Novae as lithium factories in the Galaxy

First evidences

<u>L. Izzo</u>, M. Della Valle E. Mason, F. Matteucci, D. Romano L. Pasquini, L. Vanzi, R. Williams, A. Jordan J.M. Fernandez, P. Bluhm, R. Brahm, N. Espinoza

Possible lithium farms in the Galaxy

a) cosmic-ray spallation of i.s. gas (p + CNO)

(Reeves+ 1990)

b) Cameron-Fowler mechanism

(Cameron & Fowler 1971)

1) ³He + ⁴He \rightarrow ⁷Be + γ 2) convection 3) ⁷Be + e⁻ \rightarrow ⁷Li + V

Possible lithium farms in the Galaxy

a) cosmic-ray spallation of i.s. gas (p + CNO) (Reeves+ 1990)

b) Cameron-Fowler mechanism

(Cameron & Fowler 1971)

1) ³He + ⁴He \rightarrow ⁷Be + γ 2) convection 3) ⁷Be + e⁻ \rightarrow ⁷Li + V

AGB stars Novae

Cosmic-ray + AGN

Novae

Classical Novae are the most "dramatic" event in the lifecycle of a Cataclismic Variable

 $CV \rightarrow binary system composed by a degenerate primary star (white dwarf) and a late type MS secondary star$

Novae

Classical Novae are the most "dramatic" event in the lifecycle of a Cataclismic Variable

 $CV \rightarrow binary$ system composed by a degenerate primary star (white dwarf) and a late type MS secondary star

The WD accretes matter from the secondary, which pilesup on the WD surface

When the pressure at the bottom of the H-accreted layer > degeneracy pressure → expansion of the external layers

The Roche geometry and accretion mechanism in CVs

Gravitational potential

Fig. 2.4: The Roche lobes can be visualised as gravitational wells in which matter flows downhill. When the red dwarf overfills its Roche lobe, matter flows over the L_1 point into the Roche lobe of the white dwarf.

Nucleosynthesis in Novae

A WD is a burnt-out core of a star → mainly He, heavy elements as C, N, O, Ne, Mg

As H is accreted from secondary \rightarrow p+p chain produces ³He, via Deuteron

formation of main ingredients for ⁷Be production

 Nucleosynthesis in Novae

 A WD is a burnt-out core of a star

 → mainly He, heavy elements as C, N, O, Ne, Mg

 As H is accreted from secondary

 → p+p chain produces ³He, via Deuteron

 formation of main ingredients for ⁷Be production

 At larger temperatures (10⁷ K) and deeper layers

 CNO cycle

 * H burns into He by using nuclei of C, N and O as catalysts

 * Isotopes of CNO inverse-beta decay (half-life 100s)

 * The runaway speeds up, implying strong convective motions and providing "fresh" H for burning

 and providing "fresh" H for burning

Nucleosynthesis in Novae

Radioactive nuclei energy is deposited into the expanding nova shell, driving expansion
 Novae as possible farms of ¹³C and ¹⁵N

Brighter – faster; Dimmer – slower

MMRD relation : amplitude of outburst A vs decay time t

S-relation

$$M_V = -7.92 - 0.81 \arctan \frac{1.32 - \log t_2}{0.23},$$

used also as distance indicator

(Della Valle & Livio 1995)

Recurrent Novae

All CNe are recurrent

Timescales of recurring outbursts vary from few years (T Pyx, RS Oph, U Sco,... 10 RNe) to $10^4 - 10^5$ years

→ We see only 1 outburst from a CN !!!

Short recurrence times have been interpreted to indicate:
- WD mass close to Chandrasekhar limit
- high accretion rate onto the primary WD

Nova Cen 2013 $V_{=} 3.5$ max $T_{=} 50 \text{ days}$

= 50 days

Nova Centauri 2013

Observations

The "iron curtain" phase

Ē

E

P-Cygni evolution

P-Cygni evolution

P

P-Cygni evolution

E

F

ID absorption features

→GOAL : using principal velocity absorption to identify absorption lines (...mainly the narrow ones...) (Williams+ 2008)

ID absorption features

Detection of a feature @ 6695.6 on Day 7 → Li I 6708 expanding @ -550 km/s

Observed for about two weeks

ID of other neutral resonance lines as Ca I 4226 K I 7665-7699 ... and Na I ...

Possible alternative to Li I 6708 ID

→DIB ? NO !

a) no known DIB @ 6695.6

b) DIB should persist with time

c) these wavelength of these absorptions vary with time (as the principal absorption moves on)

→ Fluorescence - UV pumping :
1) excitation by photon absorption (continuum or line coincidence) from a level l to a level x > l
2) spontaneous emission from x to a lower level u > l

We would have a set of over-populated levels

Example of line-pumping: O I 8446 pumped by H I Ly-beta 1025.72 (coincident with O I 1025.76)

→ Possible electric dipole transitions around Li I 6707.8

	T	he	case of L	.i I	67	'08
→ Pos	sible	ele	ectric dipole [.]	trai	nsit	ions around
			Li I 6707	7.8		
-LAB-WAVL-ANG-AIR-	SPC	TT -	TERM	-J_i	-J_k-	
6707.52	VΙ	E1	<u>z4Go-e4F</u>	9/2	- 7/2	2.742663 - 4.590589 ASD
6707.539	Fe II	E1	4F0-4G	9/2	- 7/2	2 11.206500 - 13.054420 ASD
6707.64	Cr I	E1	<u>c3D-x3Do</u>	2	- 1	4.207484 - 6.055375 ASD
6707.75	Sc I	E1	<u>4Do-4D</u>	3/2	- 5/2	2 4.049237 - 5.897098 ASD
6707.76	Ti III	E1	<u>3F-3Fo</u>	3	- 3	16.515574 - 18.363434 ASD
6707.761	Li I	E1	<u>2S-2Po</u>	1/2	- 3/2	2 0.000000 - 1.847859 009
6707.84	Ne II	E1	<u>1[2]0-2F</u>	5/2	- 7/2	2 37.630381 - 39.478217 025,059
6707.9	VIII	E1	<u>g2D-v2Do</u>	3/2	- 3/2	2 19.475450 - 21.323270 ASD
6707.912	Li I	E1	<u>2S-2Po</u>	1/2	- 1/2	2 0.000000 - 1.847817 009
6707.914	Kr I	E1	1/2[3/2]-3/2[3/2]0	2	- 2	12.143651 - 13.991468 ASD
6708.	Cl VII	E1	<u>2D-2Fo</u>	5/2	- 5/2	2 70.569600 - 72.417400 ASD

database : LineList v2.05

http://www.pa.uky.edu/~peter/newpage/

→Possible electric dipole transitions around Li I 6707.8

-LAB-WAVL-ANG-AIR-	SPC TT	TERM	-J_i-J_k-	LEVEL-ENERGYEV	-REF
6707.52	VI El	<u>z4Go-e4F</u>	9/2 - 7/2	2.742663 - 4.590589	ASD
6707.539	Fe II El	4Fo-4G	9/2 - 7/2	11.206500 - 13.054420	ASD
6707.64	Crı El	c3D-x3Do	2 - 1	4.207484 - 6.055375	ASD
6707.75	Sc I El	<u>+Do-4D</u>	3/2 - 5/2	4.049237 - 5.897098	ASD
6707.76	Ti III El	<u>3F-3Fo</u>	3 – 3	16.515574 - 18.363434	ASD
6707.761	Li I El	<u>2S-2Po</u>	1/2 - 3/2	0.000000 - 1.847859	009
6707.84	Ne II El	<u>1[2]0-2F</u>	5/2 - 7/2	37.630381 - 39.478217	025,059
6707.9	V III El	<u>g2D-v2Do</u>	3/2 - 3/2	19.475450 - 21.323270	ASD
6707.912	Li I El	2 <u>S-2Po</u>	1/2 - 1/2	0.000000 - 1.847817	009
6707.914	Kr I El	1/2[3/2]-3/2[3/2]0	2 – 2	12.143651 - 13.991468	ASD
6708.	Cl VII E1	2D-2Fo	5/2 - 5/2	70.569600 - 72.417400	ASD

Electric dipole transitions with same initial level (J = 9/2) Fe II 6769-27 Fe II 6811.49

Fe II 6769-272 4Fo-4G 9/2 - 9/2 11.206500 - 13.037568 Fe II 6811.491 4Fo-4G 9/2 - 11/2 11.206500 - 13.026219

Procedure

→Li, K and Na are alkali metals with similar Grotrian diagrams and resonant transition

(Friedjung 1979)

→ The ratio of their $\tau \propto$ abundance ratio :

 $\frac{A_m(Li)}{A_m(Na)} = \left(\frac{W_{Li6708}}{6708^2} / \frac{W_{NaD2}}{5890^2}\right) \times \frac{gf_{NaD2}}{gf_{Li6708}} \times \frac{u_{Li}}{u_{Na}}$ (Spitzer 1998) > We use the abundance ratio Li/Na and Li/K to

determine the ejected mass through numerical results of nova models of Josè & Hernanz (1998)

YIELDS FROM CO NOVA MODELS (MASS FRACTIONS)

		YIELDS FRO	m CO Nova N	IODELS (MASS	Fractions)			
	Model							
NUCLEUS	CO1	CO2	CO3	CO4	CO5	CO6	CO7	
¹ H ³ He ⁴ He ⁷ Be	5.1E - 1 7.0E - 6 2.1E - 1 4.4E - 7	3.3E - 1 9.2E - 6 1.4E - 1 9.6E - 7	3.2E - 1 6.1E - 6 1.5E - 1 3.1E - 6	4.7E - 1 1.5E - 6 2.5E - 1 6.0E - 6	3.0E - 1 4.1E - 6 1.6E - 1 8.1E - 6	1.2E - 1 2.8E - 6 9.0E - 2 4.0E - 6	3.0E – 3.7E – 1.6E – 3.1E –	
²² Ne ²² Na ²³ Na ²⁴ Mg	2.6E - 3 3.4E - 7 3.6E - 5 5.7E - 5	5.0E - 3 3.0E - 7 3.6E - 5 6.3E - 5	5.0E - 3 1.6E - 7 3.4E - 5 1.6E - 5	$\begin{array}{c} 2.2E-3\\ 3.8E-7\\ 1.6E-5\\ 4.4E-6 \end{array}$	4.8E - 3 2.9E - 7 2.0E - 5 1.8E - 5	7.3E - 3 1.1E - 7 2.4E - 5 1.0E - 5	5.0E 8.5E 3.4E 2.8E	
³⁸ Ar ³⁹ K	1.2E - 5 2.6E - 6	7.7E – 6 1.7E – 6	7.7E – 6 1.7E – 6	1.2E - 5 2.6E - 6	7.7E — 6 1.7E — 6	3.8E - 6 8.7E - 7	7.7E – 1.7E –	
					(Josè &	Hernanz 19	998)	

• Volume
$$V = 4\pi (v_{\exp}\Delta t)^3 f$$

Estimate of mass ejected
Mass H II from Hbeta:
2) Assuming ejecta as spherical shell of radius
$$r = v_{exp}\Delta t$$

*Volume $V = 4\pi (v_{exp}\Delta t)^3 f$
(Mustel & Boyarchuk 1970)
3) The observed H β flux is given by
 $I_A = \left(\frac{4\pi j_A}{N_e N_p} N_e N_p V \right) \left(\frac{1}{4\pi d^2} \right)$
Emissivity
(Osterbrock) Ne = Np

Mass H = 10^{-4} Msun → With f* = 0.5

Mass Li = $0.3 - 4.8 \times 10^{-10}$ MSun

*f is the filling factor

Mass Li = $0.3 - 4.8 \times 10^{-10}$ Msun

nova rate in the MW = 20-34 yr⁻¹

(DellaValle&Livio 1994, Shafter 1997)

<u>"slow" novae :</u>

more massive nova ejecta

15-24 yr⁻¹

(DellaValle&Duerbeck 1993)

70% of the nova pop of the MW (C Testing the Gala of Li by conside from a Testing the Galactic chemical evolution of Li by considering this contribution from all nova systems

Galactic Li enrichment

Galactic Li enrichment by novae

(D'Antona & Matteucci 1991, Romano+ 1999, Romano+ 2001, Izzo+ 2015)

The New York Eimes NEW YORK, TUESDAY, AUGUST 4, 2015 © 2015 The New York Times Observatory nel and Primas (2005) Sbordone et al. (2010) Ramirez et al. (2012) bert and Reddy (2004) Lodders et al. (2009)

EUROPEAN SOUTHERN OBSERVATORY

ASTRONOMY

Theory on Lithium in Stars May Be Confirmed

Astronomers believe that the metal lithium was created during the Big Bang 13.8 billion years ago. Yet old stars often have less lithium than might be expected, while young stars seem to have much more. Some scientists have speculated the source of extra lithium in young stars may be stellar explosions, or novae, expelling matter into space. Now lithium has been found in material ejected by the younger star Nova Centauri 2013, which may confirm the theory. The observation was made by telescopes at La Silla Observatory, the European Southern Observatory's site in Chile, above.

Che New York Eimes

© 2015 The New York Times

NEW YORK, TUESDAY, AUGUST 4, 2015

Observatory

The Register° CODING CHALLENGE 2015

In association with:

A DATA CENTRE SOFTWARE NETWORKS SECURITY INFRASTRUCTURE DEVOPS BUSINESS HARDWA

Science

Exploding 'laptop batt' IN SPAAACE! Speeding lithium spaffed by nova

One step closer to cracking riddle of light metal's origins

ASTRONOMY

Theory on Lithium in Stars May Be Confirmed

Astronomers believe that the metal lithium was created during the Big Bang 13.8 billion years ago. Yet old stars often have less lithium than might be expected, while young stars seem to have much more. Some scientists have speculated the source of extra lithium in young stars may be stellar explosions, or novae, expelling matter into space. Now lithium has been found in material ejected by the younger star Nova Centauri 2013, which may confirm the theory. The observation was made by telescopes at La Silla Observatory, the European Southern Observatory's site in Chile, above.

(Chiappini+1997)

Details on Galactic chemical model Based on the two-infall model (Chiappini+199) It includes: • AGB & super-AGB stars • Galactic cosmic-rays • Novae (Karakas+2010, Doherty201 Lemoine199) • The Galactic thick disk and inner halo form by accretion of "primordial" gas on short timescale (IGyr), that turned into stars as long as its density below a threshold • The thin disk forms out of infall of gas on longer timescales (7-8 Gyr) (Karakas+2010, Doherty2014, Lemoine1998)

of "primordial" gas on short timescale (1Gyr), that turned

(Romano+ 1999,2001)

Perspectives • Confirming the results obtained with V1369 Centhrough Li detection in other novae (V5668 Sgr ?)

t2 Sgr = 80 dd

t2 Cen = 50 dd

AAVSO data - rebinned

AAVSO data - rebinned

I'm so happy...

I'm so happy...

I'm so happy...

- Perspectives → Confirming the results obtained with V1369 Cen through Li detection in other novae (V5668 Sgr ?) → Recent Be II detection → V5668 Sgr as laboratory (see Tajitsu et al. 2016)

Ionized Beryllium

(Tajitsu+ 2016)

Ionized Beryllium

Ionized Beryllium – abundances

The abundance of Li obtained by Izzo et al. (2015) from the Li I λ 6708 is lower than the ⁷Be (= Li) abundances obtained in the present study. There had been no report in literature of detection of the Li I λ 6708 line among post-outburst novae before Izzo et al. (2015). Be-

...but...

hours as it was in the Schwarzschild-Härm calculations. The lifetime of the ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ reaction is a few hours near $8 \times 10^{7} \,^{\circ}$ K. It is thus evident that the ${}^{3}\text{He}$ content of the stellar envelope would be converted to ${}^{7}\text{Be}$. Even if the *average* ${}^{3}\text{He}$ mass fraction in the outer envelope is only 10^{-7} , the amount of ${}^{7}\text{Be}$ produced would be a factor of 10 higher

than the lithium abundances in WZ Cas, WX Cyg, T Ara, and T Sgr. Most of the ⁷Be would be mixed to a much cooler region before the formation of ⁷Li by electron capture takes place. It would seem possible that much of the ⁷Li could be preserved at the surface once the outer envelope has relaxed back toward its former state.

Cameron-Fowler 1971

- Perspectives → Confirming the results obtained with V1369 Cen through Li detection in other novae (V5668 Sgr ?) → Recent Be II detection → V5668 Sgr as laboratory (see Tajitsu et al. 2016) → Spectroscopical analysis of nova remnant

The case of CK Vul

CK Vul: evolving nebula and three curious background stars

M. Hajduk,¹* P. A. M. van Hoof² and A. A. Zijlstra³

Assuming the extent of the cloud is of the order of the projected distance of the two stars, the total lithium mass is of the order of $2 \times$ $10^{-11} \,\mathrm{M_{\odot}}$. The derived velocity of the cloud is about $100 \,\mathrm{km \, s^{-1}}$, if it expands in a plane of the sky.

- Perspectives

 • Confirming the results obtained with V1369
 through Li detection in other novae
 (V5668 Sgr ?)
 • Recent Be II detection → V5668 Sgr as
 laboratory
 (see Tajitsu et al. 2016)
 • Spectroscopical analysis of nova remnant

 Confirming the results obtained with V1369 Cen
- → CNe as possible Galactic farms of ¹³C and ¹⁵N ???

Gracias !!!

