
Modeling the multi-conjugate adaptive optics system of the E-ELT

Laura Schreiber
Carmelo Arcidiacono
Giovanni Bregoli

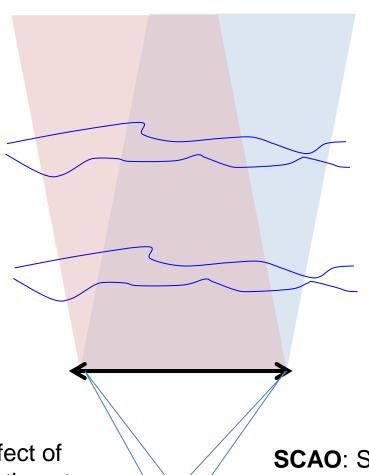
MAORY

- E-ELT Multi Conjugate Adaptive Optics Relay
- Wavefront sensing based on 6 (4) Sodium LGS and 3 NGS
- Wavefront Correction operated by M4/M5 (Telescope) and 1+1
 Post focal deformable mirror(s) conjugated at (5 km and) 12.7 km
- MCAO and SCAO modes

Science target


Reference Source

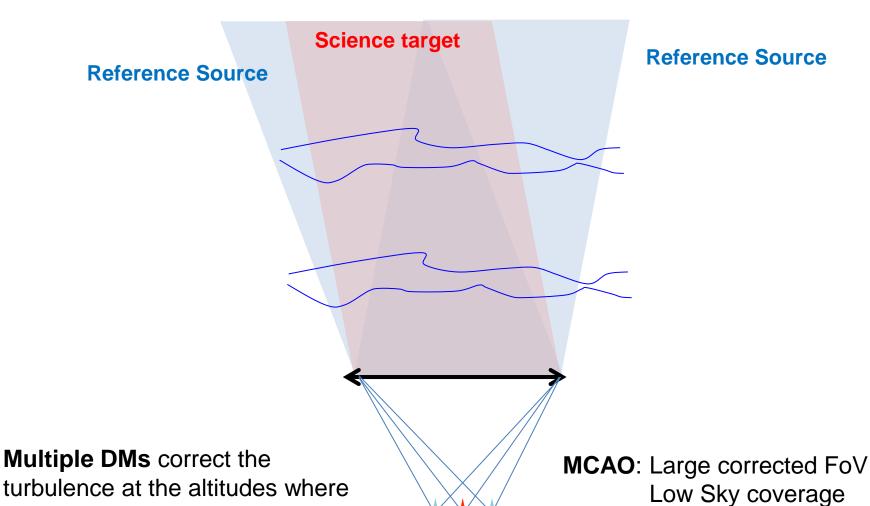
1 DM corrects the total effect of turbulence in the RS direction at the telescope entrance level



Reference Source Science target **1 DM** corrects the total effect of turbulence in the RS direction at

the telescope entrance level

Science target

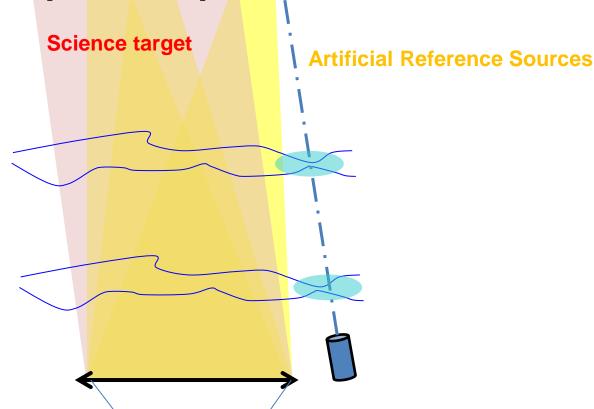

Reference Source (RS)

1 DM corrects the total effect of turbulence in the RS direction at the telescope entrance level

SCAO: Small corrected FoV Low Sky coverage PSF variability

the turbulence is more powerfull

PSF stability


Science target

Artificial Reference Sources

LGSs: Artificial reference sources can be created to ensure high sky coverage

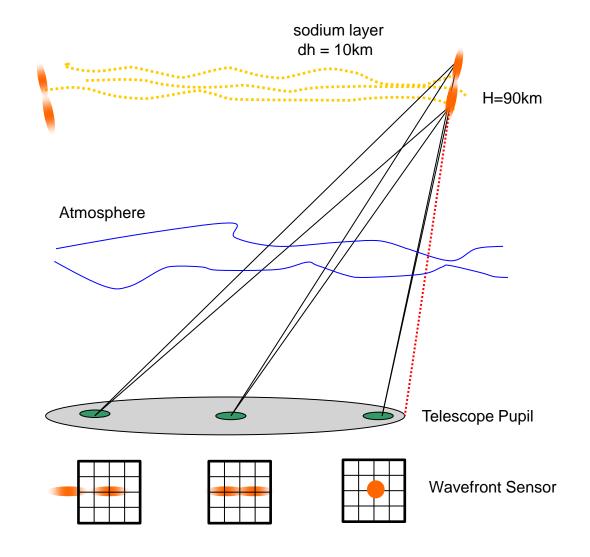
Multiple DMs correct the turbulence at the altitudes where the turbulence is more powerfull

LGSs: Artificial reference sources can be created to ensure high sky coverage

Multiple DMs correct the turbulence at the altitudes where the turbulence is more powerfull

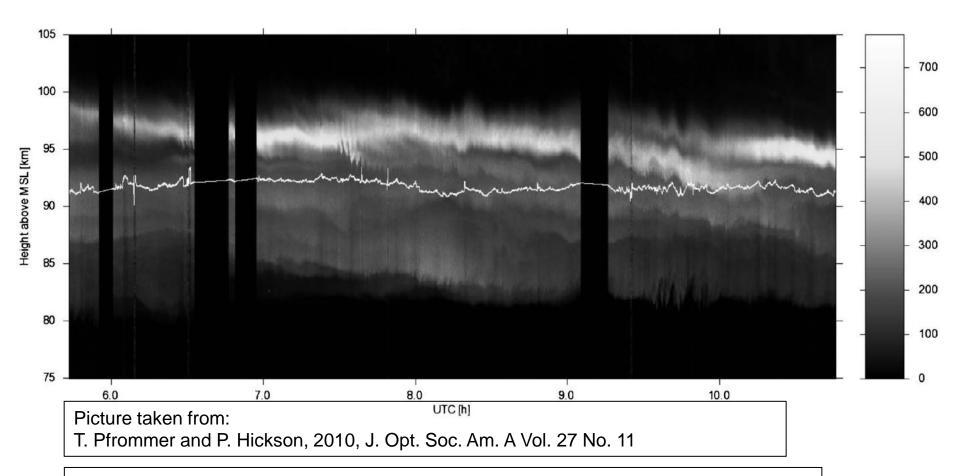
Science target

Reference Source


Artificial Reference Sources

NGS: A natural Source is required to misure fast tip/tilt

LGSs: Artificial reference sources can be created to ensure high sky coverage


Multiple DMs correct the turbulence at the altitudes where the turbulence is more powerfull

Sodium layer profile features

Impact of mean altitude variations:

On 40 m telescope, 7 nm defocus per meter of altitude change

Focus effect is big and fast and requires measurement by fast TTF WFS

Reference Source

Science target

Artificial Reference Sources

Reference Source

MCAO NGSs: Multiple natural Sourcea are maybe needed to misure fast tip/tilt and slow high order modes

LGSs: Artificial reference sources can be created to ensure high sky coverage

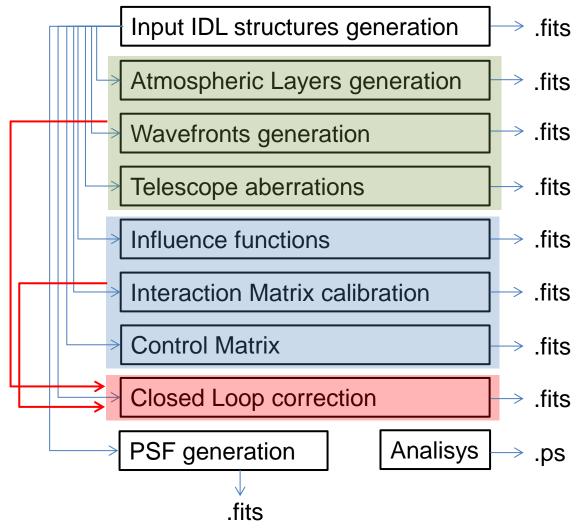
Multiple DMs correct the turbulence at the altitudes where the turbulence is more powerfull

- Multi-reference for atmospheric turbulence tomography
- Multi-DM for 3D correction → large corrected FoV
- Artificial Sources for sky coverage
 - 6 SH LGS WFSs 80X80 500 Hz (detector 800X800 px → 10 px FoV)
 - Some problems related to LGS:
 - Tilt indetermination
 - In MCAO, tilt anisoplanatism (see Ellerbroek & Rigaut 2001)
 - Sodium layer features (density profile, variability)
- Natural Sources needed → effect on Sky coverage
 - multiple NGS measuring:
 - fast (100 500 Hz) Tip-Tilt, Focus and astigmatisms, Shack-Hartmann infrared sensor
 - Slow (0,1 Hz) low/medium (~50 modes) order modes variations, NXN subapertures (TBD) in the optical range (0.6-0.9 μm). (Arcetri group)

Why a simulation code?

Due to the complexity of the system

- It is a necessary tool for AO system design
 - System dimensioning and optimization
 - Key/critical components design (WFS detectors, DMs...)
 - Operation/calibration/control strategy evaluation
 - External disturbances impact (telescope residual wavefront errors, wind shake, reference sources elongation, nasmith vibrations, non common path aberrations...)
 - Error budget
- ... in order to assure the scientific requirements fullfillment
 - Performance evaluation (SR, sky coverage, EE...)


MAORY MAO

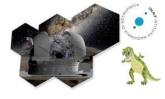
- End-to-end MonteCarlo code for MAORY simulations
- Modular
 - Each step of the simulation is designed to be an independent process
 - The outputs are saved as fits files
- «Embarassingly» parallel
- Extensive use of GPUs
- Adaptable
 - Easy to adapt in order to explore the full space of parameters
- Fast and accurate mode supported

MAORY MAO: The modules

Atmospheric layer generation

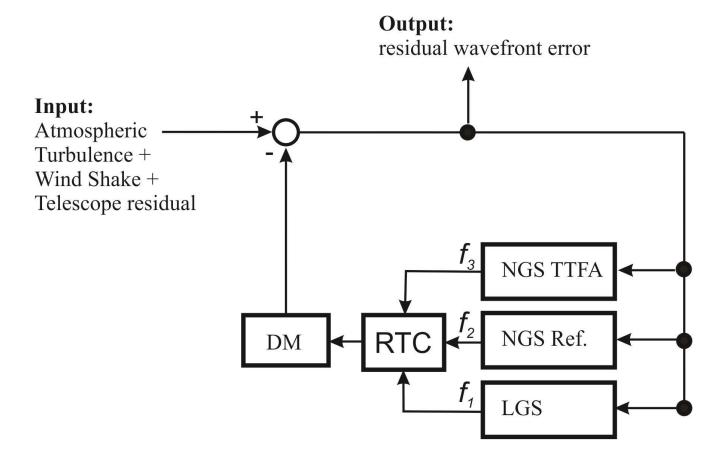
- Multi-layered athmospheric model
- Cn2 profile, r0, layer altitudes and velocity

Wavefronts generation


- Generated in Open Loop and stored
- Cone effect, laser uplink propagation

Telescope aberrations

 E-ELT telescope wavefront perturbations residuals after active compensation by its control system


Wavefront sensors

- Arbitrary number of Shack-Hartmann / Pyramid
- Natural and Laser Guide Stars (variable sodium profile supported)
- Different centroid algorithms
- Main and auxiliary loops independency
- Arbitrary number of DMs

Focus: Closed loop

Maory simulation conceptual scheme

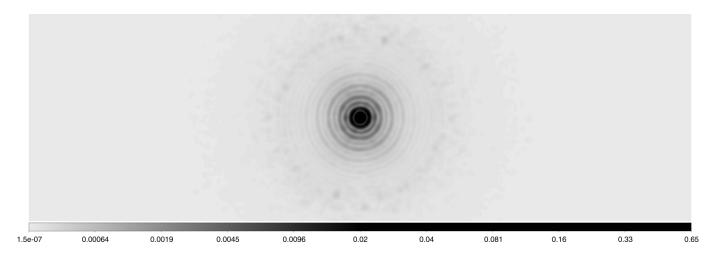
Focus: LGS WFS simulation

- Sodium profile, pupil and intrinsic laser image can be updated every simulation step
- For each sub-aperture
 - For each sodium sub-layer
 - Diffraction Limited PSF through sub-WF FFT
 - Convolution for the relative sodium profile portion projected in the subaperture (computed considering the sub-aperture position w.r.t the laser launcher position and the WFS pixel FoV)
 - Integration
 - Convolution for the intrinsic laser image (gaussian)
 - Resizing and rebinning (if required)
 - Write in the image array
- Background addiction
- Photon and readout noise addiction
- Centroid algorithms: pure centroid, weighted centroid, threshold c.

MAORY MAO: hard & soft

- Multi-core and multi-GPU workstation:
 - 2 Processors Intel Xeon E5-2630 v2, 2.6 GHz frequency (6 cores each);
 - 256 GB RAM on 16 GB group;
 - 4 GPU Nvidia TESLA K20X (6 GB, 2688 CUDA cores each);
 - 4 Hard Disk, 2 TB each for data storing
 - Fedora 19

- Adopted languages:
 - IDL 8.3 for the architecture
 - Compute Unified Device Architecture (CUDA GPUs) for the WFSs in closed loop and for the PSF computation (G. Bregoli)
 - Parallel optimized C/C++ and Intel libraries


MAORY MAO: fast mode

- The speed computation bottleneck is due to LGS WFSs simulation
 (~4 sec each) → total computation time per simulation step (6 LGS):
 8 sec
- In order to evaluate the effects on performance of LGS spot truncation due to sodium layer variation, we need to simulate long time series (minutes)
- A fast mode for WFSs simulation is foreseen:
 - Slope computation throught wavefront derivative x/y
 - WFS error due to noisy spot centroid computation added through analytical / empirical computation
 - 'Low' and slow varying order modes due to laser spot truncation computed in a side with a dedicate module [Schreiber 2014, SPIE] and injected in the NGS loop as non common path aberrations

MAORY MAO: Conclusions

- MAO is a general E2E code that can simulate many AO configurations systems
- GPU LGS WFS just integrated in the code
- Verification is on going considering present systems parameters (es: LBT)

Grazie