

Relativistic jets and the Radio/y-ray connection

M. Orienti

(INAF-IRA)

F. D'Ammando, M. Giroletti, D. Dallacasa, G. Giovannini, T. Venturi, J. Finke, K. Hada, H. Nagai, M. Ajello, et al.

- Background
- The tip of the iceberg: bright and flaring blazars
- Uncommon *γ*-ray emitters: what's new
- Conclusions

3FGL catalog

4 years of Fermi-LAT observations

2041 associated with a low-energy counterpart992 not associated

3033 sources:

The extragalactic y-ray sky

1752 (58%) extragalactic objects

1718 (98%) blazar-like sources

15 radio galaxies

5 NLSy1

7 normal galaxies (γ-ray from cosmic rays) Ackermann+15

Strong γ-ray emitters:

- High radio luminosity
- Fast apparent jet speed
- High variability Doppler

Savolainen+ 2010, Lister+ 09, Kovalev+ 2009

Extragalactic γ-ray sky dominated by radio-loud AGN

The extragalactic y-ray sky

Only in 10% of AGN

3C 273 and its Jet

Presence of relativistic jets

Hubble Space Telescope

Relativistic jets

Non-thermal emission

Blazar sequence

- Low energy: synchrotron
 Relativistic electrons can scatter low energy photons
- High energy: inverse Compton
 Seed photons:
- external photons from torus, disk, BLR... (External Compton)
- their own synchrotron photons (Synchrotron-self Compton)

Luminosity ~ $10^{49} - 10^{50}$ erg/s

Relativistic jets

Non-thermal emission

• Low energy: **synchrotron** Relativistic electrons can

scatter low energy photons

- High energy: inverse Compton
 Seed photons:
- external photons from torus, disk, BLR... (External Compton)
- their own synchrotron photons (Synchrotron-self Compton)

Ghirlanda et al. 2010

Existence of radio-gamma correlation for both BL Lacs and FSRQ

Relativistic jets

Non-thermal emission

• Low energy: **synchrotron**

Relativistic electrons can scatter low energy photons

• High energy: inverse Compton

Seed photons:

- external photons from torus, disk, BLR... (External Compton)
- their own synchrotron photons (Synchrotron-self Compton)

Existence of radio-gamma correlation for both BL Lacs and FSRQ

- What is the γ-ray emitting mechanism?
- Where is the region responsible for γ-ray emission?
- Shock propagation, turbulence, velocity gradient?
- What is the structure of the magnetic field in the jet?

Shock-in-jet model: where? how?

Radio/ γ -ray time lag depends on the location of the shock

Single-dish studies of large samples: F-GAMMA

Cross-correlation between the γ-ray and radio light curves of a sample of 54 Fermi blazars observed between 11 cm and 2 mm. Fuhrmann+14 Additional 0.8 mm APEX data for 25 blazars.

γ-ray leads the radio variability

Time delay increases with frequency:

- 76±23 days at 11 cm
- 7±9 days at 2 mm

The γ-ray/radio distance decreases with frequencies:

- 9.8±3.0 pc at 11 cm
- 0.9±1.1 pc at 2 mm

Single-dish studies of large samples: Metsähovi

Cross-correlation between the radio and γ-ray light curves of a sample of 60 Fermi blazars observed at 37 GHz.

Radio leads the γ -ray variability in FSRQ

Time delay between the onset of the mm flare and the peak of the γ-ray flare

- 70 days observer frame
- 30 days source frame

The γ -ray region should be located ~ 7.4±1.3 pc downstream along the jet:

No clear radio/γ-ray correlation in BL Lacs

How can we answer (or try to..)?

High-resolution + multifrequency + multiepoch + polarimetry

Multi-epoch VLBI observations of flaring sources

The brightest blazar: 3C 454.3

The most active blazar in gamma rays during the first 3 years of Fermi.

An ideal candidate for studying the radio/y-ray connection

Radio and y-ray light curves

The rise of the mm flux density precedes the γ-ray flare ↓ γ-ray produced pc away from the core

γ-ray region opaque to cm emission

The y-ray region

The increase of **γ-ray and mm emission** seems **simultaneous**. At 15 GHz it is delayed by about 2 months.

Co-spatiality of γray and mm emission produced on pc scale

Sikora+08

Reconfinement shock in toroidal magnetic field + IR photons

- IR photons from the dusty torus
- Synchro photons from different e⁻ population

Superluminal motion

Superluminal knot is the observable manifestation of a propagating shock

Usually ejected close to a γ -ray flare

Magnetic field

- Single dish: EVPA rotates of about 90°
- VLBI: Flux and polarization dominated by the knot ejected in Dec 2009 interacting with a stationary shock

Knot EVPA parallel to the jet axis, as expected for internal shock or reconfinement shock in a **toroidal magnetic field** (e.g. Sikora+08)

Mar 11

Jul 11

Observational clues

WHERE? WHO? HOW?

• pc scale

Internal shock

Reconfinement shock

Standing conical shock

IR from torus

SSC

Pc-scale distance

Causality argument $< 10^{16}$ cm

Large changes in the . inner jet position angle Jet knot occupies only a fraction of the jet cross-section

A very active blazar: PKS 1510-089

Many bright γ -ray flares. Superluminal knots ejected ~ every year

A FSRQ Detected above 100 GeV!

Shock stages

Multifrequency: schock stages + VLBI: Detection of superluminal knots

The **\gamma-ray and mm flare** seems **simultaneous**. Delayed at longer λ

Cospatiality in a pc-scale region

Polarization: core component

2011.37

(%) d

602

500 E

400

100

Orienti+13

(ge 300 200

×

Δ

2011.43

Optical EVPA

2011.49

740

T (MJD - 55000)

Optical polarization

2011.55

2011.61

No radio counterparts The interaction with a standing shock at pc-scale distance may produce the second huge flare

760

Shock within the BLR moving

in a helical magnetic field

780

Optical flare close to the γ-ray flare

Optical EVPA rotates ~380° in 7 days

Polarization: jet component

Orienti+, in prep

As the knot emerges from the core its EVPA aligned to ~ 80°

EVPA of the knots is roughly \perp to the jet axis.

Oblique shock?

Reconfinement shock in a chaotic B?

Observational clues

	WHERE?	WHO?	HOW?
	• < pc	Magnetic field reconnection	UV/optical from BLR
Synchro/ SSC	• pc scale	Internal shock	IR from torus
	• > 10 parsec	Reconfinement shock	SSC
	TORUS	Standing conical shock	Synchro from different e ⁻ population
UV BLR	E r	Different flares fron egions along the same	ı different me jet

Helical B

SBS0846+513: relativistic jet in NLSy1

The radio galaxy NGC 1275

3C 84 is a nearby z=0.0176 radio galaxy with recurrent radio activities.

The trigger: two zone model – 3C 84

Detected at VHE by MAGIC No radio/γ-ray correlation No superluminal component Limb-brightened when γ-ray-loud Edge-darkened when γ-ray-quiet

SED NOT consistent with one-zone region, e.g. shock

SED consistent with a spinelayer model Tavecchio & Ghisellini 2014

R

WHERE? WHO?

• Sub-pc scale Magnetic field reconnection

Internal shock

Reconfinement

shock

Standing conical

• pc scale

TORUS

IR from torus

HOW?

UV, optical

from **BLR**

Synchro from different e⁻ population

Synchro from different e⁻ population

UV

BLR

• Two-zone model

Velocity gradient

shock

• > 10 parsec

Not only jets

What about high-z γ-ray blazars?

Only a few high-z blazars (64 in the 3FGL)

Faint and soft sources

They become very luminous and harder during flares

Extragalactic Background Light studies!

High-z blazar TXS 0536+145 (z=2.69)

Orienti+14

Radio delayed by 4-5 months (obs frame)

1200 2012.3 2012 2012.1 2012.2 150 1000 8.4 GHz 800 s (mJy) 6.6x10⁴⁹ erg/s 600 400 200 1200 0.0 2 - S 100 15 GHz 1000 F \bigcirc cm⁻² 800 (Yun) S 600 400 10⁻⁸ ph -0.5 200 1200 50 1000 24 GHz 800 ¥ S (mJy) 600 ¥ ¥ 400 200 2013.0 t (y) 2013.5 Z012.5 0 56000 5605 55950 Time [MJD]

It is the γ -ray flaring blazar at the highest redshift detected so far

High-z y-ray blazars and the EBL

Ly - z

TXS 0536+145 and the EBL

Γ - z

Spectral hardening:

Average $\Gamma = 2.37 \pm 0.09$

Flare $\Gamma = 2.05 \pm 0.08$

At z = 2.69, the optical depth $\tau \sim 1$ should be at 40 Gev (Finke 2010)

The highest photon energy is 11.2 GeV, compatible with the EBL models.

Summary

- γ -ray sky dominated by blazar population
- Connection between radio and *y*-ray emission
- Flaring γ -ray emission from different region of the jet
- The trigger: shock-in-jet or velocity gradient
- Change in the jet structure
- High-z blazars and the EBL