

T-Rex Unit for ELT-CAM and sub-Unit for MAORY

Emiliano Diolaiti Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Bologna

Bologna, January 14th 2013

T-Rex Project ELT-CAM Unit

- Objective: support INAF contribution to first light instrument ELT-CAM (MAORY and MICADO)
 - For MICADO \rightarrow talk by R. Falomo
 - For MAORY \rightarrow this talk
- ELT-CAM Unit in numbers
 - Almost 40 persons involved
 - 6 INAF institutes
 - Budget
 - MAORY: 480 k€ Personnel 1500 k€ Investment
 - MICADO: 160 k€ Personnel
 - General: 10 k€ Travel

T-Rex Project Integration room

MAORY Project Instrument requirements

- Multi conjugate Adaptive Optics RelaY
 - Compensate atmospheric turbulence
 - Relay light to science instrument
- Main requirements related to client instrument MICADO
 - Wavelength range $0.8-2.4 \ \mu m$
 - Field of view 53"×53"
 - Uniform adaptive optics correction with high sky coverage
- Other requirements
 - Lateral exit port for another possible instrument

MAORY Project Multi conjugate Adaptive Optics

All pictures © European Southern Observatory

MAORY Project Instrument architecture

MAORY Project Instrument layout

MAORY Project **Post-focal relay optics**

MAORY Project LGS Wavefront Sensor

Why Laser Guide Stars?

- Sky coverage (and performance uniformity)
- Demonstrated by GeMS on Gemini Telescope in MCAO mode

Wavefront Sensor description

- 6 Sodium Laser Guide Stars (LGS)
- Wavefront Sensor type: Shack-Hartmann (~80×80 subapertures, 500 fps)

MAORY Project LGS & Sodium layer issues

Laser Guide Stars issues

- 1. Tip-tilt indetermination
- Variation of mean height of Sodium layer → LGS focus not fully reliable
- 3. Variation of Sodium layer density profile introduces low-medium order wavefront distortions
- 1, 2: fast; 3: slow
- \rightarrow Natural Guide Stars are required

Sodium layer data kindly provided by Paul Hickson, University of British Columbia

MAORY Project NGS Wavefront Sensor

Tip-Tilt & Focus channel (1.5 - 1.8 µm)

- Shack-Hartmann, 2×2 subap
- 100-500 Hz frame rate

Reference channel (0.6 - 0.9 μ m)

- Monitor low order aberrations induced by Laser Guide Star Wavefront Sensor due to Sodium layer properties
- Normal operation mode: ~10×10 subap, ~0.1 Hz frame rate
- Pyramid WFS
- Full Natural Guide Star mode for engineering purposes

MAORY Project Adaptive optics performance

(Median atmospheric seeing 0.8")

Minimum fiel	Sky Coverage			
2.16 µm Ks	1.65 µm H	1.215 µm J	0.9 µm I	@Galactic Pole
0.53	0.34	0.14	0.03	39%
0.51	0.32	0.13	0.03	50%
0.41	0.22	0.06	< 0.01	80%

MAORY Project Project overview

- Phase A study Nov 2007 Dec 2009
- Management plan for next project phases under consolidation
 - Draft version delivered to ESO July 2012
 - Modified proposal delivered to ESO December 2012 (waiting for comments)
- Current Consortium organisation
 - INAF (Lead Institute, System responsibility, sub-systems: platform, NGS WFS, deformable mirrors TBC, auxiliary equipments, science support tools)
 Involved INAF Institutes: Bologna (OA + IASF), Arcetri, Brera, Capodimonte, Padova
 - **Durham University** (Real Time Control System)
 - Observatoire de Paris LESIA (LGS wavefront sensor)
 - **ESO** (hardware components e.g. cameras, deformable mirrors TBC)
- MAORY Project preliminary schedule

	Y01	Y02	Y03	Y04	Y05	Y06	Y07	Y08	Y09	Y10	
Phase B											
Phase C											
Phase D											
Phase E											

MAORY Project Management Structure

2nd T-Rex proposal ELT-CAM Unit

- Include MOSE project in ELT-CAM Unit of T-Rex
- MOSE: Modeling ESO Sites
 - PI: E. Masciadri (INAF)
 - Phase A: 4/2011-4/2013

- ESO Board: P.Y.Madec, H.Kuntschner, M.Sarazin, F.Kerber
- GOAL: Feasibility study to set-up at Cerro Paranal (VLT) and Cerro Armazones (E-ELT) an automatic system for the forecast of
 - optical turbulence (C_N^2 profiles and integrated astro-climatic parameters)
 - all classical atmospherical parameters
- Support from T-Rex 2nd year to cover personnel costs for development of MOSE project

2nd T-Rex proposal ELT-CAM Unit

- Extend support to MAORY and MICADO (2nd year of T-Rex project could partially overlap with Phase B of instrument projects)
- Technical work in preparation for Phase B
 - Development of tools (simulations, wavefront sensor prototype)
 - Study of wavefront sensing strategies
 - Activities to be defined in collaboration with ESO related to hardware components considered critical items (deformable mirrors, LGS wavefront sensor cameras)
- T-Rex funds allocation
 - Personnel
 - Additional equipments if needed
 - Research & Development, including possibly involvement of Italian industry