

M.Tanaka, V.Allevato, N.Cappelluti, M. Cooper, A.Choi, C.Heymans, D. Wilman, F.Ziparo, C.Schmid + CDFS team

Fluctuations down to 5x10⁻¹⁷ ergs/s/cm²

Alexis Finoguenov

Cluster cosmology

Arcminute spatial scales are confused

Alexis Finoguenov

extended sources in CDFS

Confusion due to overlapping profiles of galaxy groups

Alexis Finoguenov

Cluster cosmology in Deep Fields

CDFS vs COSMOS

Random catalog

ACF of galaxy groups

GEMS

10

Lx-Mass from weak lensing

dn/dz – the void is <0.6

Alexis Finoguenov

Cluster cosmology in Deep Fields

Kurk supercluster: just a bunch of groups

Alexis Finoguenov

Cluster cosmology in Deep Fields

Conclusions

- CDFS delivered a very unique catalog of galaxy groups, probing the interestingly low halo masses.
- We have compared the mass calibration with the weak lensing signal and the clustering, finding a good agreement
- Statistics of CDFS is consistent with LCDM, once we remove the void or stay above z>0.6
 - Confusion makes identification a hard work and it might be incomplete at low S/N
 - LSS at z=1.6 is detected with 6 groups in the 2-3 10¹³M_{sun} range