

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

The third Fermi LAT AGN catalogue and beyond

Filippo D'Ammando (DIFA and INAF-IRA Bologna)

on behalf of the Fermi LAT Collaboration

dammando@ira.inaf.it

Different classes of AGN

Quasars

Radio-quiet or radio-loud quasars

- BL Lacertae Objects
- Radio Galaxies
 Broad or narrow line radio galaxies
 (BLRGs, NLRGs)
 Fanaroff-Riley class I or II
- Seyfert Galaxies
 Seyfert galaxies type 1 2
 Narrow-Line Seyfert galaxies
- · Low-Luminosity AGN

Low-Ionization Nuclear Emission-Line Region Galaxies "Regular" spiral like Sgr A*...

All AGN are able to emit up to the γ -ray energy domain?

Third EGRET Catalog E > 100 MeV Hartmann et al. 1999 Hartmann et al. 1999

- 67 blazars detected by EGRET
- Mostly FSRQ (75% FSRQ, 25% BL Lacs)

• Only 3 *tentative* detections of radio galaxies:

- Centaurus A
- NGC 6251 (Mukherjee et al. 2002)
- 3C 111 (Hartmann et al. 2008)

OABo & DIFA seminar – 2015 April 16

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Large Area Telescope (LAT) 20% of the sky at any instant from 20 MeV to >300 GeV

Gamma-ray Burst Monitor (GBM) entire unocculted sky transients from 8 keV to 40 MeV

Launched from Cape Canaveral Air Station on 11 June 2008 nearly circular orbit 565 km, 25.6°

dammando@ira.inaf.it

Space Telescope

OABo & DIFA seminar – 2015 April 16

AGN and Fermi Era

1540

BULAC

FIRE

BLLAC

24 months LAT data

Second LAT Catalogue (2LAC) T5=25, August 2008 - August 2010

Abdo et al. 2009

Abdo et al. 2010

Nolan et al. 2012

LBAS-high latitude:

58 FSRQs

6 AGNs

42 BL Lacs

- Lacs, 125 BCU, 3 non-blazar AGN) •
- dammando@ira.inaf.it

32 non-blazar AGN

JNIVERSITÀ DI BOLOGNA

• slightly higher z for new FSRQ relative to 2LAC ones <z>=1.33 vs. 1.17 The number density of FSRQ grows dramatically up to redshift 0.5-2.0 and declines thereafter (Ajello et al. 2012)

maximum redshift still z=3.1

• 295/604 BL Lacs have no measured redshifts (55%, 61%, 40%) for (LSPs, ISPs and HSPs)

•134 constraints from Shaw et al. (2013)

• Redshift limits for BL Lacs are not compatible with measured redshifts: measured redshifts are biased low?

Flux Variability

- 71 FSRQ, 18 BL Lacs and 9 other AGN /AGU

- only PKS 1915-458 (z=2.47) not in 3LAC

Fractions of sources showing significant variability : - FSRQ: 69% BL Lac objects: 23% (39%, 23%, 15%) for (LSP, ISP, HSP)

OABo & DIFA seminar - 2015 April 16

log(vs [Hz])

FSRQs LSP-BL

ISP-BL

HSP-BL

10

104

10²

Variability index

Photon index and spectral curvature

- Little overlap between FSRQ and BL Lac objects
- New FSRQ slightly softer than 2LAC ones: (<Γ> = 2.53 vs. 2.41)
- BCU spectral index distribution straddling the two classes

91 FSRQ (57 in 2LAC), 32 BL Lacs (12 in 2LAC) and 8 BCU showed significant spectral curvature

Gamma-ray Space Telescope

Photon index vs v_{peak}

- \bullet Correlation between spectral hardness and v_{peak} confirmed
- Same applies to BCU

Gamma-ray Space Telescope Gamma-ray Space Telescope

Ly and Compton dominance

1049

Non-blazar & Misaligned AGN

ALMA MATER STUDIORUM FÅ DI BOLOGNA

.

Table 5. Non-blazar objects and misaligned AGN

Name	3FGL	2FGL	1FGL	Type	Photon index	Notes	
NGC 1218	J0308.6+0408*		J0308.3+0403*	FRI	2.07±0.11		_
IC 310	J0316.6+4119*	J0316.6+4119		FRI/BLL	$1.90 {\pm} 0.14$	Neronov et al. (2010)	
NGC 1275	J0319.8+4130*	J0319.8+4130*	J0319.7+4130*	FRI	2.07 ± 0.01	Abdo et al. (2009c); Kataoka et al. (2010)	
1H 0323+342	J0325.2+3410*	J0324.8+3408*	J0325.0+3403*	NLSy1	2.44 ± 0.12		
4C +39.12	J0334.2+3915*	***	112	FRI/BLL?	2.11 ± 0.17	Giovannini et al. (2001)	
TXS 0348+013	J0351.1+0128*			SSRQ	2.43 ± 0.18		
3C 111	J0418.5+3813	***	J0419.0+3811	FRII	2.79 ± 0.08	Abdo et al. (2010e); Kataoka et al. (2011); Grandi et al. (2012)	
Pictor A	J0519.2-4542*	***		FRII	2.49 ± 0.18	Brown & Adams (2012); Kataoka et al. (2011)	
PKS 0625-35	J0627.0-3529*	J0627.1-3528*	J0627.3-3530*	FRI/BLL	1.87 ± 0.06		
IC +52.17	J0733.5+5153			agn	1.74 ± 0.16	Part of a uplicate association. Most probable counterpart is a bcu II	Π.
NGC 2484	J0758.7+3747*			FRI	2.16 ± 0.16	quasar SDSS J075825.87+374628.7 is 0.8' away	
IC +39.23B	J0824.9+3916			CSS	2.44 ± 0.10	0 (12) E	D
3C 207	J0840.8+1315*	J0840.7+1310	J0840.8+1310	SSRQ	2.47 ± 0.09	7 (12)	R
BS 0846+513	J0849.9+5108*			NLSy1	2.28 ± 0.04	3 FD TT	
C 221	J0934.1+3933		***	SSRQ	2.28 ± 0.12		
PMN J0948+0022	J0948.8+0021*	J0948.8+0020*	J0949.0+0021*	NLSy1	2.32 ± 0.05	7 SSRQ	
PMN J1118-0413	J1118.2-0411*			agn	$2.56 {\pm} 0.08$		
32 1126+37	J1129.0+3705			agn	2.08 ± 0.13	Part of a duplicate association. Most probable counterpart a BLL.	
3C 264	J1145.1+1935*	***	***	FRI	1.98 ± 0.20		
PKS 1203+04	J1205.4+0412		***	SSRQ	2.64 ± 0.16		
M 87	J1230.9+1224*	J1230.8+1224*	J1230.8+1223*	FRI	2.04 ± 0.07	Abdo et al. (2009d)	
3C 275.1	J1244.1+1615			SSRQ	2.43 ± 0.17		
GB 1310+487	J1312.7+4828*	J1312.8+4828*	J1312.4+4827*	agn	2.04 ± 0.03	1 6	
Cen A Core	J1325.4-4301*	J1325.6 - 4300	J1325.6-4300	FRI	2.70 ± 0.03	radio core I Seyter	rt
Cen A Lobe	J1324.0-4330e	J1324.0-4330e	J1322.0-4515	FRI	2.53 ± 0.05	giant lobes detected (Abdo et al. 2010b) 5 NII Cv1	
C 286	J1330.5+3023*			SSRQ/CSS	2.60 ± 0.16	JINLSYI	•
Cen B	J1346.6 - 6027	J1346.6-6027		FRI	2.32 ± 0.01	Katsuta et al. (2013)	21
Circinus	J1413.2-6518		***	Seyfert	2.43 ± 0.10	Hayashida et al. (2013)	• 1
C 303	J1442.6+5156*			FRII	1.92 ± 0.18	6 AGN	
PKS 1502+036	J1505.1+0326*	J1505.1+0324*	J1505.0+0328*	NLSy1	2.61 ± 0.05		
FXS 1613-251	J1617.3-2519	J1617.6-2526c		agn	$2.59 {\pm} 0.10$	Part of a duplicate association. Most probable counterpart is a bcu l	п.
PKS 1617-235	J1621.1-2331*	J1620.5-2320c		agn	2.50 ± 0.23		
VGC 6251	J1630.6+8232*	J1629.4+8236	J1635.4+8228*	FRI	2.22 ± 0.08		
C 380	J1829.6+4844*	J1829.7+4846*	J1829.8+4845*	SSRO/CSS	$2.37 {\pm} 0.04$		
PKS 2004-447	J2007.8-4429*	J2007.9-4430	* J2007.9-443	0* NLSv1	2.47 ± 0.09		

dammando@ira.inaf.it

-43'00

-44 00

-45 00

-46'00

-47'00

-48'00

Abdo et al. 2010

13^h50^m

0.0

13h40m

25.0

13h30m

Right Ascension (J2000)

counts deg-2

From Nils Odegard (GSFC)

100.0

13^h20^m

225.0

13^h10^m

13^h50^m

0.0

13^h40^m

25.0

13h30m

Right Ascension (J2000)

counts deg-2

100.0

Background & point sources subtracted

13^h20^m

13^h10^m

225.0

43'00

-44 00

-45'00

-46'00

-47'00

-48 00

OABo & DIFA seminar - 2015 April 16

400.0

13h00m

13^h00^m

400.0

• The γ -ray emission from lobes is due to IC (CMB+EBL), with B \sim 0.9 μG in both lobes, near equipartition

• t cool < R/c for GeV emitting electrons: acceleration all over the volume

Dissipation zone in M87: far away...

dammando@ira.inaf.it

OABo & DIFA seminar – 2015 April 16

17

... or closer to the SMBH?

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

dammando@ira.inaf.it

TeV flare from M87 in 2012

SHP NOV JAN WAY WAN JU! SHP NOV 1month-bin Pres. AT 2month-bin 닅 S230 (Jy) SMA 230GHz 2.0 1.0 /ERA 43GHz core (tota) VERA 43GHz core (peak 0.6mas) 1.0 S43(Jy) 0.8 0.6 1.6 VERA 22GHz core (total) VERA 22GHz core (peak 0.6mas) 1.4S22 (Jy) 1.2 1.0 0.8 VERA 22/43GHz S, ~~+* (peak 0.6mas) Spectral index -0.2 -0.4 Hada et al. 2014 -0.6 2.0 EVN 5GHz core (peak 1.5mas) Ss (Jy) 1.0 VN 5GHz HST 0.02 ŝ S 0.01 55500 55600 55700 55800 55900 66000 56100 F6200 Time (MJD)

• Remarkable flux increase (~70%) from the radio core (22/43GHz) coincidentally with the TeV event

• HST-1 remained quiescent

• LAT light curves - no significant enhancement, but a possible state change after the TeV event?

Gamma-ray Space Telescope

On pc-scales the AGN PKS 0521-36 shows a knotty structures similar to M87 and 3C 120. The brightness profile along the jet axis decreases rapidly with increasing distance from the core, but it then steeply rises again at \sim 30 mas

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

γ-ray flaring activity from PKS 0521-36

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

2010.44

200

150

Q

Flux

2010.46

2010.48

⁻lux [10⁻⁸ ph cm⁻² s⁻¹] 2 D'Ammando et al. 2015 1.5 55500 56000 55000 Time [MJD] 2008 August - 2012 August [1-month time bin]

dammando@ira.inaf.it

- How to reconcile the knotty jet structure observed in radio with the high activity observed in gamma rays?
- Emitting jet not closely aligned to the line of sight. Is it possible to model the SED of the gamma-ray flare with a low Doppler factor as suggested in the past for this source?
- Structured jet with spine or layer region active in different epochs?

ermi Structured jet scenario for PKS 0521-36

We applied a spine-layer model to a low activity state (green) and a high activity state (red) SED assuming three different viewing angles: 6°, 15°, and 20°. We obtain a good fit for the first two cases

For relatively small angles the spine emission largely dominates the SED

For larger angles the only suitable solution is that the low-energy bump is dominated by the synchrotron emission of the spine, and the IC bump by the IC emission of the layer

D'Ammando et al. 2015, MNRAS, 450, 3975

Gamma-ray Space Telescope

SED modelling of PKS 0521-36

The case for $\theta = 20^{\circ}$ requires a large intrinsic luminosity. In that case the optical depth reaches 1 at about 1 GeV

Once observed at a small angle, the SED obtained with $\theta = 15^{\circ}$ does not resemble that of a blazar, in contrast to the unification scheme for radio galaxies and blazars

- About an order of magnitude brighter than EGRET UL significant brightening on decade time scale
- Flux doubling on monthly time-scale: ≈ 0.1 pc jet emission region

dammando@ira.inaf.it

Serm Gamma-ray Space Telescope

NGC 1275: limb brightening

In the context of a structured jet, this transition may be related to the γ -ray time variability on the timescale of decades

From 1990s to 2013 the jet structure changed from ridge-brightening to limbbrightening. This change in apparent transverse structure might be caused by the change in the transverse velocity structure

- Overall SEDs are well described by a combination of "disk emission" and "nonthermal jet emission"
- Usually LAT-detected BLRG shows the strongest radio nuclear flux
- GeV emission is most likely dominated by the beamed radiation of relativistic jets as blazars

dammando@ira.inaf.it

Gamma-ray Space Telescope

Increase of mm, optical, X-ray activity in 2008 Sep-Nov coincident to a LAT detection , suggesting co-spatiality of the event. A size of the gamma-ray emitting region R \lesssim 0.1 pc was inferred

OABo & DIFA seminar – 2015 April 16

IC 310: radio galaxy or blazar?

VLBI reveals a pc-scale inner structure, with a one-sided core-jet structure oriented along the same position angle as the kpc scale structure. Low luminosity FR I? BL Lac?

At VHE very fast variability was observed, with a flux doubling time scale < 4.8 min, suggesting particles accelerated in an extremely narrow region located near the event horizon of the BH and permeated by strong electric fields

dammando@ira.inaf.it

Gamma-ray Space Telescope

activity to constrain the high-energy emission mechanisms

120 hard X-ray selected radio-quiet Seyferts without strong starburst

No detections, with ESO 323-G077 and NGC 6814 not confirmed

 $L_v / L_X < 0.1$ -0.01: Seyfert are not prominent y-ray emitters

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Circinus is well located inside of LAT 68 c.l. region

Circinus Galaxy shows higher L_{γ}/L_{IR} and L_{γ}/L_{radio} . This γ -ray luminosity exceeds the value expected from cosmic rays interaction in the interstellar medium and IC radiation from radio lobes

Gamma-ray Space Telescope

Gamma-ray Space Telescope

• Fermi-LAT first 4 years of operation (1FGL, 2FGL, 3FGL) confirmed that the known extragalactic y-ray sky is dominated by blazars but...

...the first detection of a γ -ray emitting narrow-line Seyfert 1 galaxy, PMN J0948+0022, during the first months of LAT observations was a great surprise!

Confirmation of the presence of relativistic jets also in NLSy1

NLSy1s are thought to be hosted in **spiral/disc galaxies**, the presence of a relativistic jet in some of these objects seems to be in contrast to the paradigm that the formation of relativistic jets could happen only in elliptical galaxies (e.g. Boettcher & Dermer 2002, Marscher 2010)

Narrow-line Seyfert 1s and Fermi-LAT

dammando@ira.inaf.it

OABo & DIFA seminar – 2015 April 16

~10⁴⁸ erg s⁻¹, comparable to that of the bright FSRQs

PKS 1502+036 was detected by LAT over 51 months (2008 August 4 - 2012 November 4) with TS = 314, an average flux (0.1-100 GeV) of $(4.0\pm0.4)e$ -8 ph cm⁻² s⁻¹ and a photon index Γ = 2.60±0.06

No significant flux variability was observed, with only a few detections on weekly time scales and a peak value of $(18\pm6)e-8$ ph cm⁻² s⁻¹

D'Ammando, Orienti, Doi, et al. 2013a, MNRAS, 433, 952

Core-jet structures in gamma-ray NLSy1s Gamma-ray Space Telescope

Core-jet structure on parsec scale resolved with the VLBA

dammando@ira.inaf.it

Sermi

OABo & DIFA seminar - 2015 April 16

A broken power-law provides an acceptable fit, $\chi^2_{red} = 1.10$ (1252), with a break at energy $E_{break} = 1.72 \pm 0.10$ keV and photon indices $\Gamma_1 = 2.14 \pm 0.03$ and $\Gamma_2 = 1.48 \pm 0.04$. The emission above 2 keV is dominated by the jet component, with no detection of an Iron line in the spectrum and a 90% upper limit on the EW of 19 eV

The soft component can be also fitted with a black body model with $kT \sim 0.18$ keV. Such a high temperature is inconsistent with the standard accretion disk theory

dammando@ira.inaf.it

SED modeling of NLSy1s

Comparison with y-ray blazars

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Following the most powerful flaring activity from PMN J0948+0022, the detection of VHE emission from this NLSy1 was attempted by VERITAS. Future observations with the Cherenkov Telescope Array (CTA) will constrain the level of gamma-ray emission at 100 GeV or below.

dammando@ira.inaf.it

Gamma-ray Space Telescope

- The 3LAC is a major improvement over the 2LAC: many more associations thanks to improved methods, and reduced uncertainties due to longer exposure and analysis refinements
- Fermi-LAT confirmed that misaligned AGN are a class of γ -ray emitting source, including different flavours (FR I, FR II, BLRG, SSRQ, Seyfert)
- Some "misaligned AGN" showed blazar-like behaviour (e.g. strong and rapid variability), suggesting a relatively small viewing angle
- Structured jet models may be a good representation of these misaligned AGN, in accordance with some observational evidence
- Six NLSy1 have been detected in gamma-ray so far. At least three NLSy1 showed intense γ-ray flares, thus NLSy1 can host relativistic jets as powerful as blazars. Are these sources peculiar also among the NLSy1?
- The discovery of relativistic jets in a class of AGN thought to be hosted by spiral galaxies was a great surprise but are gamma-ray NLSy1 not in classical spiral galaxies?