Compact Obscured Nuclei in the ALMA era

Francesco Costagliola

Chalmers University of Technology- Onsala Space Observatory Istituto de Astrofísica de Andalucía (IAA-CSIC)

S.Aalto, S. Muller, K. Sakamoto, S. Martin, A. Evans, M. Spaans, S. Garcia-Burillo, S. Mühle, P. van der Werf,

An Evolutionary Scheme for LIRGs

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

 halo accretes similar-mass companion(s)
 can occur over a wide mass range
 M_{halo} still similar to before: dynamical friction merges the subhalos efficiently

(a) Isolated Disk

Bologna - Gennaio 2015

halo & disk grow, most stars formed
 secular growth builds bars & pseudobulges
 "Seyfert" fueling (AGN with M_b>-23)
 cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback,
- but, total stellar mass formed is small

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

(f) Quasar

 dust removed: now a "traditional" QSO
 host morphology difficult to observe: tidal features fade rapidly
 characteristically blue/young spheroid

(g) Decay/K+A

 QSO luminosity fades rapidly

 tidal features visible only with very deep observations
 remnant reddens rapidly (E+A/K+A)
 "hot halo" from feedback

 sets up quasi-static cooling

(h) "Dead" Elliptical

 star formation terminated
 large BH/spheroid - efficient feedback
 halo grows to "large group" scales: mergers become inefficient
 growth by "dry" mergers

An Evolutionary Scheme for LIRGs

(c) Interaction/"Merger"

 now within one halo, galaxies interact & lose angular momentum
 SFR starts to increase
 stellar winds dominate feedback
 rarely excite QSOs (only special orbits)

(b) "Small Group"

 halo accretes similar-mass companion(s)
 can occur over a wide mass range
 M_{halo} still similar to before: dynamical friction merges the subhalos efficiently

(a) Isolated Disk

halo & disk grow, most stars formed
 secular growth builds bars & pseudobulges
 "Seyfert" fueling (AGN with M_b>-23)
 cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback,
 - but, total stellar mass formed is small

(e) "Blowout"

 BH grows rapidly: briefly dominates luminosity/feedback
 remaining dust/gas expelled
 get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

(f) Quasar

 dust removed: now a "traditional" QSO
 host morphology difficult to observe: tidal features fade rapidly

- characteristically blue/young spheroid

(g) Decay/K+A

(h) "Dead" Elliptical

 star formation terminated
 large BH/spheroid - efficient feedback
 halo grows to "large group" scales: mergers become inefficient
 growth by "dry" mergers

Obscured LIRGs

Bologna - Gennaio 2015

Obscured LIRGs

Bologna - Gennaio 2015

Obscured LIRGs

- Hot (>100 K), compact (<100 pc) molecular and IR cores
- SFR > 10 M⊙/yr
- Extreme obscuration
 N(H₂)>10²⁴ cm⁻²
- Mixed AGN/Starburst features
- Is the IR coming from star formation ?
- AGN contamination in high-z SFR surveys ?

Why do we like obscured LIRGs?

- Young stages of Starburst/AGN?
 - Radio-deficient → Nascent starbursts ?
 - Study onset of Starburst/AGN feedback

- Star Formation (Near and far)
 SFR >10 M₀/yr → Enhanced SF efficiency ?
 - Starburst/AGN contribution → Is IR tracing SFR ?

Molecular diagnostics

Molecular diagnostics, pre-ALMA

Molecular diagnostics, pre-ALMA

- Quick, large samples
- Only a few species studied, often optically thick
- Excitation effects
- Small variations, large errors
- Ambiguous interpretation with chemical models

Molecular diagnostics, pre-ALMA

- More species
- Time consuming
- Mostly single band
- Limited information on molecular excitation

Multi-band spectral scans needed to get the excitation!

ALMA Cycle 0 A 175 GHz-wide scan of NGC 4418

F. Costagliola, K. Sakamoto, S. Aalto, S. Muller, S. Martin, A. Evans, M. Spaans, S. Garcia-Burillo, S. Mühle, P. van der Werf,

- Obtain a template chemistry and molecular excitation for LIRGs near and far
- Derive accurate abundance estimates
- Look for more sensitive tracers of the ISM conditions

NGC 4418: The prototypical obscured LIRG

- L_{IR}=10¹¹L_.
- ${}_{\odot}$ SFR 10 ${\rm M}_{\odot}/{\rm yr}$
- LIRG with highest silicate absorption
- Hidden compact IR core (<20 pc)
- Radio-deficient (<5 Myr starburst?)
- Narrow molecular lines (100 km/s)

J2000 Right Ascension

Line identification and fit

Line identification and fit

Detected Molecules

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms
CS	HCN	p-H ₂ CO	HC ₃ N	CH ₃ CN	CH ₃ CCH
13CS	H ¹³ CN	o-H ₂ CO	HCC ¹³ CN	CH ₃ OH	HC_5N
C ³³ S	HCN,v2=1	c-HCCCH	$HC_3N,v6=1$		
C ³⁴ S	HNC	H_2CS	$HC_3N, v7=1$		
¹³ CO	HN ¹³ C		HC ₃ N,v6=1,v7=1		
C ¹⁸ O	HNC,v2=1		$HC_3N, v7=2$		
CN	HCO ⁺		CH ₂ NH		
NS	$H^{13}CO^+$		NH_2CN		
SO	H_2S				
SiO	CCH				
²⁹ SiO	HCS ⁺				
³⁰ SiO	CCS				
	N_2H^+				

Summary of detected molecules

Detected 40 Molecules and 295 lines > 3-sigma 4X what we expected in the proposal

Vibrationally Excited Lines:

Bologna - Gennaio 2015

IAA - CSIC

Vibrationally excited HC₂N

Rest Frequency [GHz]

85 287 289 Sky frequency [GHz]

- HC₃N v7=1

- HC₃N v6=1, v7=1

Tvib=300-400 K

HC3Nv6=1,v7=1

Excitation fit results

- Rotational temperatures: 20-350 K
- H₂ Densities: 10⁴-10⁷ cm⁻³
- Steep density and temperature gradient
- Compact IR source, T>300 K

Vibrationally excited HC₃N, HCN, HNC

Detecting compact IR sources beyond the telescope's resolution

Vibrationally excited HC₃N, HCN, HNC

Detecting compact IR sources beyond the telescope's resolution

Tvib=300-400 K \rightarrow IR < 5 pc !

Vibrationally excited HC₃N, HCN, HNC

Detecting compact IR sources beyond the telescope's resolution

5 pc compact source detected with EVN!

Molecular Abundances

Molecular Abundances

NGC4418 (LIRG) and Arp 220 (ULIRG) show similar chemistry, a new CON chemistry?

Molecular Abundances

Order of magnitude differences in abundance Vs Factors of a few in line ratios !

The NGC4418 scan, a summary:

- In less than 3 hours we covered 71 GHz in Bands 3, 6, 7
- We detect >200 lines from 40 molecular species
- LTE and NLTE analysis confirms the layered structure of the core
- Bright vibrationally excited HC₃N, HNC, HCN
 - \rightarrow Compact IR
- Abundances and temperatures similar to Arp 220
- Compact LIRGs show distinctive chemical signatures

CHALMERS

Self-absorbed line profiles in CONs

Steep temperature gradients create self-absorbed HCN and HCO+ lines and bright vibrationally-excited HCN v2=1

This happens both in LIRGS and ULIRGS

Observed with PdBI (top) and ALMA Cycle 1 (PI:S. Aalto, S. Martin)

Aalto et al., in prep

Peeking inside the core

Extreme starburst or near-Eddington SMBH ?

VIB-HCN emerging from buried core inside HCN-HCO⁺ self-absoprtion.

VIB-HCN pumped by intense 14 µm emission Possibly also by NIR emission VIB-HCN allows us to reconstruct SED and reveal a buried hot dust core – absorbed by cooler dust

Aalto et al., in prep

Bologna - Gennaio 2015

CHALMERS

Tracing the core with vib-lines

Bologna - Gennaio 2015

Molecular Outflows

- Molecular outflows from Starburst / AGN galaxies are being routinely detected by interferometers (even at high-z!)
- The properties of the outflow are related to the launching mechanism and to the nature of the central power source
- To derive the mass loss rate is not easy and requires resolved, sensitive observations: ALMA!

The Extreme FIR-Excess Galaxy NGC 1377

- Deep silicate obscuration
- Warm dust (80 K) in a 100 pc core (Spoon, 2001)
- No HI and H α

The Extreme FIR-Excess Galaxy NGC 1377

- Deep silicate obscuration
- Warm dust (80 K) in a 100 pc core
 (Spoon, 2001)
- No Hlpha
- Radio-deficient
 (Roussel, 2003)
- No supernovas !
- No HII regions !

Nascent (<1 Myr) starburst or obscured AGN?

CO 2-1 emission with the SMA in Extended and Compact configuration (Aalto et al. 2012)

Moment 0

Moment 1

Moment 2

CO 2-1 emission with the SMA in Extended and Compact configuration (Aalto et al. 2012)

Moment 1

Moment 2

Bologna - Gennaio 2015

CO 2-1 emission with the SMA in Extended and Compact configuration (Aalto et al. 2012)

Moment 1

Moment 2

CO 2-1 emission with the SMA in Extended and Compact configuration (Aalto et al. 2012)

Moment 1

Moment 2

Cycle 0 CO 1-0: Outflow resolved!

Cycle 0 CO 1-0: Outflow resolved!

CHALMERS

Detected radio continuum!

Detected radio continuum!

Bologna - Gennaio 2015

What do we learn from the outflow?

- Mass outflow rate: 8 M⊙/yr
- Age: 1Myr
- No radio = no supernovae, what is driving the wind?
 - Ram pressure ? No evidence of hot gas
 - Radiation pressure from:
 - Compact (<20 pc) starburst (50% efficiency??)
 - _ 10⁶ M⊙AGN at 10% Eddington, heavily obscured

...and we got it !

- EVLA 8GHz
- Detected radio continuum at 26-sigma
- Consistent with freefree absorbed AGN !

Costagliola et al., in prep

CHALMERS

ALMA Cycle 2 CO 3-2

V=1580-1690 km/s

V=1700-1780 km/s

V=1790-1930 km/s

Aalto et al, in prep.

Bologna - Gennaio 2015

When things get really weird...

R.A. Offset (arcsec)

New ALMA result: Outflow appears to flip near the nucleus. Origin unclear – high velocity gas extremely well aligned along line-of-sight

A molecular jet rotating around an axis perpendicular to the line of sight could tentatively reproduce observations

To take home

- Mm and radio observations can penetrate the extremely obscured cores of LIRGs
- Multiple strategies: chemistry, dynamics, excitation
- Vibrationally excited HCN, HC3N ideal tracers of kinematics in the core
- Outflows provide crucial information on the properties of the power source
- ALMA and other upgraded radio facilities (EVLA,NOEMA) make it possible to extend these studies to large samples and to the far Universe