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Why are ETGs so interesting?

What we know about them from local studies; .
Constraints

What we know about them form high-z studies; on the evolutionary picture

The stellar Initial Mass Function (IMF) of dense high-z ETGs



Why studying the early —type galaxies?
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How they form and evolve?



What we know: observative evidences — local universe.

The formation redshift (z ) and timescale of the star formation (At) depend on stellar
mass (or 0): massive galaxies form first (z;,,, > 3) and over shorter time-scales

with respect to less massive ones.
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What we know: observative evidences — local universe.

(or 0) = are ETGs with similar stellar mass ....similar?
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What we know: observative evidences — local universe.

In what differ the stellar population properties of normal and dense ETGs?
Variation of stellar properties across the Fundamental Plane

Shapley supercluster core
Fundamental Plane
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What we 018<nowz observa:caive evidences — local universe.
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On average, the denser the ETGs,
the higher the a enhancement and the stellar age.

Dense ETGs are older and have shorter star formation timescales
(see also Graves et al. 2009, Springob et al. 2012)



What we know: observative evidences — high —z universe.

High —z observations show that massive ETGs are already in place at z ~ 2 and beyond,
but, at fixed stellar mass, they are on average, smaller and with high velocity dispersion
with respect to local ETGs of similar stellar mass.
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The new paradigma of ETGs formation and evolution:
the “inside-out” scenario

Development of Massive Elliptical Galaxies o
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The largest galaxies are the final evolutionary step of high-z dense ETGs




The central stellar mass density of high-z and local ETGs

The central (R < 1kpc) stellar mass density of high-z (dense) ETGs
is similar to the central stellar mass density of typical (normal) local ETGs
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Evidence of an inside — out mass accretion:
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The central stellar mass density of high-z and local ETGs

Or not?

Sersic profile
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Color gradients in high-z ETGs

To discriminate the assembly path(s) of stellar mass in ETGs with different mean stellar mass
density X,

investigate the radial properties of ETGs stellar content
as a function of mean stellar mass density
as close as possible to their formation epoch

l

Color gradients - Radial variation of color - radial variation in stellar population properties




Color gradients in ETGs at <z> = 1.5
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Color gradients in ETGs at <z> = 1.5

Irrespective of their stellar mass density, all the ETGs of the sample show negative U-R color
gradients
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No trend of color gradients with X,
- radial distribution of stellar population do not correlate with mean stellar mass density



The origin of the mean size growth: brief summary
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Size evolution at 5x10'° M,
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The origin of the mean size growth:

number density of massive dense ETGs
How many dense massive ETGs at high and low-z?

Hydrodynamical simulations show that, typically, massive (M, > 101"M,,, ) passive galaxies are
the central galaxies of massive halos and evolve mainly through minor mergers.

- individual size growth more significant

Number density of massive dense quiescent galaxies
at 0.2 <7< 1.0 on COSMOS

NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT
EVOLUTION IN AVERAGE SIZE OF THE POPULATION

C. M. Carorro', T. J. BscHORR', A. RENZINIZ, S. J. LiLLY', P. Capak®, A. CiBINEL', O. ILBERT*, M. ONODERA!,
N. ScoviLLE?, E. CAMERON!, B. MOBASHER®, D. SANDERS, AND Y. TaNIGUCHI®

ABSTRACT

We use the large COSMOS sample of galaxies to study in an internally self-consistent way the change in the number
densities of quenched early-type galaxies (Q-ETGs) of a given size over the redshift interval 0.2 < z < 1 in order
to study the claimed size evolution of these galaxies. In a stellar mass bin at 10'%° < Mgy < 10" M_,, we see no
change in the number density of compact Q-ETGs over this redshift range, while in a higher mass bin at >10"" M,

: i significe a smg reas . In both mass bins, the
increase of the median sizes of Q-ETGs with time is primarily caused by the addition to the size function of larger
and more diffuse Q-ETGs. At all masses, compact Q-ETGs become systematically redder toward later epochs, with
a (U — V) color difference which is consistent with a passive evolution of their stellar populations, indicating that
they are a stable population that does not appreciably evolve in size. We find furthermore, at all epochs, that the
larger O-ETGs (at least in the lower mass bin) have average rest-frame colors that are systematically bluer than

~




The origin of the mean size growth:
number density of massive dense ETGs

Damjanov at al. 2015:
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The origin of the mean size growth:
number density of massive dense ETGs over the last 10 Gyr,
fromz=0upto1.6

Morphological ETGs with £ > 2500 M, pc
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The origin of the mean size growth:
number density of massive dense ETGs over the last 10 Gyr,
fromz=0upto1.6

From z =1.6 to zero number density 0.0001
of massive dense ETGs decrease
of a factor 1.5

= Q
7 g
g =.
= 3
: z
=K (1+Z) 04 w ~
P § S
. 10-° — — "
g [ This work (ETGs) | 1 Q
= | 4 spss 15
p decrease by a factor ~ 1.5 fromz =1.6to ~0 2 - ® COoSMOS 19
- ® MUNICS 7] g.
. . L X GOODS -
What about the properties of high-z and é
local ETGs? : 18
| 1 | 1 | | | | 1 | | | | 1 | 1 | Q.‘
0 0.5 1 1.5

Redshift



The origin of the mean size growth:
Comparison of structural and dynamical parameters of massive
ETGs over the last 10 Gyr

Local sample: ETGs from Thomas et al. 2010 sample with
M, > 10" M, , and £ > 2500 M, pc2

star sun?’
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High-z sample: all the massive ETGs
at 1.2 < z < 1.6 with available

Re and o, and with

> > 2500 Msun pc2 (11 ETGs).
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For four out of 11 ETGs VLT- FORS2 spectra
for velocity dispersion measurements.
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The origin of the mean size growth:
Comparison of structural and dynamical parameters of massive

ETGs over the last 10 Gyr
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The origin of the mean size growth:
Comparison of structural and dynamical parameters of massive
ETGs over the last 10 Gyr
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The origin of the mean size growth: brief summary

« Number density of massive dense ETGs decrease of a factor ~1.5 from z = 1.6 to 0;
 All the massive dense high-z ETGs have a counterpart in local universe with similar
structural and dynamical properties

O\

(1) The majority of massive dense ETGs (2) A significant fractior} of.massive gle.nse
at z = 1.4 have already completed their ETGs at z = 1.4 evolves in size, sustaining
mass accretion and their shaping. the mean size growth, BUT new dense
ETGs form at z < 1.6 to maintain the
l, number density almost constant.

Mean size growth - new larger ETGs l
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Inside — out accretion : possible not necessary

Mean size growth - individual size growth



The origin of the mean size growth: brief summary

« Number density of massive dense ETGs decrease of a factor ~1.5 from z = 1.6 to 0;
 All the massive dense high-z ETGs have a counterpart in local universe with similar
structural and dynamical properties
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The Initial Mass Function (IMF)

Constraints on mass accretion of ETGs are all based on a fundamental assumption:
the universality of the stellar initial mass function (IMF) over the cosmic time.

mass spectrum of a stellar generati

Fix the relative number of low- and high- mass stars >
Define the chemical enrichment, the total light, the color,

and the evolution of all these quantities with time
TT III T N T

Direct stars counts in MW :

dN/dm o««cm—>* , x = - 2.3, Salpeter (1955)

then revised from Chabrier (2003) (Kroupa 2001):
turn over at low masses

the same across different MW environment
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Is the IMF universality a reasonable assumption?

3/2 ~1/2 T temperature of the gas,
MJ < T p p density of the gas

T related to metallicity Z : at fixed heating rate, the gas cooling efficiency is reduced in
absence of metals, and consequently the gravitational
collapse of low-mass stars is inhibited in metal poor gas

(e.g. Larson 2005; Bate & Bonnell 2005; Bate 2005; Bonnell et al. 2006).

Mass spectrum of stars formed in a burst of star formation is deeply connected to the
properties of the gas cloud

Among galaxy types: initial condition in which galaxies form are expected to be different.

At high redshift: the temperature was higher , primordial gas was metal poor -
disfavour the formation of low-mass stars



The variation of IMF in local ETGs

. Strong systematic variation of IMF
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The IMF in dense ETGs at z =1.4

High-z dense massive ETGs the first to form - provide insight on the early “IMF”
On the basis of the local findings and constraints
- I' — o trend in high-z massive dense ETGs at z =1.4

Spectral energy distribution fitting with the Chabrier IMF - Mcha
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The IMF in high-z dense ETGs

The lower mass normalization of high-z dense ETGs could be an evidence of an evolution of
the IMF with time or of a correlation with X.

I'-0, trend of dense ETGs at z = 1.4 .
consistent with that of local ETGs with L L
similar velocity dispersion and mean
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The IMF in ETGs

Both high-z and local massive dense ETGs have a lower mass normalization

If all massive dense ETGs form at high-z

(thus local massive dense ETGs are mostly

the descendants of high-z dense ETGs)

High mass stars
Low mass stars

/N

Top heavy IMF  Bottom light IMF

| |

not able to reproduce  in agreement with
the Z of local ETGs theoretical predictions
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the conditions of the early universe
produce a lower ratio of
high- to low- mass stars
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The IMF in ETGs

Both high-z and local massive dense ETGs have a lower mass normalization

If all massive dense ETGs form at high-z  — the conditions of the early universe
(thus local massive dense ETGs are mostly produce a lower ratio of

the descendants of high-z dense ETGs) high- to low- mass stars
- main factor is the time.

If massive dense ETGs form at any z - thf{ same conditions of the ea}‘ly
universe occur at lower redshift.




