SHINING: Survey with Herschel of the INterstellar Medium in Infrared Nearby Galaxies

Contursi A., MPE Garching

<u>Sturm E. (P.I.)</u>, Christopher, N.; Davies, R.; Fischer, J.; Genzel, R.; González-Alfonso, E.; Graciá-Carpio, J.; Hailey-Dunsheath, S.; Jannsen A.; Lutz, D.; <u>Poglitsch, A.</u>; Sternberg, A.; Tacconi, L. J.; Veilleux S.; Verma, A.,

Guaranteed Time K-Project: ~300 hrs PACS spectrometer

PACS: IF Spectrometer, $47'' \times 47'''$ FOV from 55 to 200 µm PSF=9"-13"

Spitzer/Irac image of Mrk231

Guaranteed Time K-Project: ~300 hrs PACS

Line survey of ~60 galaxies: AGN-ULIRGs, SB-ULIRGs, SB

Fine Structure FIR Lines Ionized and neutral

OH Molecule

High J (>13) CO lines

Atomic line	$rac{E_{ m upper}}{K}$	n _{crit} [e] cm ⁻³	n _{crit} [H] cm ⁻³
[N III] 57µm	251	$3 imes 10^3$	
[O III] 52µm	441	$4 imes 10^3$	
[O III] 88µm	163	$5 imes 10^2$	
[N II] 122µm	188	$3 imes 10^2$	
[C II] 158µm	91	50	$3 imes 10^3$
[O I] 63µm	228		$5 imes 10^5$
[O I] 145µm	327		$5 imes 10^4$

Quenching: feedback

Also environmental effects can be efficient in quenching SF

BHs/Galaxies coevolution

Molecular (OH) outflow in Mrk231

First PACS detection of OH inverted Pcygni at 79 μ m (Fisher+ 2010)

V_{terminal}>~1000 km/s

$$M_{outflow}$$
~4.2 x 10⁹ M_{s}

un

z=0.042 L_{IR}=3.2 x 10¹² L_{sol} 70% AGN Type 1 LoBAL AGN

dM/dt=500-1200 M_{sol}/yr SFR ~ 100M_{sol}/yr

Many other cases

Strong molecular outflows observed in ~26 (out of ~37) warm and cold ULIRGs so far (Veilleux+2013) in OH 119 µm absorption

Are the strong outflows driven by the AGN rather than by the star formation in these objects?

GTO+OT Program: Veilleux+2013

AGN versus Starbusts

ULRIGs

📩 Starbursts

Updated from Sturm+2011

Quenching from AGN feedback?

These ULIRG winds will totally expel the <u>cold gas reservoir</u> in the nuclei in about **10⁶–10⁸ yr**, therefore halting the star formation activity on the same timescale

Multiphase outflow: M82 PACS mapping of M82 in [CII], [OI 63,145 µm], [OIII] 88 µm 2.5 2.5 [CII], [OI] = main coolants of NEUTRAL gas [OIII] = IONIZED gas Spatial resolution $\approx 130 - 240$ pc

Multiphase outflows: M82

Outflow velocities of different gas phases

gas phases	Outflow velocities	Reference
	Km/s	
Neutral gas (PDR)	75	Contursi+2013
Ionized gas [OIII] 88 µm	75	Contursi+2013
Ionized gas $H\alpha$	600	Greve 2004
Molecular gas CO(1-0)	100	Walter+2002

CO, PDR and [OIII] are coupled

■ Warm ionized (T~10⁴ K) gas much faster

PDR clouds in outflow fairly dense (G₀ = 0.5-1 x 10³, n_H = 0.5-1 x 10³ cm⁻³, T~300 K)

SB luminosity sufficient to illuminate clouds in the outflow

Outflow velocities of different gas phases

gas phases	Outflow velocities	Reference
	Km/s	
Neutral gas (PDR)	75	Contursi+2013

Cold clouds from the disk are entrained into the outflow by the winds where they likely evaporate, surviving as small, fairly dense cloudlets. [OIII] traces the ionized gas at the surface of these entrained clouds illuminated by the SB.

PDR clouds in outflow fairly dense ($G_0 = 0.5 - 1 \times 10^3$, $n_{H} = 0.5 - 1 \times 10^3 \text{ cm}^{-3}$, T~300 K)

SB luminosity sufficient to illuminate clouds in the outflow

Outflow Mass and Energy of various gas phases

Gas Phases	М	E _{kin}	Ň	Reference
	10 ⁸ M⊚	10 ⁵⁵ erg	M _o /yr	
Cold molecular gas	3.3	3.3	33	Walter+ 2002
Warm molecular gas	0.0001	0.0001	0.001	Veilleux+ 2002
Ionized gas traced by $\mbox{H}\alpha$	0.06	2	3.6	Schopbell+1998
Neutral atomic gas	> 0.2-0.8	0.1-0.5	10-25	Contursi+2013

Outflow energetic of various gas phases

Gas Phases	М	E _{kin}	Ň	Reference
	10 ⁸ M⊙	10 ⁵⁵ erg	M _o /yr	
Cold molecular gas	3.3	3.3	33	Walter+ 2002
Warm molecular gas	0.0001	0.0001	0.001	Veilleux+ 2002
Ionized gas traced by $\mbox{H}\alpha$	0.06	2	3.6	Schopbell+1998
Neutral atomic gas	> 0.2-0.8	0.1-0.5	10-25	Contursi+2013

Molecular gas and PDR gas make most of the mass in the Outflow

Mass loading factor η~ 2

Further evidences of different parameters derived from different outflow phases.

The velocities of outflowing molecular and atomic gas are similar but generally SMALLER than those of ionized gas (Sturm+11, Veilleux+13 and Contursi+13)

Very recent ALMA observations of molecular lines (CO, HCN, HCO⁺⁾ In NGC1068 show molecular outflow rate 10 higher than those found from the Ionized gas (García-Burillo+2014).

WARNING

Outflows are multi-phases and energetic, terminal velocities and outflowing mass rates may vary depending on the observed phase

The "[CII] deficit"

Before Herschel

Malhotra+2001 Luhman+ 2003

The "[CII] deficit " : an open issue

Photoelectric effect on grain: the smaller the more efficient

Grain ionization degree increases in FIR luminous (warm) sources

[CII] optically thick: this means N_H~ 3x 10²³ cm⁻² in each cloud and stronger [OI 63 µm] line deficit (not observed at ISO time)

 Dusty HII regions: photons are absorbed by dust more than in "normal" HII regions producing extra FIR not corresponding to extra [CII] from PDRs

The "[CII] deficit" at low and high z

The "[CII] deficit" : universal at all z

 \square [CII] deficit becomes universal at all z when plotted against $L_{_{FIR}}/M_{_{H2}}$

 $L_{_{FIR}}/M_{_{H2}}$ ~ energy release by SF/ gas from where stars form ~ SFE ~ Ionizing photons / gas ~ Ionization parameter

Graciá-Carpio+ 2011

PDR line deficit explicable with U increasing by one order of magnitude

In these extra FIR comes from dusty HII regions

More than this parameter has to regulate the pure HII line deficit

The "[CII] deficit " : high SFE

Independent on their redshift, galaxies with high SFE and high dust temperatures tend to have weaker lines compared with their FIR continuum. Dusty burst phase of SF

The "[CII] deficit" : where on the MS?

Galaxies having SF in a dusty burst with high efficiency (10%) have high dust temperatures, PDR line deficit and they likely lie above the MS.

Lyman Break Analogs (LBAs)

- Ultra compact UV luminous galaxies at 0.1 < z 0.3 selected to have LUV > 2 x 10¹⁰ L_{sol} (Heckman+ 2005).
- They are rare in the Local Universe
- If AGN present not dominant

 Share many properties with LBGs (Heckman+2005), such as -UV luminosities

- -surface brightness
- -stellar mass
- -SFR
- metallicity

-gas velocity dispersion higher than in normal SF galaxies

Physical conditions of PDRs in LBAs

No [CII] deficit

G and n as in normal galaxies disks

Same $\sigma_{dispesion}$ in CO, H α , [CII] and [OI] high As in z~2 SFGs

KS of Star Forming galaxies

Physical conditions of gas in LBAs

Contursi+ in prep.

Is [CII] in LBAs a good SFR tracer?

SFR-[CII]

SFR-[OI 63µm]

LBAs are not CII deficient and follow the overall SFR-CII relation

Original aim was to probe tours in AGN (Krolik & Lepp 1989)

- H₂ ro-vibrational and rotational lines are the main coolants of very dense (n> 10⁵) cm⁻³ and hot (T~10³ K) gas, but they are extincted
- High (J> 13) CO lines arise from states 500-7000 K above ground, have critical densities of ~10⁶⁻⁸ cm⁻³ BUT are less extincted.

Original aim was to probe tours in AGN

Original aim was to probe tours in AGN (Krolik & Lepp 1989)

- H₂ ro-vibrational and rotational lines are the main coolants of very dense (n> 10⁵) cm⁻³ and hot (T~10³ K) gas, but they are extincted
- High (J> 13) CO lines arise from states 500-7000 K above ground, have critical densities of ~10⁶⁻⁸ cm⁻³ BUT are less extincted.
- Ideal to probe the AGN Xray dominated regions (XDRs)

High J CO(1–0) lines

These are the lines one gets with ALMA for very high (z > 7) galaxies

High J CO(1–0) lines

CO SLED PACS/SPIRE sample

Diagnostic diagram

• ULIRGs (SB and AGNs)

High J CO(1–0) lines

High/low J CO ratio does not distinguish between AGN and SB. It only traces the presence of dense and hot gas

Summary

Powerful high velocities molecular outflows detected in OH:

- Are quite common in local ULIRGs.
- Are mainly AGN driven.
- Have high outflow mass load factor where AGN dominates.
- Imply short time scale for expelling the cold gas (SFR reservoir) QUENCHING in act?

Many outflows gas phases with different kinematics are often present In M82 CO,PDR lines and [OIII] 88 µm line are coupled and much slower Than hot wind fluid.

The cold gas is entrained by the wind, where survives in dense, small clouds. Clod and neutral gas are the more massive components of the outflow Important for deriving mass loading factors.

Summary

[CII] deficit extends to all fine structure FIR lines for high SFE ~U at all z. These conditions are met in merger induced Starburst galaxies, that lie above the KS relation for "normal" galaxies, and above the MS. This explanation though is not sufficient to account for the pure HII lines deficit. Towards a two component phase model

Is [CII] a good SFR tracer (and a redshift machine) for high-h z MS galaxies? Observations of local Lyman Break Analog galaxies show that these are not [CII] deficient and that they follow the local [CII]-SFR relation.

Observations of very high (J>13) CO lines show that they do not trace the presence of AGN as expected, rather the presence of dense and warm gas.