{-5}$  at 30mas  $< 10^{-6}$  further out
- QSS about 10x below AO residuals
- 2. <u>Good temporal stability</u>
- All moving or rotating optics are in the common path.
- Cover providing thermal inertia and dust protection.
- 2. <u>Very efficient calibration of PSF residuals</u>
- Small and known chromaticity for spectral deconvolution
- Small instrumental polarization and efficient calibration for differential polarimetry

=> EPICS is photon noise limited



## Analysis (E2E)

 $\alpha$  Cen Bb and all  $\tau$  Ceti proposed planets are detectable by PCS, including *e* in the HZ !!



IFS

**EPOL** 



### Summary

- 1. EPICS is the Exoplanet imager for the E-ELT
- EPICS provides direct imaging contrasts down to 10<sup>-8</sup> at 0.03" and 10<sup>-9</sup> at 0.1"...
- 3. ... and it provides it with the E-ELT baseline design



# PCS within the E-ELT instrumentation plan

| Year                                  | ELT-IFU                                                                                                                 | ELT-CAM | ELT-MIR                   | ELT-4<br>(MOS or<br>HIRES)                       | ELT-5<br>(MOSor<br>HIRES | ELT-6                  |  | ELT-PCS                          |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|--------------------------------------------------|--------------------------|------------------------|--|----------------------------------|
| 2012                                  | Decide science<br>requirements, AO<br>architecture.                                                                     |         | VISIR<br>start on-<br>sky | Develop science<br>requirements for<br>MOS/HIRES |                          |                        |  | Call for<br>Proposals<br>for ETD |
| 2013                                  |                                                                                                                         |         | TRL<br>Review             | Call for Proposals for<br>MOS/HIRES              |                          |                        |  |                                  |
| 2014                                  |                                                                                                                         |         |                           |                                                  |                          |                        |  |                                  |
| 2015                                  |                                                                                                                         |         |                           | Selection ELT-<br>MOS/HIRES                      |                          | Call for<br>Pro posal: |  |                                  |
| 2016                                  |                                                                                                                         |         |                           |                                                  |                          |                        |  |                                  |
| 2017                                  |                                                                                                                         |         |                           |                                                  |                          |                        |  | TRL check                        |
| 2018                                  |                                                                                                                         |         |                           |                                                  |                          |                        |  | TRL check                        |
| 2019                                  |                                                                                                                         |         |                           |                                                  |                          | Selection              |  | TRL check                        |
| 2020                                  |                                                                                                                         |         |                           |                                                  |                          |                        |  | TRL check                        |
| 2021                                  |                                                                                                                         |         |                           |                                                  |                          |                        |  | TRL check                        |
| 2022 Tel.<br>technical<br>first light |                                                                                                                         |         |                           |                                                  |                          |                        |  |                                  |
| _                                     | Pre-studies taking the form of phase A or delta phase A work and/or ESO-funded<br>Enabling Technology Development (ETD) |         |                           |                                                  |                          |                        |  |                                  |
|                                       | Decision point<br>Development of Technical Specifications, Statement of Work, Agreement, Instrument<br>Start.           |         |                           |                                                  |                          |                        |  |                                  |

T-REX kick off meeting, Bologna, 28/09/2012



#### The roadmap to PCS

- Revision and update of science objectives and requirements
- Instrumentation challenges
  - XAO + wavefront control
  - Diffraction control
  - Speckle control
- SPHERE lessons
  - Commissioning: Q3 2013



## Update of science objectives and requirements

- State-of-the art (FLAO results)
- Identify select science cases, work out quantitative requirements
- diameter of stars, planet brightness, number of photons, polarized flux
- Based on EPICS documents, include M-star HZ case



## Instrumentation challenges: XAO + wavefront control

- WFS, error budget, how to deal with temporal and refractive index chromaticity, N<sub>actuators</sub> vs Strehl and correction radius
- Wavefront control / speckle nulling, implementation linearity issues of WFS
- Requirements and technological readiness
- Baseline choices for EPICS:
  - roof WFS
  - 210actuators across
  - 3kHZ
  - auxiliary DMs in WFS path for NCP corrections
  - NCP calibration offline but regularly



#### Instrumentation challenges: Diffraction control

- Apodization / Shaped pupils vs Coronagraphy (ghost and stray light issues with former but simple to implement and use)
- IWA vs source size/pointing sensitivity
- Chromaticity and how to cope with it
- Comparison between various coro- concepts
- Requirements and technological readiness
- Baseline choices for EPICS (to be revised):
  - Apodizer for IFS
  - APLC for EPOL



#### Instrumentation challenges: speckle calibration

- (S/P/C/A)DI, SD features and comparison
- Quasi-static and atmospheric Speckle life-times
- Requirements and technological readiness
- Baseline choices for EPICS (to be revised):
  - SD for IFS
  - PDI for EPOL
  - CDI offline (NCP cal) and supplementary ADI



#### **Italian activity for PCS**

- Science
  - Update of science case (e.g. A-stars, multiple planets, planet atmospheres)
  - Detailed study of nearby M-stars
  - Science as a function of updated performance evaluation
- Technology IFS
  - Pupil apodization in lenslet design
  - Re-evaluation of slicer option (requires some prototyping)
  - Final comparison between lenslet and slicer options



## **Italian groups in PCS**

- OAPD
  - Areas: Science, lenslet IFS
  - People: Gratton, Desidera, Claudi, Mesa, Bonavita
- OACT
  - Areas: slicer IFS
  - People: Scuderi, Leone, Munari, Bruno, Martinetti