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3FGL catalog3FGL catalog
4 years of Fermi-LAT observations

3033 sources: 
2041 associated with a low-energy counterpart 

992 not associated

Acero+15



  

The extragalactic The extragalactic γ-ray skyγ-ray sky

Strong γ-ray emitters:

 High radio luminosity
 Fast apparent jet speed
 High variability Doppler

Savolainen+ 2010, Lister+ 09, Kovalev+ 2009

Extragalactic γ-ray sky 
dominated by radio-loud AGN 

1752 (58%) extragalactic 
objects

1718 (98%) blazar-like 
sources

15 radio galaxies

5 NLSy1

7 normal galaxies ( γ-ray 
from cosmic rays)

Ackermann+15



  

The extragalactic The extragalactic γγ -ray sky-ray sky

Credit: H.-J. Röser

Presence of relativistic jets 

Credit: C. Carilli

Only in 10% of AGN



  

Relativistic jetsRelativistic jets

 Luminosity ~ 1049 – 1050 erg/s

Non-thermal emission

 Low energy: synchrotron

 High energy: inverse Compton

Relativistic electrons can 
scatter low energy photons

 their own synchrotron photons 
(Synchrotron-self Compton)

Seed photons: 

 external photons from torus, disk, 
BLR... (External Compton)

Donato et al. 2001

Blazar sequence



  

Relativistic jetsRelativistic jets
Non-thermal emission

 Low energy: synchrotron

 High energy: inverse Compton

Relativistic electrons can 
scatter low energy photons

 their own synchrotron photons 
(Synchrotron-self Compton)

Seed photons: 

 external photons from torus, disk, 
BLR... (External Compton)

Ghirlanda et al. 2010

Existence of radio-gamma correlation for 
both BL Lacs and FSRQ



  

Relativistic jetsRelativistic jets
Non-thermal emission

 Low energy: synchrotron

 High energy: inverse Compton

Relativistic electrons can 
scatter low energy photons

 their own synchrotron photons 
(Synchrotron-self Compton)

Seed photons: 

 external photons from torus, disk, 
BLR... (External Compton) Existence of radio-gamma correlation for 

both BL Lacs and FSRQ

Courtesy of Giroletti

FSRQ

BL Lacs

RG



  

Open questionsOpen questions

 What is the γ-ray emitting mechanism?

 Where is the region responsible for γ-ray emission?

 Shock propagation, turbulence, velocity gradient?

 What is the structure of the magnetic field in the jet?

 .....



  

Open questionsOpen questions

BLR

Shock-in-jet model: where? how?

Torus

 Within the BLR:
 > few parsecs:

 ≾  1 pc:

- IC with UV

- IC with IR

- SSC, IC with sync 
photons from a 
different e- population

Radio/γ-ray time lag depends on the location of the shock

- γ-ray leads radio

- γ-ray and mm 
simultaneous

- γ-ray and mm 
simultaneous or
radio leads γ-ray

- No VHE emission 



  

Single-dish studies of large samples: Single-dish studies of large samples: 
F-GAMMAF-GAMMA

Cross-correlation between the γ-ray and radio light curves of a sample of 54 
Fermi blazars observed between 11 cm and 2 mm. 
Additional 0.8 mm APEX data  for 25 blazars.

γ-ray leads the radio variability

Time delay increases with frequency:  

The γ-ray/radio distance decreases with 
frequencies:

 76±23 days at 11 cm   
 7±9 days at 2 mm   

 9.8±3.0 pc at 11 cm   
 0.9±1.1 pc at 2 mm   

Fuhrmann+14



  

Single-dish studies of large samples: Single-dish studies of large samples: 
MetsMetsähoviähovi

Cross-correlation between the radio and γ-ray light curves of a sample of 60 
Fermi blazars observed at 37 GHz. 

Radio leads the γ-ray variability in FSRQ

Time delay between the onset of the mm 
flare and the peak of the γ-ray flare 

The γ-ray region should be located ~ 7.4±1.3 pc 
downstream along the jet:

 70 days  - observer frame   
 30 days  - source frame 
  

Leon-Tavares+11

No clear radio/γ-ray correlation in BL Lacs



  

How can we answer (or try to..)?How can we answer (or try to..)?

High-resolution + multifrequency + multiepoch + polarimetry

Multi-epoch VLBI observations of flaring sources

Cutini+14 Orienti+14

VLBA

EVN

Kovalev+07

Hada+13

D'Ammando+13

FSRQ NLSy1 High-z FSRQ RG



  

The brightest blazar: 3C 454.3The brightest blazar: 3C 454.3

An ideal candidate for studying the radio/γ-ray connection

The most active blazar in gamma rays during the first 3 years of Fermi.

2x1050 erg/s



  

Radio and Radio and γγ -ray light curves-ray light curves

γ-ray Fermi 

43 GHz VLBA

15 GHz OVRO

The rise of the mm flux 
density precedes the 

γ-ray flare 

γ-ray produced pc 
away from the core

γ-ray region opaque to 
cm emission

Orienti, in prep



  

The The γγ -ray region-ray region

γ-ray Fermi 

43 GHz VLBA

15 GHz OVRO

The increase of γ-ray 
and mm emission 
seems simultaneous. 
At 15 GHz it is delayed 
by about 2 months. 

Co-spatiality of γ-
ray and mm emission 
produced on pc scale

3C 454.3

 IR photons from the 
dusty torus
 Synchro photons from 
different e- population

Sikora+08

Reconfinement shock in 
toroidal magnetic field 
+ IR photons



  

Superluminal motionSuperluminal motion

γ-ray Fermi 

43 GHz VLBA

15 GHz OVRO

Superluminal knot is the observable 
manifestation of a propagating shock

Usually ejected close to a γ-ray flare

Some γ-ray flares without 
knot ejection

Jorstad+13



  

Magnetic fieldMagnetic field

Mar 11

Apr 11

Jul 11

 VLBI: Flux and polarization dominated by the knot 
ejected in Dec 2009 interacting with a stationary shock

Jorstad+13

Knot EVPA parallel to the jet axis, as expected for 
internal shock or reconfinement shock in a toroidal 
magnetic field (e.g. Sikora+08)

 Single dish: EVPA rotates of about 90°

Lee+13



  

Observational cluesObservational clues

BLR

TORUS

UV

IR

WHERE? HOW?

 pc scale IR from torus

 > 10 parsec

Standing conical 
shock

WHO?

Internal shock

Reconfinement 
shock

Synchro from 
different e- 

population

SSCSynchro/
SSC



  

Pc-scale distance Causality argument < 1016 cm

Large changes in the 
inner jet position angle 

Jet knot occupies only a fraction of 
the jet cross-section

Lister+13

The The γγ -ray region-ray region



  

A very active blazar: PKS 1510-089A very active blazar: PKS 1510-089
Many bright γ-ray flares. Superluminal knots ejected ~ every year

4x1048 erg/s

A FSRQ Detected above 100 GeV!



  

Shock stagesShock stages
VLBI: Detection of superluminal knotsMultifrequency: schock stages    +

IC
synchro

adiabatic

Peak flux density depends 
on the shock stage.

Orienti+13 PKS 1510-089

Not all γ-ray flare close 
in time with the ejection 
of superluminal knots

?

VHE

The γ-ray and mm flare 
seems simultaneous. 
Delayed at longer λ

Cospatiality in a
pc-scale region



  

Polarization: core componentPolarization: core component

VHE

Pre
lim

in
ar

y γ-ray Fermi 

22 GHz VERA

Optical EVPA 
rotates ~380∘ 
in 7 days

No radio 
counterparts

Optical flare 
close to the 
γ-ray flare

Shock within the BLR moving 
in a helical magnetic field

The interaction with a standing 
shock at pc-scale distance may 
produce the second huge flare

Orienti+13



  

Polarization: jet componentPolarization: jet component

A B C

As the knot emerges from the core 
its EVPA aligned to ~ 80∘

EVPA of the knots 
is roughly ⊥ to the 
jet axis. 

Reconfinement 
shock in a 
chaotic B?

Orienti+, in prep

Oblique shock?



  

Observational cluesObservational clues

BLR

TORUS

UV

IR

WHERE? HOW?

 pc scale IR from torus

 > 10 parsec

Standing conical 
shock

WHO?

Internal shock

Reconfinement 
shock

Synchro from 
different e- 

population

SSC

Synchro/
SSC

Helical B

Magnetic field 
 reconnection

UV/optical from 
BLR

 < pc 

Different flares from different 
regions along the same jet



  

SBS0846+513: relativistic jet in NLSy1SBS0846+513: relativistic jet in NLSy1

No γ-ray flare detected close in time with the 
ejection of a new jet component. 

β
app

= 9.3±0.6

D'Ammando+12

No seed photons?

Knot ejection

No clear radio/γ-ray connection



  

The radio galaxy NGC 1275The radio galaxy NGC 1275
3C 84 is a nearby z=0.0176 radio galaxy with recurrent radio activities. 

A: ~10 kpc, t
syn

~ 105 yr 

C: ~1pc, ~5 yr, 2005?

B: ~10 pc, ~ 50 yr, 1959?  

A

B

C

Detected by Fermi with luminosity 
7 times higher than EGRET limit
-ray variability, origin < 1 pc?

Pedlar+90 Nagai+10

Abdo+09



  

The trigger: two zone model – 3C 84The trigger: two zone model – 3C 84

Detected at VHE by MAGIC

No radio/γ-ray correlation

No superluminal component

Limb-brightened when γ-ray-loud  

Edge-darkened when γ-ray-quiet

Nagai et al. 2014 Dhawan et al. 1996

SED NOT consistent with 
one-zone region, e.g. shock

SED consistent with a spine-
layer model

Tavecchio & Ghisellini 2014



  

Open questionsOpen questions

BLR

TORUS

UV

IR

 Sub-pc scale

WHERE? HOW?

UV, optical 
from BLR

 pc scale IR from torus

Magnetic field 
 reconnection

 > 10 parsec
Standing conical 
shock

WHO?

Internal shock

Reconfinement 
shock

Synchro from 
different e- 

population

 Two-zone 
model

Velocity gradient Synchro from 
different e-  

population

Ghisellini+08



  

Not only jetsNot only jets

What about high-z γ-ray blazars?

Only a few high-z blazars (64 in the 3FGL)

Faint and soft sources

They become very luminous and harder during flares

Extragalactic Background Light studies!



High-z blazar TXS 0536+145 (z=2.69)High-z blazar TXS 0536+145 (z=2.69)

6.6x1049 erg/s

Radio delayed by 4-5 months (obs frame)

It is the γ-ray flaring blazar at the highest redshift detected so far

8.4 GHz

15 GHz

24 GHz

Orienti+14



  

High-z High-z γγ -ray blazars and the EBL-ray blazars and the EBL

Lγ - z Γ  - Lγ 

4C +71.07

TXS 0536+145

TXS 0536+145

4C +71.07



TXS 0536+145 and the EBL TXS 0536+145 and the EBL 

Spectral hardening:

Γ  =  2.37± 0.09

Γ  =  2.05± 0.08Flare

Average

At z = 2.69, the optical depth τ ~ 1 
should be at 40 Gev (Finke 2010)

The highest photon energy is 11.2 GeV, 
compatible with the EBL models.

Γ  - z 

TXS 0536+145

4C +71.07



  

SummarySummary

γ-ray sky dominated by blazar population 

 

Flaring γ-ray emission from different region of the jet

Connection between radio and γ-ray emission

The trigger: shock-in-jet or velocity gradient

Change in the jet structure

High-z blazars and the EBL
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