Renato Falomo

USM

bservatoire

LESIA

T-REX

T-REX meeting, Bologna 14 Jan 2013

MICADO:

Multi-AO Imaging Camera for Deep Observations

MPE	Garching, Germany
MPIA	Heidelberg, Germany
USM	Munich, Germany
OAPD	Padova (INAF), Italy
NOVA	Leiden, Groningen, ASTRON, Netherlands
LESIA	Paris Observatory, France
	MPE MPIA USM OAPD NOVA LESIA

Richard Davies^{1,a}, N. Ageorges¹, L. Barl¹, L. Bedin¹⁰, R. Bender^{1,3}, P. Bernardi⁸, F. Chapron⁸, Y. Clenet⁸, A. Deep⁴, E. Deul⁴, M. Drost⁶, F. Eisenhauer¹, R. Falomo⁷, G. Fiorentino⁵, N. M. Förster Schreiber¹, E. Gendron⁸, R. Genzel¹, D. Gratadour⁸, L. Greggio⁷, F. Grupp³, E. Held⁷, T. Herbst², H.-J. Hess³, Z. Hubert⁸, K. Jahnke², K. Kuijken⁴, D. Lutz¹, D. Magrin⁷, B. Muschielok³, R. Navarro⁶, E. Noyola¹, T. Paumard⁸, G. Piotto⁷, R. Ragazzoni⁷, A. Renzini⁷, G. Rousset⁸, H.-W. Rix², R. Saglia¹, L. Tacconi¹, M. Thiel¹, E. Tolstoy⁵, S. Trippe^{1,9}, N. Tromp⁶, E. A. Valentijn⁵, G. Verdoes Kleijn⁵, and M. Wegner³

MICADO Project Organisation

Based on E-ELT 42m

3

Adaptive Optics for MICADO

MICADO is primarily intended to work with the multi-conjugate AO system MAORY using LGS

Optional module : SCAO module will deliver on-axis diffractionlimited images to MICADO using NGS

SCAO will be able to deliver DL data from start of operations and allowing one to fulfil some of the MICADO science cases at early phase of E-ELT

MICADO quick overview

• 0.8-2.5µm

Primary Imaging Field

- 53" across, 3mas pixels
- high throughput (>60%)
- 4×4 HAWAII 4RG detectors
- 20 filter slots

Auxiliary Arm

- 1.5mas pixels for imaging
- 4mas pixels for spectroscopy
- 1 HAWAII 4RG detector
- 20 filter slots
- potential for additional options, e.g. tunable filter (dual imager) high time resolution

movable pick-off switches between Primary & Auxiliary arms

MICADO opto-mechanics overview

gravity invariant high-throughput reflective design using only fixed mirrors; optimised for photometric & astrometric precision

MICADO Key Capabilities

Sensitivity & Resolution

Precision Astrometry

High throughput Spectroscopy

Simple, Robust, Available early

- 0.8-2.4 μm ; JH \simeq 30.8 mag AB in 5 hrs to 5 \sigma
- JH sensitivity comparable to JWST, up to 3mag deeper in crowded fields
- resolution of 6-10mas over 1arcmin field
- up to 0.5mag deeper with high efficiency broadband filters & OH suppression
- <50µas over full 1arcmin field
- 10µas/yr = 5km/s at 100kpc after 3-4 years
- bring precision astrometry into mainstream
- simple high-throughput slit spectroscopy
- ideal for compact sources
- 12mas slit for maximum sensitivity, R~3000
- JH \sim 27.2mag AB in 5 hrs to 5 σ between OH
- optical & mechanical simplicity for stability
- exemplifies most unique features of E-ELT
- flexibility to work with SCAO, LTAO, MCAO8

Sensitivity & Resolution

Precision Astrometry

High throughput Spectroscopy

MICADO Science

- star formation history via resolved stellar populations to Virgo cluster
- structure of high-z galaxies on 100pc scales: galaxy formation & evolution
- environment and host galaxies of QSOs at high-z
- nuclei of nearby galaxies (stellar cusps, star formation, black holes)
- stellar motions within light hours of the Galaxy's black hole
- intermediate mass black holes in stellar clusters
- globular cluster proper motions: formation & evolution of the Galaxy
- dwarf spheroidal motions test dark matter & structure formation
- Galactic Centre; stellar types & 3D orbits
- stellar velocities in nearby galaxies: M_{BH} , extended mass distributions
- absorption lines: ages, metallicities, central dispersions of first elliptical galaxies at z=2-3
- spectra of first supernovae at z=1-6
- emission lines: redshifts, velocities, metallicities of starburst galaxies at z=4-6

Sensitivity: imaging

Isolated Point Sources to 5o

5hrs, 5σ	J _{AB}	H _{AB}	K _{AB}
Imaging	30.8	30.8	29.8
Imaging with advanced filters	31.3	31.3	30.2 ¹⁰

Future NIR Imaging cameras

Table 2: Basic specifications for MICADO and its competitors

Instrument & telescope	MICADO / E-ELT	NIRCam (short arm) / JWST	IRIS / TMT	HRCAM / GMT
First light date	2018	Launch 2014	2018	2018
Wavelength	0.8-2.5µm	0.6-2.3µm	0.8-2.5µm	1.0-2.5µm
Field & sampling	53"×53" @ 3mas + 6"×6" @ 1.5mas	130"×260" @ 31.7mas	17"×17" @ 4mas	13"×13" @ 3mas, 40" ×40" @ 10mas
Resolution wrt MICADO	×1 (10mas @ 2.1µm)	×6.5	×1.4	×1.7
Number of filters	20 primary arm, 20 auxiliary arm	14 (of which 4 are narrow)	unspecified	unspecified
Additional modes	Slit spectroscopy (options: dual imager, high time resolution)	Long arm to 5µm	Integral field spectroscopy	Integral field spectroscopy

Impact of Crowding: MICADO vs JWST

Resolution gives an effective sensitivity gain – cf. 3mag for MAD vs ISAAC. For Virgo galaxies, it enables one to push inwards to about 0.1 R_{eff}

Data for Omega-Cen (Marchetti+ 07)

5-hr K-band simulated exposure

MAD

ISAAC

Slit losses included (PSF shape & diffraction effects)

narrow slit maximizes sensitivity (although it reduces throughput)

JH sensitivity for point sources is the same as HARMONI

Sensitivity: spectroscopy

Sensitivity between OH in J & K bands

5hrs, 5ơ	J _{AB}	H _{AB}	K _{AB}
Spectroscopy (between OH)	27.2	27.2	25.7

1"= 0.4 P

MICADO@E-ELT Example of Science Cases

Galactic Centers near & far

- Unique laboratory for exploring strong gravity around the closest massive black hole
- Crucial guide for accretion onto black holes & co-evolution of star clusters and AGN

- sensitivity >5mag fainter, resolution & astrometry 5x better than NACO on VLT
- density profile, luminosity function to <1M_{sun}, shape of IMF
- orbits of stars closest to BH; prograde & retrograde precession
- proper motions of ~1000 stars: accurate distance, phase-space clumping (disks), binary fraction, intermediate mass BHs

Galactic Centers near & far

- distance to M31 ~100x GC, but BH mass ~35x more: proper motions similar magnitude
- determine mass & location of black hole
- understand kinematics & origin of eccentric disk of stars
- other galaxies possible, e.g. Cen A, $M_{BH}=5 \times 10^7 M_{sun}$ velocities $1000 \text{ km/s} = 50 \mu \text{as/yr}$

spectroscopy: - reliable black hole masses in statistically useful galaxy samples - dispersion in local dwarf ellipticals, or massive ellipticals to z~0.35

- link between nuclear stellar clusters & central black holes

Keck's view

VIRGO - the closest rich cluster of galaxies

VIRGO cluster (DM = 31)

The study of the resolved stellar population in distant galaxies is one the main science drivers for the realization of ELTs

Reconstruction of the star formation history for a stellar system by analyzing its color-magnitude diagram (CMD) is a fundamental tool for understanding its age and chemical composition.

Greggio et al 2012, PASP 124, 653

http://aetc.oapd.inaf.it/

blue 👻

nicsH

-

Falomo, R., Fantinel, D., Uslenghi, M 2011 Proc. SPIE 8135, 813523 (2011)

TELESCOPIO NAZIONALE

Instrument specific

Galaxy distance = $3 \text{ Mpc} (\text{FoV} \sim 2^{\circ})$

E-ELT MICADO - RESOLVED STELLAR FIELD

The view of resolved of stellar populations

<u>Disk galaxy (young SP)</u> M(J) = -23, HLR = 5 kpc Distance = 3 Mpc R/HLR = 1 (128 000 stars)

MICADO E-ELT

NIRCam JWST

The view of resolved of stellar populations

<u>Elliptical galaxy (old SP)</u> M(J) = -23, HLR = 5 kpc Distance = 18.3 Mpc R/HLR = 1

MICADO E-ELT

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, **124**:653–667, 2012 July © 2012. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

Greggio et al 2012

Resolved Stellar Population of Distant Galaxies in the ELT Era

L. GREGGIO, R. FALOMO, S. ZAGGIA, AND D. FANTINEL

Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122, Padova, Italy; laura.greggio@oapd.inaf.it

AND

M. USLENGHI

Istituto Nazionale di Astrofisica, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Bassini 15, I-20133 Milano, Italy

Received 2012 February 07; accepted 2012 May 23; published 2012 August 6

ABSTRACT. The expected imaging capabilities of future Extremely Large Telescopes (ELTs) will offer the

FIG. 11.—Photometric errors as function of the input I (*left*) and K (*right*) magnitude, for sources with single match (*dark points*) and with multiple match (*light points*) on the image. The dashed line shows the median error; the large dots show the 1 σ widths of the error distributions computed separately for positive and negative errors. Note that clump stars with input magnitudes $I \sim 31$, $K \sim 30$ are identified only if their luminosity is boosted by blending, i.e., only with large and negative errors. See the electronic edition of the *PASP* for a color version of this figure.

FIG. 15.—Input (a) and output (b) CMDs for the old stellar population science case. The color reflects the metallicity bin of the object with the same encoding as on Fig. 4. The metallicity of the output stars is identified on the basis of the positional coincidence with input objects on the J band image. The J = 28 line is drawn to better appreciate the effect of the photometric errors on the width of the RGB. See the electronic edition of the PASP for a color version of this figure.

he stellar populations of distant galaxies from the photometry of the stars in very

Galaxies at High Redshift with MICADO

Questions: - structure of galaxies:

- internal dynamical instabilities (clumps, arms, bars); bulges, disks; mergers
- AGN & host properties: SMBH growth, co-evolution, fuelling/feedback
- resolved stellar populations, dust distribution, SF histories
- super star clusters: existence, properties, progenitors of globular clusters?

MICADO: 6-10mas corresponds to ~60pc at z>1, comparable to 1" imaging of Virgo galaxies.

Image of a 'local LBG analogue' (half light radius 1-2kpc) at z=0.142 shifted to z=2: simulation of a large bright disk galaxy at z = 2.3 (R = 5 kpc, K_{AB} = 21.3), showing that MICADO will be able to measure sizes, distribution and 25 luminosity functions of compact clusters to K_{AB} ~ 28.5

Example 1

M(V) = -21 Re = 5 kpc

Redshift : 1-5

SB dimming $(1+z)^4$

Size evolution helps to detect high z galaxies

Include k-correction & filter tranfsormation

Galaxy template \rightarrow simulated images

SIMULATION

SIMULATION

Z = 4 size = 0.1"

Including size evolution

Spiral galaxy at z = 2 Re 5kpc (0.3")H band -- 5hSIMULATION

MICADO@ELT

NIRcam@JWST

Color View of High Z Galaxies

1" MICADO @ E-ELT NIRCam @ JWST 1" MICADO @ E-ELT NIRCam @ JWST

combined JHK images of local templates (BVR bands) shifted to z=2 (top) and z=1 (bottom), with $R_{eff}=0.5$ " and 32 Mv=-21. 5hrs integration.

JWST will select samples & measure basic galaxy properties

MICADO will provide the details of their structure to answer: What are the physical processes driving their evolution?

obvious synergies with ALMA HARMONI EAGLE for kinematics (rotation curves, clump dispersions) & gas content