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WHY ARE MASSIVE STARS IMPORTANT IN THE GLOBAL
EVOLUTION OF OUR UNIVERSE?

Light up regions of stellar birth = induce star formation
Production of most of the elements (those necessary to life)
Mixing (winds and radiation) of the ISM

Production of neutron stars and black holes

Cosmology (Poplll):

Reionization of the Universe at z>5
Massive Remnants (Black Holes) = AGN progenitors

Pregalactic Chemical Enrichment

High Energy Astrophysics:

Production of long-lived radioactive isotopes:
(26Al, >5Co, >’Co, *Ti, ®%Fe)

GRB progenitors

The understanding of these stars, is crucial for the interpretation of
many astrophysical events




OBSERVATIONAL CONSTRAINTS

 CMD/HR diagrams of Young Populations and OB associations
(location of RSG, BSG/RSG) in MW, LMC, SMC

* Relative number of O-type and WR stars and WR/WNE/WNL/WCO
stars (mass limits for the formation of the various VR stars)

* Number ratio of Type Il and Type Ibc SNe (mass limits for the
formation of the various kind of SNe)

* Luminosities of WR stars

* Mass distribution and Periods of young Pulsars

* Progenitor Masses of Core Collapse Supernovae

* Surface composition of Galactic and Magellanic Cloud B-type stars
 vy-rays from the decay of 2°Al, ®°Fe and *Ti in the Galaxy

* Abundance pattern in Extremely Metal Poor Stars (EMPS)

* SNIbc/GRB number ratios

e (Observed abundances

Global properties of a generation of massive stars are required to
constrain the models




ROTATION IN STELLAR MODELS: IS IT REALLY NEEDED?

Why should we include rotation in the calculation of stellar models?
Why should we complicate our life?

....simply because stars rotate!
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hence its inclusion will help us to better understand them and the world out there




12 + log [N/H
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A FEW CHALLENGES IN MASSIVE STAR EVOLUTION

Some observational evidences cannot be interpreted in terms of “classical” models
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THE PHYSICS OF ROTATION

Rotation is clearly a multidimensional effect = in order to correctly take into account
this phenomenon a 2D or even a 3D stellar evolution code should be required

Courtesy of A. Maeder & G. Meynet




THE EQUATION OF STELLAR STRUCTURES

By means of few proper assumptions it is possible to simulate the mechanical and
thermal distortions induced by rotation in a |D code (see Kippenhahn & Thomas 1970)

in this case the equations for the stellar structure may be written on equipotentials
as (Kippenhahn & Thomas 1970) :
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They keep the same form they have in spherical symmetry except for correction factors
that are determined ones the shape of the equipotentials Sy are known
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ROTATION DRIVEN INSTABILITIES: MERIDIONAL CIRCULATION

geﬂ’ — Imax

Von Zeipel (1924) was the first one to
notice that these two equations cannot be
simultaneously fulfilled in radiative
equilibrium

NG
geff — min ~ ~
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In order to balance the variation of the radiative
flux along the equipotential, a large-scale
MERIDIONAL CIRCULATION develops

courtesy of G. Meynet
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ROTATION DRIVEN INSTABILITIES: MERIDIONAL CIRCULATION

= — 8T ap — — —
V + Fraa(r, 9, 0) = pepue — CP,OE + 55 — U - (cppVT — 6VP)

Meridional circulation moves matter through the star and hence it is responsible for
both the angular momentum transport and the mixing of the chemical composition

The prescription (sign) for the velocity of the meridional circulation is crucial
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ROTATION DRIVEN INSTABILITIES: TURBULENT SHEAR
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ROTATION DRIVEN INSTABILITIES: TURBULENT SHEAR

Thermal losses reduce the restoring force

T2 — -— 02 €— U Horizontal currents reduce both the restoring
force and the mean molecular weight gradient
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TRANSPORT OF THE ANGULAR MOMENTUM

ADVECTION-DIFFUSION EQUATION

d, oy 10 10 4 Ow
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Diffusion due to turbulent
shear

The adoption of the U provided by Maeder & Zahn 1998 leads to a fourth order equation
(U contains third order derivatives of ®) = a system of 4 ODE must be solved by means
of a relaxation technique

TRANSPORT OF THE CHEMICAL SPECIES
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Presupernova Evolution of Rotating and Non
Rotating Massive Stars @ Various Metallicities

INITIAL MASSES: 13, 15, 20, 25, 30, 40, 60, 80 and 120 Mg

INITIAL COMPOSITIONS:

[Fe/H]=0, Z=1.345 10~

[Fe/H]=-1,Z=3.236 103
[Fe/H]=-2, Z=3.236 10~
[Fe/H]=-3,Z=3.236 10

Asplund et al. 2009

Scaled solar Fe/Fe;=0.1,0.01,0001
except

[C/Fe]=0.18

[O/Fe]=0.47

[Mg/Fe]=0.27

[Si/Fe]=0.37

[S/Fe]=0.35

[Ar/Fe]=0.35

[Ca/Fe]=0.33

[Ti/Fe]=0.23

(Cayrel+ 2004 and Spite+ 2005)

INITIAL EQUATORIAL VELOCITIES: 0, 150, 300 km/s

M INAF
.




MASSIVE STAR MODELS with [Fe/H]=0: CORE H BURNING

Internal evolution: mixing of core H burning products into the H-rich envelope
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MASSIVE STAR MODELS with [Fe/H]=0: CORE H BURNING

Evolutionary track in the HR diagram

M=20 M@ Z=Z®

— v=0 km/s

—— Rotation

The effective gravity is reduced = the star is less luminous and more expanded
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MASSIVE STAR MODELS with [Fe/H]=0: CORE H BURNING

Evolutionary track in the HR diagram

M=20 M@ Z=Z®

— v=0 km/s
—— Rotation

—— Rotation
Angular Momentum Transport

The angular momentum transport increases the angular velocity of the surface
—> reduces even more the effective gravity
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MASSIVE STAR MODELS with [Fe/H]=0: CORE H BURNING

Evolutionary track in the HR diagram

M=20 M@ Z=Z®

’

v=0 km/s

Rotation

Rotation

Angular Momentum Transport

Rotation

Angular Momentum Transport
Rotational Mixing

The rotational mixing increases the mean molecular weight on average = simulate the
effect of the overshooting and makes the star more compact




MASSIVE STAR MODELS with [Fe/H]=0: CORE H BURNING

Evolutionary track: Angular Momentum Transport VS Rotational Mixing
Redward Evolution Blueward Evolution

v=300 km/s

v=150 km/s

- == v=0 km/s

For v=300 km/s angular momentum transport works initially, than
rotational mixing drives the evolution in the HR diagram




MASSIVE STAR MODELS with [Fe/H]=0: CORE H BURNING

Rotating models are in general brighter, redder and live more than the non
rotating ones

Mass Loss is higher for higher L and lower T 4

Log Mass Loss Rate




MASSIVE STAR MODELS with [Fe/H]=0: CORE H BURNING

Rotating models are in general brighter, redder and live more than the non
rotating ones

Mass Loss is higher at higher L and lower T

Core H exhaustion [Fe/H]=0
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® Smaller masses, larger He core masses = Smaller envelope masses

® Higher mean molecular weight in the envelope (more compact structures)




ROTATING MODELS: CORE H BURNING @ VARIOUS METALLICITIES

Decreasing the
metallicity

Core H exhaustion [Fe/H]=0
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ROTATING MODELS: CORE H BURNING @ VARIOUS METALLICITIES

AR?
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Decreasing the
metallicity

S N ~ 7085

120} Core H exhaustion [Fe/H]=0 120} Core H exhaustion [Fe/H]=-1
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........ v=150 km/s v v=150 km/s
---v=0 km/s ---v=0 km/s

Initial Mass Initial Mass g/z*M
L ‘

* At [Fe/H] <-1 evolution at constant mass (exceptions due to the
approach to the Eddington Luminosity)

* The He core increases with decreasing the metallicity and with
increasing the initial velocity
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* Efficiency of the angular momentum transport in the interior essentially

independent of the initial metallicity (convection)
* Total angular momentum essentially constant at lower metallicities due
to the strong reduction of the stellar wind MU

ATHEMATICS OF THE UNIVERSE




ROTATING MODELS: CORE H BURNING

——v=150 km/s
——v=300 km/s

[Fe/H]=0

d\‘,_ L—"_

VARIOUS METALLICITIES

——v=150 km/s
—v=300 km/s

S~

>—

\ii\_

50 100 150 200 250 300
v (km/s)

50 100 150 200 250 300
v (km/s)

x\

x\

—v=150 km/s
—v=300 km/s

15

100 150 200 250 300
v (km/s)

100 150 200 250 300
v (km/s)

—v=150 km/s
—v=300 km/s

N

*—

i—.
L
25
J
‘;3"
A\

?.
Xh—
<
-
\_

80
i

100 150 200 250 300
v (km/s)

0

50 100 150 200 250 300
v (km/s)

50 100 150 200 250 300
v (km/s)

0O 50 100 150 200 250 300




ROTATING MODELS: CORE H BURNING @ VARIOUS METALLICITIES

VLT-FLAMES survey of Massive Stars (Hunter+ 2009)

N enhancement increasing
with the mass
[Fe/H]=-1

12 + log [N/H

12 + log [N/H

e —log g 2 3.7dex |

|
® —3.20S log g <3.7dex |
Wlpz L
)

burning objects

| (b)Supergiant

c hyd Key:
i (a)Core hydrogen e — log g < 3.2dex objects

burning objectsT o _ 2 Z 7T [

100 150 200 250 300 350 50 100 150 200 250 300 350
v sin i (km/s) v sin i (km/s)

Hunter+ 2009




Configuration Core H Depletion
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Core He Burning: Solar Metallicity Models

After core H depletion, all the solar metallicity models (except the most massive
and the most rapidly rotating) evolve toward a RSG configuration

Wolf—Rayet

v=300 km/s

5.0 4.5 . . . 5.0 4.5 4.0 3.5 5.5 5.0 4.5 4.0
Log Tey Log Tey

During the following evolution (core He burning)

—> lose most of the H-rich
envelope and evolve toward a

.The central He mass fraction at which this occurs determines how
much mass is lost during core He burning and weather the star evolves to a BSG
(WR) configuration




Core He Burning: Mass Loss

This model enters the dust production
region at the very end of core He
burning = a very small amount of mass
is lost during this phase = the star
remains a RSG

15 MQ v=0 km/s Abundant Elements
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This model enters the dust production
region at an early stage of core He
burning = all the H-rich envelope is lost
during this phase = the star evolves to a
BSG (WR) configuration

Abundant Elements

co ONe 0 Si Fe

15 Mg v=300 km/s

o

Interior Mass (Mg)

()]
[ \ U




M =220 M,

M< 15M,

Core He Depletion: Solar Metallicity Models

]

]

Configuration @ He depletion

Wolf—Rayet

v=300 km/s

5.0 4.5 4.0 3.5 5.5 5.0 4.5 4.0 3.5
Log Tey Log Tey

M213M,| =) |WR M213M,| =) | WR

WR :Log,o(T.) > 4.0
WNL: 10°< H,,,<0.4 (H burning, CNO, products)

-5
sup

WNC: 0.1 < X(C)/X(N) < 10 (both H and He burning products, N and C)

WO: [X(C)+X(O)]/X(He) 2 | (He burning products)




ROTATING MODELS with [Fe/H]=0: CORE He BURNING

M<40 M, : Rotational mixing dominates

15 Mo v=0 km/s Abundant Elements Abundant Elements

[Fe/H]=0 H He co ONe O si
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® Rotation induced mixing beyond the He convective core
® Reduced p-gradient barrier = larger convective cores

® Larger CO cores

® Continuous inward mixing of fresh “He fuel > Lower '2C left over
at core He depletion




ROTATING MODELS with [Fe/H]=0: CORE He BURNING

M=240 M, : Mass loss dominates

Abundant Elements Abundant Elements

[ S I
H He co ONe [0} Si Fe H He co ONe [0} Si Fe

60 Mg v=0 km/s 60 Mg v=300 km/s
[Fe/H]=0

~
O]
>3
~
[7)]
n
O
=
—
o
‘C
(]
ot
£

Interior Mass (Mg)

® Mass Loss uncovers the He core at the beginning of Core He burning

® He convective core progressively recedes in mass and leaves a region of
variable He

® No room for rotational mixing to operate

® Similar CO cores in rotating and non rotating stars




CO Core Mass @ Core He Depletion
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Core He Depletion: Low Metallicity Models
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ADVANCED BURNING STAGES: INTERNAL EVOLUTION OF

ROTATING AND NON ROTATING STARS @ VARIOUS Z

The CO core mass increases with decreasing the metallicity and with
increasing the initial velocity

Larger CO at core He depletion

Binding Energy at Fe Core (10*' erg)
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ADVANCED BURNING STAGES: INTERNAL EVOLUTION OF
ROTATING AND NON ROTATING STARS @ VARIOUS Z

The CO core mass increases with decreasing the metallicity and with
increasing the initial velocity

Larger CO at core He depletion |:> Stronger contraction of the CO core
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We expect larger remnant masses for lower metallicity rotating models
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Some Predictions Still To Be Verified

Due to the dramatic speed up of the advanced evolutionary stages the
significantly during these phases

= Red Supergiant (extended) SN Progenitor
= Blue Supergiant (compact) SN Progenitor
WX =Wolf-Rayet (compact) SN Progenitor with no or very little H

Non Rotating Models: the decrease of Mass Loss with metallicity implies:

* RSG progenitors increase down to [Fe/H]=-1 and then disappears below [Fe/H]=-2
*  WR progenitors progressively decrease and disappear below [Fe/H]=-2
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significantly during these phases
= Red Supergiant (extended) SN Progenitor

= Blue Supergiant (compact) SN Progenitor
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Non Rotating Models: the decrease of Mass Loss with metallicity implies:

* RSG progenitors increase down to [Fe/H]=-1 and then disappears below [Fe/H]=-2
* WR progenitors progressively decrease and disappears below [Fe/H]=-2

Rotating Models: the inclusion of rotation

@ all metallicities

* RSG progenitors increase at lower metallicities (reduction of effective gravity)
* WR progenitors increase at lower metallicities (direct/indirect enhancement of mass loss
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Some Predictions Still To Be Verified

Limiting H/He masses for the formation of the various SNe from Hachinger+ 2012

Element mass present in the ejecta (Mp)
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Induced Explosion and Fallback

* Piston (Woosley, Weaver and coll.)
Different f inducing th
oo ways of INEHEing The ‘ * Thermal Bomb (Nomoto, Umeda and coll.)

* Kinetic Bomb (Chieffi & Limongi)

explosion

Initial
Remnant

FB depends on the binding energy: the higher is the binding energy
the higher is the mass of the remnant




Induced Explosion and Fallback

* Piston (Woosley, Weaver and coll.)
Different f inducing th
oo ways of INEHEing The ‘ * Thermal Bomb (Nomoto, Umeda and coll.)

* Kinetic Bomb (Chieffi & Limongi)

explosion

Initial
Remnant

FB (mass cut) depends on the explosion energy: the higher is the
explosion energy the higher is the mass of the remnant




Induced Explosion and Fallback

* Piston (Woosley, Weaver and coll.)
Different f inducing th
oo ways of INEHEing The ‘ * Thermal Bomb (Nomoto, Umeda and coll.)

* Kinetic Bomb (Chieffi & Limongi)

explosion

Initial
Remnant

The mass cut is highly uncertain in these kind of “induced
explosions” = we cannot define with precision this quantity




Chemical Enrichment due to a Single Massive Star

Ejected Masses (often called Yields)

Let’s assume for semplicity that

Mtot
Moy = 01 Mg °°Ni e |Vi= X; dm

Mcut
Production Factors
Mtot
v / X; dm
R 7’ R Mcut
PF; = v mem) |PF=—37
? / X@nitial dm
7
Mcut

The Production Factors (PFs) provide information on the global enrichment of the
matter and its distribution




Chemical Enrichment due to a Single Massive Star

For models with Solar initial composition

Mtot Mtot
Mcut . Mcut
PFz — Mtot L % PFIL N Mtot
/ Xmitial gy, / X2 dm
Mcut Mcut

The average metallicity Z grows slowly and continuously with respect to the
evolutionary timescales of the stars that contribute to the environment enrichment

Most of the solar system distribution is the result (as a first approximation) of the
ejecta of “quasi "—solar-metallicity stars.

% We expect PFs ~ constant for all the isotopes
(at least those produced by massive stars)

this is a check for the models!
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Chemical Enrichment due to a Generation of Massive Stars

The integration of the yields provided by each star over an initial mass function ¢(m) provides
the chemical composition of the ejecta due to a generation of massive stars

Mtop
Yield averaged over a IMF Y IME — / X; ¢(m) dm

Production Factor averaged PF, = é‘ébot
IMF top
over a / X,;m gb(m) .
Mbot




Chemical Enrichment due to a Generation of Massive Stars

Isotopic Yields averaged over a Salpeter IMF
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Chemical Enrichment due to a Generation of Massive Stars

Element Yields averaged over a Salpeter IMF
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Chemical Enrichment due to a Generation of Massive Stars

Element Yields averaged over a Salpeter IMF
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* The majority of the elements from C to Sc are coproduced with O. Some of
them are underproduced by more than a factor of 2 (N F CI K)




Chemical Enrichment due to a Generation of Massive Stars

Element Yields averaged over a Salpeter IMF
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The majority of the elements from C to Sc are coproduced with O. Some of
them are underproduced by more than a factor of 2 (N F CI K)

The iron peak elements (Ti-Ni) are “correctly” underproduced compared to
O ( but this depends on the specific choice of the mass cut)




Chemical Enrichment due to a Generation of Massive Stars

Element Yields averaged over a Salpeter IMF
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The majority of the elements from C to Sc are coproduced with O. Some of
them are underproduced by more than a factor of 2 (N F CI K)

The iron peak elements (Ti-Ni) are “correctly” underproduced compared to
O ( but this depends on the specific choice of the mass cut)




Chemical Enrichment due to a Generation of Massive Stars

Element Yields averaged over a Salpeter IMF
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The majority of the elements from C to Sc are coproduced with O. Some of
them are underproduced by more than a factor of 2 (N F CI K)

The iron peak elements (Ti-Ni) are “correctly” underproduced compared to
O ( but this depends on the specific choice of the mass cut)

No production of elements heavier than Zr




Chemical Enrichment due to a Single Massive Star:The effect of the Metallicity

Production Factors increase substantially for lower metallicities
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Chemical Enrichment due to a Single Massive Star:The effect of the Metallicity

Decreasing the metallicity the efficiency of the neutron captures (secondary
processes) decreases dramatically
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Chemical Enrichment due to a Generation of Massive Star:The effect of the Metallicity
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Chemical Enrichment due to a Single Massive Star:The role of Rotation
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s-process nucleosynthesis in rotating massive stars

* Rotation induced mixing brings newly fresh synthesized '2C from the He
convective core up to the tail of the H burning shell
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s-process nucleosynthesis in rotating massive stars

* Rotation induced mixing brings newly fresh synthesized '2C from the He
convective core up to the tail of the H burning shell

« 12C s converted into '“N (CNO) which is mixed down
into the He convective core.
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s-process nucleosynthesis in rotating massive stars

* Rotation induced mixing brings newly fresh synthesized '2C from the He
convective core up to the tail of the H burning shell

« 12C s converted into '“N (CNO) which is mixed down
into the He convective core.

* N is converted into 22Ne and s-process nucleosynthesis is activated.
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s-process nucleosynthesis in rotating massive stars

* Rotation induced mixing brings newly fresh synthesized '2C from the He
convective core up to the tail of the H burning shell

« 12C s converted into '“N (CNO) which is mixed down
into the He convective core.

* N is converted into 22Ne and s-process nucleosynthesis is activated.

* After core He depletion, s-process nucleosynthesis can be also activated
in the He shell (it depends on the initial mass)
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Chemical Enrichment due to a Generation of Massive Star: The role of Rotation

® ®Segrkrp STy
ST 2
o0

Log Production Factor
Log Production Factor

[Fe/H]=0 v=0 km/s Salpeter IMF -2 v=0 km/s Salpeter IMF

10 20

Log Production Factor
Log Production Factor

[Fe/H]=0 v=150 km/s  Salpeter IMF -2 v=150 km/s  Salpeter IMF

10 20 30 5

N W bd

—_

Xe Ba
Ce
°es CapNd

o

Log Production Factor
Log Production Factor

[Fe/H]=0 v=300 km/s  Salpeter IMF

|
-

[Fe/H]=-2 v=300 km/s  Salpeter IMF

10 20 30 7 10 20 30 7 40




Summary and Conclusions

The inclusion of rotation makes:
* Larger cores (direct effect)

* More efficient mass loss (indirect effect)

The inteprlay between these two effects lead to:
* More compact structure @ preSN stage > more massive remnants

* Increase of the RSG and WR SN progenitors at all metallicities

* |ncrease of SNIb/SNII fraction at all metallicities

Nucleosynthesis:
* PFs of the majority of the elements increase with the mass for any fixed

metallicity and increase for any fixed mass with decreasing the metallicity

* No production of elements heayer than Zn is obtained in non rotating models for
metallicities [Fe/H]<-|

* The inclusion of rotation enhances the production of N, F and all the elements
heavier than Zn up to Pb (primary '*N production)

* This effect is higher for lower metallicities (more efficient rotational mixing) and
for lower mass models (higher angular momentum for a fixed initial velocity)




