XMM-Newton CDF-S sources vs. Chandra 4Ms & E-CDF-S sources

Francisco J. Carrera, Cristian Vignali, ...

XMM-CDF-S meeting, Cervia, 31-May-2012

Summary of work

- Cross-correlation using Likelihood Ratios
 - Merging of all available information
- Generation of Bayesian SNR map (2-10keV)
- Generation of finding charts
- FITS files and web page
- Iterations with Cristian Vignali:
 - (Objective) criteria about blending of Chandra sources to form a XMM-Newton source
 - (Objective) criteria about "new" XMM-Newton sources

Starting catalogues

- XMM-Newton:
 - pwxd-eml-merged-2-10-3-4sigma.fits (411 sources):
 - Includes: RA,Dec, RA_err, PWXD_Signif, Exp_time, Offax, DET_ML, FLUX, REDSHIFT
 - Added: num_X, FLUX28
 - SUMMARY.Jan2012.txt (189 sources)
 - Includes: zOABo,OABoNotes
- Chandra:
 - CDF-S: Xue+11 Tables 3,6 (Supplementary +1000)
 - E-CDF-S: Lehmer+05 Tables 2,6 (Supplementary +1000)
 - Includes: info. on optical/NIR/MIR/VLA counterparts (Xue+11, Silverman+10)
 - Includes: RA, Dec, errpos, HFlux, dCX, zadopt
 - Added: n_C, ID (E-CDF-S:E), localDens (N(>S) Luo+10)

Cross-correlation using Likelihood Ratios (Pineau+11)

 If *r* is mutual distance, *σ* is combined positional error and λ is localDens:

 $LR \propto \exp(-r^2/2\sigma^2)/2\lambda$

- *LR⇒P* using simple constant prior *P*(*H*_{cp}):
 from iterative procedure
- For each pair XMM-Newton Chandra (XCID):
 - angDist: r
 - sigDist: r/σ
 - reliability: P (independently for all pairs for same XMM)
- Merged CDF-S 4Ms,E-CDF-S, removed duplicates
- Setting "Good" pairs as reliability≥0.7
 - Ignoring pairs with $P/P_{max} < 0.03$ (chosen "by eye")
 - Ignoring pairs for XMMsou with RA_err>> (5 sou)

X-corr using Likelihood Ratios: results

- Out of the 411 XMM sources:
 - 58: no Chandra counterpart
 - 6 outside Chandra 4Ms & E-CDF-S
 - Checking rest (see later and Cristian's talk)
 - 353: ≥1 Chandra counterpart (P/P_{max} >0.03)
 - 310: 1 ctpart
 - 37: 2 ctparts
 - 6: 3 ctparts
 - − 326/353 (92%): P_{max}≥0.7
 - − 297/353 (84%): P_{max}≥0.8
 - − 232/353 (66%): P_{max}≥0.9

X-corr using Likelihood Ratios: results

- 337 XMM sources with PWXD_Signif≥4, DET_ML≥4.6:
 - 18: no Chandra counterpart
 - 319: ≥1 Chandra counterpart (P/P_{max} >0.03)
 - 303: 1 ctpart
 - 28: 2 ctparts
 - 6: 3 ctparts
 - 299/319 (94%): *P*_{max}≥0.7
 - 276/319 (87%): P_{max}≥0.8
 - − 218/319 (68%): P_{max}≥0.9

X-corr using Likelihood Ratios: results

- 171 XMM sources with PWXD_Signif≥8, Exp_time≥10⁶s:
 - 0: no Chandra counterpart
 - 171: \geq 1 Chandra counterpart (P/P_{max}>0.03)
 - 156: 1 ctpart
 - 12: 2 ctparts
 - 3: 3 ctparts
 - 170/171 (99%): *P*_{max}≥0.7
 - − 167/171 (98%): P_{max}≥0.8
 - 157/171 (92%): *P*_{max}≥0.9
 - 147/171: $P_{\text{max}} \ge 0.9 \& 1 \text{ ctpart} \bigoplus_{0.5}^{0.6} 0.5$
 - let's do some statistics...

Statistics on "good quality counterparts"

- PWXD_Signif≥8, Exp_time≥10⁶s, P≥0.9, single ctpart: 147
 - $(FLUX28-HFlux)/FLUX28_ERR = N(0,1)?$
 - One sou. FLUX28>10⁻¹³cgs \Rightarrow Using only FLUX28<10⁻¹³ cgs & Chandra det. (140)
 - Average: -1.2
 - Standard Deviation=7.1
 - 2(FLUX28-HFlux)/(FLUX28+HFlux) (140):
 - Average: -0.06
 - Standard Deviation: 0.33

Statistics on "good quality counterparts"

- PWXD_Signif≥8, Exp_time≥10⁶s, P≥0.9, single ctpart: 147
- Using only FLUX28<10⁻¹³ cgs & Chandra det.:140
 - $dRA=(RA_X-RA_C)*COS(Dec_X)*3600:$
 - Average: -0.23 (normalizing to combined angular pos. err.: -0.13)
 - Standard Deviation=1.07 (0.58)
 - $dDec=(Dec_X-Dec_C)*3600:$
 - Average: 0.17 (0.10)
 - Standard Deviation: 1.03 (0.49)

Statistics on "good quality counterparts"

- PWXD_Signif≥8, Exp_time≥10⁶s, P≥0.9, single ctpart: 147
- Using only FLUX28<1E-13 cgs & Chandra det.:140
 - dRA=(RA_X-RA_C)*COS(Dec_X)*3600/errPos:
 - Average: -0.23 (normalizing to combined angular pos. err.: -0.13)
 - Standard Deviation=1.07 (0.58)
 - dDec=(Dec_X-Dec_C)*3600/errPos:
 - Average: 0.17 (0.10)
 - Standard Deviation: 1.03 (0.49)

Generation of Bayesian SNR map (2-10keV)

- Using 2-10keV total (sources+bgd), bgd and exposure time images
- Checked that for Exp_time≥1Ms gaussian statistics apply
- Using:
 - Flat prior: countrate c≥0
 - Source can't have negative countrate (possible if "pure" Gaussian statistics)
 - Gaussian PSF (Rovilos+12): FWHM=10.5arcsec
- For each pixel calculating probability of countrate of a source in that pixel P(c) ⇒ SNR
- Appear as SNR=2,3,...10 contours in finding charts

Generation of finding charts

• XCID: 11_424

FITS files and web page (updated 4 May 2012)

• EVERYTHING copied over to

http://venus.ifca.unican.es/~carreraf/XMM_CDF-S/

- Explanations under AAAREADME.txt
 - EVERYTHING in web.tar
 - For simple-minded users:
 - XMM_Chandra_crossID.fits
 - HTML file under Fcharts/
 - For users interested in cross-ID issues:
 - XMM_Chandra_crossID_check.fits

Iterations with Cristian Vignali

- More thorough analysis of optical/NIR/MIR ctparts and redshifts
- Rich variety of issues comparing Chandra/XMM-Newton sources, generally in agreement, but:
 - (Objective) criteria about blending of Chandra sou. \Rightarrow XMM-Newton sou.
 - (Objective) criteria about "new" XMM-Newton sou.

Example of probable not blend

XMM#26 FLUX28=(3.1±0.4)×10⁻¹⁵ cgs round contours
485E: P=0.98 HFlux=4.7×10⁻¹⁵ cgs 487E: P=0.77 HFlux<1.3×10⁻¹⁵ cgs

Example of possible blend

• XMM#8: no emldetect

- 222E: *P*=0.82 HFlux=1.1×10⁻¹⁵ cgs 223E: *P*=0.71 HFlux<1.2×10⁻¹⁵ cgs

Example of spurious source

- XMM#400: no emIdetect
 - No nearby Chandra source (outside 4Ms area)

Example of new source

- XMM#176: FLUX28=(1.51±0.17)×10⁻¹⁵ cgs
 - Hint of hard Chandra source

Example of source with large distance

• XMM#383: