

## PCS: E-ELT Planet finder

#### Raffaele Gratton

#### INAF-Osservatorio Astronomico di Padova

T-REX - Sexten - 20/7/2015

### Italian activity for PCS

- Update of the science case of PCS: assessment of the detection capability of PCS using Monte Carlo simulations
- Development and application of high contrast imaging techniques
  - SPHERE
  - High Contrast imaging surveys
- Combination of high spatial and spectral resolution (D'Orazi talk)
- Further acquisition of competence in the scientific design of High Contrast Imagers (D'Orazi talk)

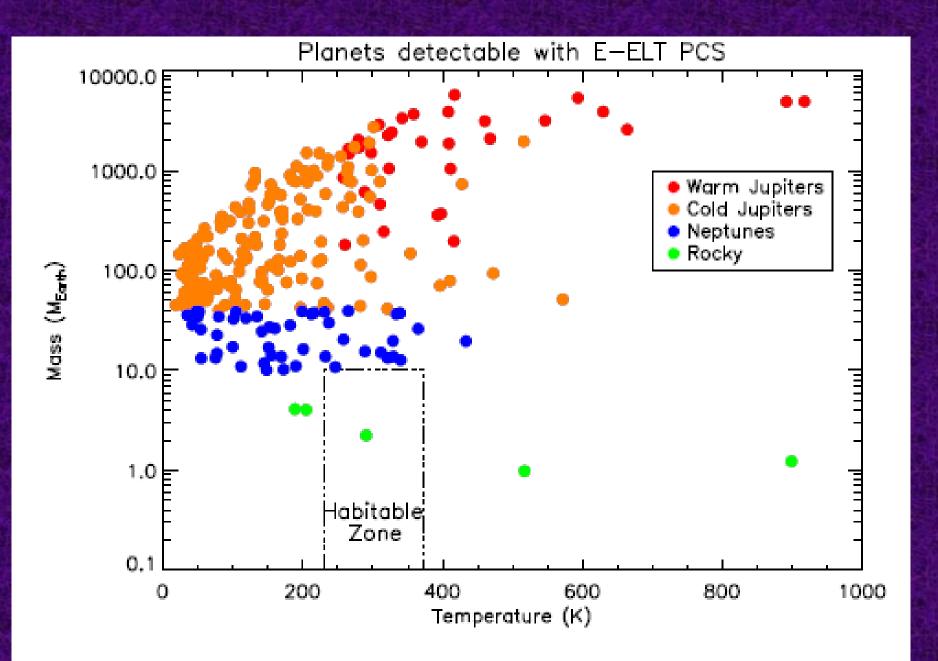
#### Main topics in exo-planetary science for the next 15 years – my view

#### Planets formation

- How planets form?
- Why planets have different masses and separation from the stars? What is the impact of disk-planet interactions?
- What is the impact of the environment?

#### Early evolution

- What is the evolution of young planets?
- How are their atmospheres made and what are their chemical composition?
- What is the impact of planet-planet interactions?
- Search for habitable planets
  - How common are rocky planets in the habitable zone?
  - What is the structure of small mass planets?
  - What is the composition of their atmospheres?
  - Are we able to detect bio-signatures?


### **Schematic of methods goals**

|                                                                                                                                          | Hot planets<br>(P~days)         | < snow-line<br>(P~a few years)                                                      | > snow-line<br>(P~several years)    |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|-------------------------------------|
| Discovery:<br>detection and<br>statistics                                                                                                | Radial Velocities<br>Transits   | Radial velocities<br>Space Astrometry (GAIA)<br>Microlenses<br><b>E-ELT imaging</b> | 8m imaging                          |
| Dynamical<br>characterization &<br>Structure                                                                                             | Radial Velocities +<br>Transits | Radial velocities<br>Space Astrometry (GAIA)<br><b>E-ELT imaging</b>                | Coupling 8m<br>imaging and<br>GAIA? |
| AtmosphericTransitsAtmospheric-Durationcharacterization &-Transmissionsearch for-spectroscopybiosignatures-Secondarytransit-spectroscopy |                                 | E-ELT imaging                                                                       | 8m imaging (and)<br>JWST<br>ELT MIR |

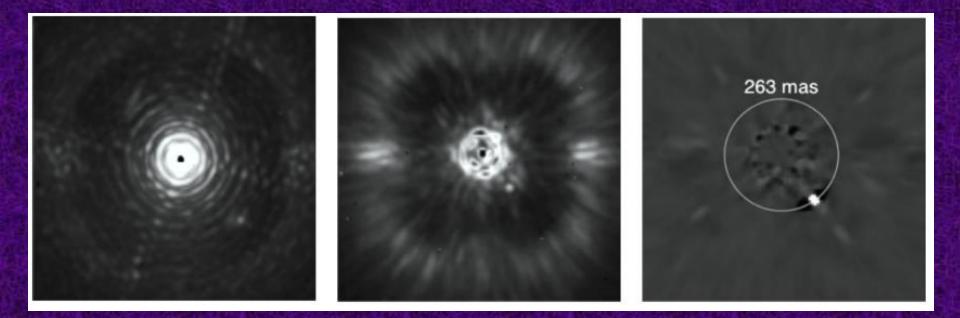
However, situation may differ for specific target groups (M-stars)!

### Detection capability of PCS using MESS

- MESS: Multi-purpose Exoplanet Simulation System - Bonavita et al. 2012
- compares expected properties of a population of exoplanets with detection limits for different instruments, using various techniques (imaging, RV, astrometry, transits)
- Papers at:
  - Exoplanets with the E-ELT (Feb. 2014, Garching)
  - Exoplanets, Biosignatures and Instruments (March 2014 Tucson)



#### Planets expect to be discovered in the next 15 years with foreseen imagers


|              |        |          | Reflected light planets |          |       |           |
|--------------|--------|----------|-------------------------|----------|-------|-----------|
|              | Year   | Young    | Giants                  | Neptunes | Rocky | Habitable |
|              |        | Giants   |                         |          |       |           |
| Ground       | 2013   | tens     | few                     |          |       |           |
| Based 8m     |        |          |                         |          |       |           |
| JWST         | 2018   | tens     | few                     |          |       |           |
| 1.5m Space   |        |          |                         |          |       |           |
| Coronagraphs | ?      | tens     | tens                    | tens     | few   | ??        |
| ELTs         | > 2020 | hundreds | hundreds                | tens     | few   | ??        |

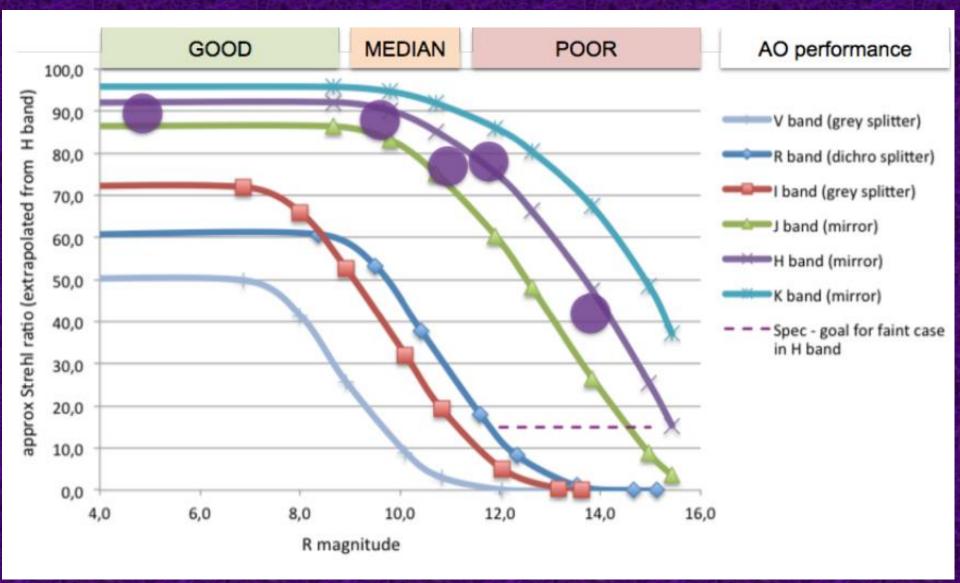
Required high contrast performances to see a young giant planet are equivalent to those required to see a moth flying around a street-lamp from a satellite at 500 km height

Those required to discover an habitable rocky planet

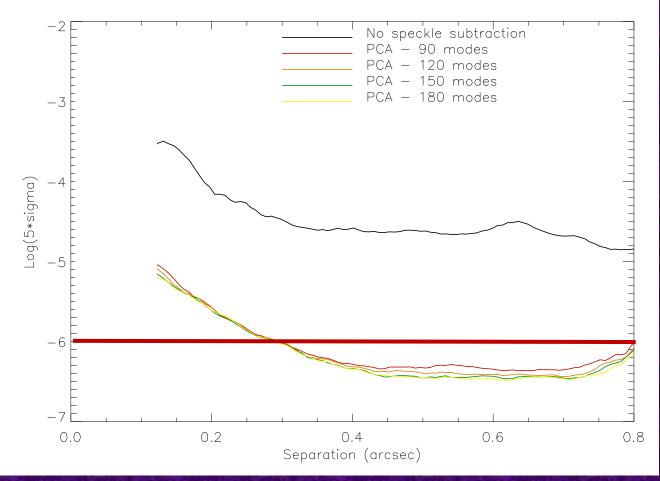
are 1000 times better at 5 times further distance!

#### High contrast imaging (e.g. with SPHERE)



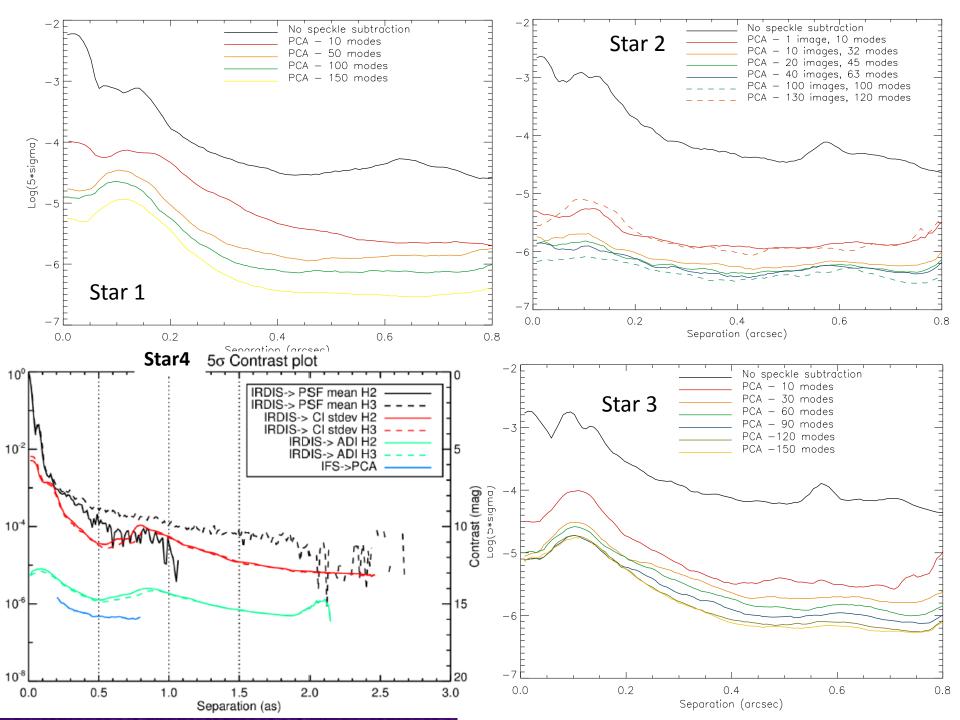

Raw on sky image →XAO VLT~10<sup>3</sup>-10<sup>4</sup> E-ELT~10<sup>5</sup> Raw on sky image → Coronagraph VLT~10<sup>4</sup>-10<sup>5</sup> E-ELT~10<sup>6</sup>-10<sup>7</sup> After data analysis → ADI VLT~10<sup>6</sup>-10<sup>7</sup> E-ELT~10<sup>8</sup>-10<sup>9</sup>

#### **HIGH CONTRAST IMAGER MAIN PROPERTIES**

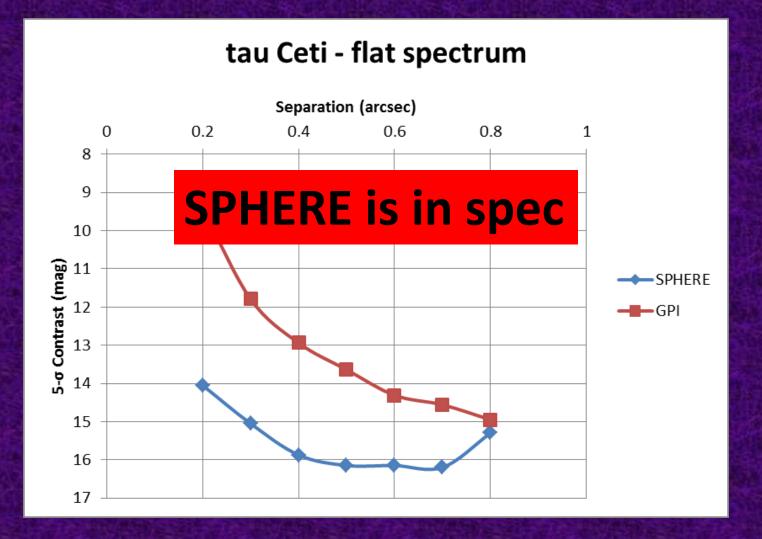

| VIS/NIR                                                                         |            | GPI/SPHERE                         | ELT IFU                              | ELT PCS (XAO)                                                                 | JWST-NIRI                          | WFIRST-AFTA                                                                    |
|---------------------------------------------------------------------------------|------------|------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|
| NIR<br>Ground:<br>0.6-2.5<br>μm<br>JWST<br>(NIRCam):<br>0.6-2.5<br>μm           | Contrast   | 10 <sup>-6</sup> -10 <sup>-7</sup> | 10 <sup>-6</sup> -10 <sup>-7</sup>   | 10 <sup>-8</sup> -10 <sup>-9</sup>                                            | 10-6                               | 10 <sup>-9</sup>                                                               |
|                                                                                 | IWA (mas)  | 100                                | 20                                   | 20                                                                            | 270                                | 100-250                                                                        |
|                                                                                 | Spec.Res.  | 50                                 | 4000                                 | 100                                                                           | -                                  | 70                                                                             |
|                                                                                 | Star mag   | I<10                               |                                      | I<10                                                                          |                                    | -                                                                              |
|                                                                                 | Targets    | Young<br>giants                    | Young giants<br>Reflecting<br>giants | Young Giants<br>Neptunes<br>Reflecting giants,<br>Neptunes, super-<br>Earths? | Young<br>giants<br>Nearby<br>stars | Young Giants,<br>Neptunes<br>Reflecting giants,<br>Neptunes, super-<br>Earths? |
| MIR                                                                             |            | LMIRCAM                            | ELT MIR                              |                                                                               | JWST-MIRI                          |                                                                                |
| MIR<br>Ground:<br>3.4-14 μm<br>JWST<br>(MIRI): 5-<br>28.3 μm<br>FGS: M-<br>band | Contrast   | 3 10-5                             | 10-4                                 |                                                                               | 10-4                               |                                                                                |
|                                                                                 | IWA (mas)  | 200                                | 80                                   |                                                                               | 350 MIRI<br>100 FGS                |                                                                                |
|                                                                                 | Spec. Res. | -                                  | 5000 (slit)                          |                                                                               | -slit                              |                                                                                |
|                                                                                 | Targets    | Young giants                       | Young giants<br>Nearby stars         |                                                                               | Young<br>giants<br>Nearby<br>stars |                                                                                |



### SAXO (AO)




### High contrast imaging




Best contrast obtained until now with SPHERE

No planet found for  $\tau$  Ceti



# These are the deepest images ever at such separation



### **Publication list**

- Bonavita, M., et al. A New Sub-stellar Companion around the Young Star HD 284149, Astrophysical Journal, 791, L40
- Zurlo, A. et al. Performance of the VLT Planet Finder SPHERE II. Photometry and astrometry precision with IRDIS and IFS in laboratory, Astronomy and Astrophysics, 572, A85, 2014 (arXiv:1410.1754)
- D. Mesa, et al. Performances tests on SPHERE IFS. Astronomy and Astrophysics, 576, 121, 2015 (arXiv:1503.02486)
- A. Vigan, et al. Detection and characterization of the GJ 758B companion with VLT/SPHERE, Astronomy and Astrophysics, submitted, 2015
- A.-L. Maire, et al. The physical properties and the architecture of the young systems of PZ Tel and HD 1160 revisited with VLT/SPHERE, Astronomy and Astrophysics, submitted, 2015
- A. Zurlo, et al. Spectrophotometry and astrometry of the HR8799 exoplanetary system with VLT/SPHERE, Astronomy and Astrophysics, submitted, 2015
- D. Mesa, et al. New constraints on the mass of HD142 Ac from SPHERE high contrast imaging data, Astronomy and Astrophysics, submitted, 2015
- M. Bonavita, et al. Finding and characterizing exoplanetary systems in the E-ELT era: synergies and complementarity of planet finding instruments, in Search for Life Beyond the Solar System. Exoplanets, Biosignatures & Instruments. Online at http://www.ebi2014.org, id.P4.73, 2014
- Bonavita, M., et al. R, Quick-MESS: A fast statistical tool for Exoplanet Imaging Surveys. Exploring the Formation and Evolution of Planetary Systems, Proceedings of the International Astronomical Union, IAU Symposium, Vol. 299, p. 28, 2014