Multi-epoch variability of α_{ox} in the CDFS

Fausto Vagnetti

most results by: Marco Antonucci + Dario Trevese, Maurizio Paolillo, ...

XMM CDFS Team meeting - Cervia, 2012 May 31- June 1

Friday, June 1, 2012

outline

present work on the XMM CDF-S data is part of a research on the variability of α_{ox} with analyses of more samples

the α_{ox} -L_{UV} relation

studied by many authors, e.g. Avni & Tananbaum 1986, Vignali et al 2003, Strateva et al 2005, Steffen et al 2006, Just et al 2007, Lusso et al 2010, Young et al 2010, Grupe et al 2010 etc $\alpha_{ox} = \frac{\log[L_{\nu}(2\text{keV})/L_{\nu}(2500\text{\AA})]}{\log[\nu(2\text{keV})/\nu(2500\text{\AA})]} = 0.384\log\frac{L_X}{L_{UV}}$

to analyse α_{ox} variability wish to have samples with multi-epoch, simultaneous X/UV measurements

to analyse α_{ox} variability wish to have samples with multi-epoch, simultaneous X/UV measurements

•XMM serendipitous source catalogs

Vagnetti et al 2010, 192 radioquiet non-BAL sources, 41 multiepoch (2-9 epochs)

to analyse α_{ox} variability wish to have samples with multi-epoch, simultaneous X/UV measurements

- •XMM serendipitous source catalogs Vagnetti et al 2010, 192 radioquiet non-BAL sources, 41 multiepoch (2-9 epochs)
- •Swift sample by Grupe et al 2010

90 low z sources re-analysed by us, 67 multi-epoch (2-8 epochs), in progress

to analyse α_{ox} variability wish to have samples with multi-epoch, simultaneous X/UV measurements

- •XMM serendipitous source catalogs Vagnetti et al 2010, 192 radioquiet non-BAL sources, 41 multiepoch (2-9 epochs)
- •Swift sample by Grupe et al 2010

90 low z sources re-analysed by us, 67 multi-epoch (2-8 epochs), in progress

•XMM deep survey in the CDF-S

20 multi-epoch sources (2-33 epochs), in progress

to analyse α_{ox} variability wish to have samples with multi-epoch, simultaneous X/UV measurements

- •XMM serendipitous source catalogs Vagnetti et al 2010, 192 radioquiet non-BAL sources, 41 multiepoch (2-9 epochs)
- •Swift sample by Grupe et al 2010

90 low z sources re-analysed by us, 67 multi-epoch (2-8 epochs), in progress

•XMM deep survey in the CDF-S

20 multi-epoch sources (2-33 epochs), in progress

multi-epoch survey of the same sky area ideal to get detailed information on individual sources

XMM serendipitous source catalogs

dispersion and variability of α_{ox}

how much intra-source and how much inter-source?

intra-source and inter-source dispersion

Swift sample by Grupe et al 2010

90 low redshift sources (z<0.35)74 multi-epoch, 67 radio-quietanalysis in progress

Swift sample by Grupe et al 2010

90 low redshift sources (z<0.35)74 multi-epoch, 67 radio-quietanalysis in progress

tracks in the α_{ox} -L_{UV} plane are not much different from serendipitous sample

Swift sample by Grupe et al 2010

XMM-Newton deep survey in the CDFS

preliminary analysis of XMM-Newton archive on HEASARC

also in the same field 8 epochs PI Bergeron 2001-2002

25 epochs PI Comastri 2008-2010

great advantage: many epochs 8+25=**33**

XMM-Newton Master Log & Public Archive

obsid	status	name	ra	dec	time	duration	pi lname	pi fname	public date	data in heasarc	Search Offset
0108061601	archived	AXAF Ultra I	Deep F 03 32 28.00 -	27 48 30.0	2001-07-27 02:03:20	9797	Jacqueline	Bergeron	2003-05-17	Y	0.000 (CDFS)
0108061701	archived	AXAF Ultra I	Deep F 03 32 26.70 -	27 48 40.0	2002-01-14 16:48:09	4221	Jacqueline	Bergeron	2003-05-17	Y	0.332 (CDFS)
0108062201	archived	AXAF Ultra I	Deep F 03 32 26.48 -	27 48 33.1	2002-01-20 16:14:36	3118	Jacqueline	Bergeron	2003-05-17	Y	0.339 (CDFS)
☑ 0108062101	archived	AXAF Ultra I	Deep F 03 32 26.45 -	27 49 15.3	2002-01-20 17:08:24	62119	Jacqueline	Bergeron	2003-05-17	Y	0.829 (CDFS)
☑ 0108061901	archived	AXAF Ultra I	Deep F 03 32 25.15 -	27 49 03.8	2002-01-17 16:38:43	54218	Jacqueline	Bergeron	2003-05-17	Y	0.845 (CDFS)
☑ 0108062301	archived	AXAF Ultra I	Deep F 03 32 25.37 -	27 49 08.9	2002-01-23 00:23:50	88620	Jacqueline	Bergeron	2003-05-17	Y	0.871 (CDFS)
0108062001	archived	AXAF Ultra I	Deep F 03 32 25.04 -	27 49 25.3	2002-01-16 16:26:50	3321	Jacqueline	Bergeron	2003-05-17	Y	1.130 (CDFS)
☑ 0108061801	archived	AXAF Ultra I	Deep F 03 32 25.01 -	27 49 25.2	2002-01-16 17:24:02	63018	Jacqueline	Bergeron	2003-05-17	Y	1.133 (CDFS)
☑ 0108060401	archived	AXAF Ultra I	Deep F 03 32 29.08 -	27 47 21.1	2001-07-27 09:03:09	49906	Jacqueline	Bergeron	2003-05-17	Y	1.172 (CDFS)
☑ 0108060501	archived	AXAF Ultra I	Deep F 03 32 31.70 -	27 47 39.4	2001-07-27 23:42:55	64267	Jacqueline	Bergeron	2003-05-17	Y	1.175 (CDFS)
☑ 0108060701	archived	AXAF Ultra I	Deep F 03 32 23.93 -	27 49 33.7	2002-01-14 17:47:17	94021	Jacqueline	Bergeron	2003-05-17	Y	1.392 (CDFS)
☑ 0108060601	archived	AXAF Ultra I	Deep F 03 32 25.19 -	27 49 45.7	2002-01-13 13:48:44	65318	Jacqueline	Bergeron	2003-05-17	Y	1.406 (CDFS)
0555781801	archived	CDFS	03 32 25.00 -	27 49 55.0	2009-01-10 16:27:51		Comastri	Andrea	2009-01-26	Y	1.564 (CDFS)
☑ 0604961101	archived	CDFS	03 32 21.70 -	27 49 44.9	2010-01-04 18:54:02	120817	Comastri	Andrea	2011-01-28	Y	1.871 (CDFS)
☑ 0604961301	archived	CDFS	03 32 21.73 -	27 50 15.1	2010-01-19 22:44:43	21920	Comastri	Andrea	2011-03-22	Y	2.234 (CDFS)
0555781701	archived	CDFS	03 32 22.13 -	27 50 19.8	2009-01-06 17:02:58	6911	Comastri	Andrea	2009-01-26	Y	2.243 (CDFS)
₫ 0604960501	archived	CDFS	03 32 21.66 -	27 50 17.1	2010-01-18 18:13:38	46983	Comastri	Andrea	2011-03-22	Y	2.269 (CDFS)
☑ 0555780501	archived	CDFS	03 32 21.95 -	27 50 20.4	2009-01-06 20:57:27	113004	Comastri	Andrea	2009-01-26	Y	2.276 (CDFS)
☑ 0604961201	archived	CDFS	03 32 18.92 -	27 49 44.8	2010-01-08 18:45:45	120718	Comastri	Andrea	2011-02-23	Y	2.363 (CDFS)
☑ 0555780801	archived	CDFS	03 32 19.79 -	27 50 16.8	2009-01-16 18:24:02	120919	Comastri	Andrea	2009-01-26	Y	2.542 (CDFS)
0555782001	archived	CDFS	03 32 19.79 -	27 50 16.8	2009-01-16 16:21:14	6237	Comastri	Andrea	2009-01-26	Y	2.543 (CDFS)
☑ 0555780601	archived	CDFS	03 32 22.42 -	27 50 45.7	2009-01-10 19:11:41	118413	Comastri	Andrea	2009-01-26	Y	2.576 (CDFS)
☑ 0604960701	archived	CDFS	03 32 19.57 -	27 50 19.1	2010-01-12 18:39:40	120819	Comastri	Andrea	2011-02-04	Y	2.604 (CDFS)
₫ 0604960601	archived	CDFS	03 32 21.73 -	27 50 46.3	2010-01-26 17:48:13	125212	Comastri	Andrea	2011-03-01	Y	2.661 (CDFS)
0555782101	archived	CDFS	03 32 19.82 -	27 50 48.9	2009-01-18 16:13:20	6237	Comastri	Andrea	2009-01-26	Y	2.938 (CDFS)
☑ 0555780901	archived	CDFS	03 32 19.75 -	27 50 49.1	2009-01-18 18:16:08	121518	Comastri	Andrea	2009-01-26	Y	2.949 (CDFS)
☑ 0604961801	archived	CDFS	03 32 19.46 -	27 50 48.7	2010-02-17 15:59:48	125042	Comastri	Andrea	2011-03-22	Y	2.984 (CDFS)
₫ 0604961001	archived	CDFS	03 32 19.39 -	27 50 48.8	2010-02-13 16:27:56	122515	Comastri	Andrea	2011-03-22	Y	2.996 (CDFS)
0555781901	archived	CDFS	03 32 22.09 -	27 51 24.9	2009-01-12 16:37:31	7025	Comastri	Andrea	2009-01-26	Y	3.194 (CDFS)
☑ 0604960801	archived	CDFS	03 32 21.77 -	27 51 23.6	2010-02-05 17:12:18	121087	Comastri	Andrea	2011-03-05	Y	3.204 (CDFS)
☑ 0555780701	archived	CDFS	03 32 21.95 -	27 51 25.2	2009-01-12 18:59:31	118415	Comastri	Andrea	2009-01-26	Y	3.212 (CDFS)
0555782401	archived	CDFS	03 32 19.82 -	27 51 18.9	2009-01-24 15:50:13	8529	Comastri	Andrea	2009-01-26	Y	3.346 (CDFS)
☑ 0555781001	archived	CDFS	03 32 19.72 -	27 51 18.1	2009-01-22 18:39:27	125813	Comastri	Andrea	2009-01-26	Y	3.347 (CDFS)
0555782201	archived	CDFS	03 32 19.72 -	27 51 18.1	2009-01-22 15:58:10	8430	Comastri	Andrea	2009-01-26	Y	3.347 (CDFS)
☑ 0555782301	archived	CDFS	03 32 19.75 -	27 51 19.2	2009-01-24 18:34:13	125714	Comastri	Andrea	2009-01-26	Y	3.358 (CDFS)
☑ 0604960901	archived	CDFS	03 32 19.54 -	27 51 24.2	2010-02-11 16:36:42	125344	Comastri	Andrea	2011-03-09	Y	3.454 (CDFS)
₫ 0604960401	archived	CDFS	03 32 43.08 -	27 45 11.6	2009-07-29 04:07:27	133915	Comastri	Andrea	2010-08-19	Y	4.697 (CDFS)
☑ 0604960301	archived	CDFS	03 32 45.42 -	27 45 14.9	2009-07-05 08:07:59	122302	Comastri	Andrea	2010-08-17	Y	5.042 (CDFS)
0555781501	archived	CDFS	03 32 42.76 -	27 44 36.3	2008-07-10 18:36:43	2371	Comastri	Andrea	2008-07-12	Y	5.081 (CDFS)
⊠ 0555780301	archived	CDFS	03 32 42.79 -	27 44 36.3	2008-07-09 07:55:06	123811	Comastri	Andrea	2008-07-12	Y	5.086 (CDFS)
₫ 0604960201	archived	CDFS	03 32 43.22 -	27 44 38.0	2009-07-17 07:59:05	121094	Comastri	Andrea	2010-08-03	Y	5.128 (CDFS)
0555781201	archived	CDFS	03 32 45.02 -	27 44 40.8	2008-07-08 18:44:02	2618	Comastri	Andrea	2008-07-12	Y	5.364 (CDFS)
☑ 0555780201	archived	CDFS	03 32 45.13 -	27 44 40.3	2008-07-07 05:22:24	133416	Comastri	Andrea	2008-07-12	Y	5.387 (CDFS)
☑ 0555780401	archived	CDFS	03 32 42.72 -	27 44 09.2	2008-07-11 08:01:48	122843	Comastri	Andrea	2008-07-12	Y	5.430 (CDFS)
0555781601	archived	CDFS	03 32 42.72 -	27 44 09.2	2008-07-12 18:29:12	2333	Comastri	Andrea	2008-07-12	Y	5.431 (CDFS)
≥ 0604960101	archived	CDFS	03 32 45.35 -	27 44 37.1	2009-07-27 04:00:26	129439	Comastri	Andrea	2010-08-17	Y	5.458 (CDFS)
0555781101	archived	CDFS	03 32 44.81 -	27 44 08.1	2008-07-06 18:40:00	2532	Comastri	Andrea	2008-07-12	Y	5.734 (CDFS)
≥ 0555780101	archived	CDFS	03 32 44.88 -	27 44 07.8	2008-07-05 05:22:38	133118	Comastri	Andrea	2008-07-12	Y	5.747 (CDFS)

exposure times

most epochs have X-ray exposures above 100 ks but the O/UV exposures are shorter, divided among the 6 OM filters and the adopted filters vary from epoch to epoch UVWI and U have most often the longest exposures

, ks **NNH** aV 323 К Х >>> n obsid time **DDDDMD** 108060401 2001.5681 49 1 + 108060501 2001.5698 64 108060601 2002.0344 65 108060701 2002.0376 94 108061801 2002.043 63 108061901 2002.0457 54 108062101 2002.054 62 108062301 2002.0603 8 88 555780101 2008.5088 133 +++ 555780201 2008.5142 133 10 +++ 11 555780301 2008.52 123 +++ 555780401 2008.5255 122 12 +++ 13 555780501 2009.016 113 555780601 2009.0268 118 555780701 2009.0323 118 ++... 15 16 555780801 2009.0431 120 ++... 17 555780901 2009.0486 121 ++... 18 555781001 2009.0596 125 ++... 19 555782301 2009.0651 125 ++.... 604960301 2009.5077 122 + ++ 20 $21 \ 604960201 \ 2009.5406 \ 121 \ + \ ++$ $22 \ 604960101 \ 2009.5675 \ 129 \ + \ ++$ 604960401 2009.573 23 133 + ++604961101 2010.0103 120 ++ 604961201 2010.0213 120 + 25 ++ 26 604960701 2010.0322 120 27 604960501 2010.0486 46 + 21 604961301 2010.0519 28 +. 604960601 2010.0705 125 + ++ 29 604960801 2010.0978 121 + ++ 30 604960901 2010.1142 125 31 . + 604961001 2010.1196 122 + ++ 32 33 604961801 2010.1305 125 + ++

ay , ks exposure times Ч Х >>> n obsid time DDDDMD 108060401 2001.5681 49 1 + most epochs have X-ray exposures above 100 ks 108060501 2001.5698 2 64 but the O/UV exposures are shorter, divided among the 6 OM filters 108060601 2002.0344 3 65 108060701 2002.0376 and the adopted filters vary from epoch to epoch 94 108061801 2002.043 5 63 UVWI and U have most often the longest exposures 108061901 2002.0457 54 6 108062101 2002.054 62 7 108062301 2002.0603 88 8 140 X-ray UVW2 130 UVM2 UVW1 120 U В 110 V 100 90 Comastri 80 exposure (ks) 70 Bergeron 60 50 40 30 20 10 2001.5 2002.0 2002.5 2003.0 2003.5 2004.0 2004.5 2005.0 2005.5 2006.0 2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010 time

NNH 323

source numbers

as a result, the number of detected sources varies from epoch to epoch, both in X-ray and O/UV

we compare source coordinates with tables of known redshifts, and search for sources with simultaneous X-ray/UV detections

hundreds of sources are detected in UV and not in X-rays, mostly galaxies several tens of sources are detected in X-rays and not in UV, mostly AGNs few sources, up to 20, are detected at each epoch in both X-ray and UV

sources

this corresponds to 65 source with simultaneous X-ray/UV measurements for a number of epochs between 1 and 33

27 unclassified sources5 possible/uncertain AGNsI 3 single-epoch AGNs

20 multi-epoch AGNs

#	i	Z	Nepo	class	X-class	RAJ2000	DEJ2000	RA	DEC	Src_num
	50	0.737	2	HEX	AGN-2	52.98075	-27.91344	52.980656	-27.913761	78
	42	2.81	7	BLAGN	QSO-2	53.03942	-27.80189	53.039474	-27.802145	194
	5	2.579	25	BLAGN	QSO-1	53.24929	-27.79672	53.249493	-27.796642	200
	222	2.709	6	UAGN		52.91729	-27.79619	52.916367	-27.795929	201
	43	0.543	33	BLAGN	QSO-1	53.03617	-27.79289	53.035942	-27.79297	203
	4	0.424	5	LEX	AGN-2	53.24904	-27.774	53.248558	-27.774008	222
	17	1.216	21	BLAGN	AGN-1	53.16287	-27.76722	53.163383	-27.767927	228
	52	0.619	6	BLAGN	AGN-1	53.25642	-27.76183	53.256733	-27.762136	237
	24	1.209	29	BLAGN	QSO-1	53.12525	-27.75853	53.124786	-27.758322	241
	23	0.738	26	BLAGN	AGN-1	53.12625	-27.7515	53.125504	-27.751036	249
	7	0.733	12	BLAGN	AGN-1	53.24621	-27.72764	53.245953	-27.727787	273
	47	1.037	17	BLAGN	AGN-1	53.00146	-27.72211	53.002476	-27.722862	276
	218	1.318	2	UAGN		52.95637	-27.72203	52.956177	-27.721489	277
	35	0.569	8	BLAGN	AGN-1	53.07146	-27.71761	53.071262	-27.717728	284
	39	0.605	30	HEX	AGN-2	53.05517	-27.71142	53.05594	-27.711884	289
	9	0.979	12	LEX	QSO-1	53.19958	-27.70911	53.20021	-27.709154	292
	26	0.734	32	BLAGN	QSO-1	53.1125	-27.68475	53.112335	-27.684969	319
	28	1.031	30	BLAGN	QSO-1	53.11037	-27.67658	53.11019	-27.676619	328
	18	0.837	31	BLAGN	QSO-1	53.15888	-27.6625	53.15889	-27.662363	337
	95	1.324	4	BLAGN	QSO-1	53.0675	-27.6585	53.067577	-27.658184	341

24 I

Friday, June 1, 2012

tracks in the plane α_{ox} -Luv

detailed information on individual variability

tracks in the plane α_{ox} -Luv

detailed information on individual variability

but with large errors

tracks in the plane α_{ox} -Luv

structure functions

individual SF: a few cases where we are able to subtract variability due to photometric errors (brightest sources)

spectral variability parameter

Friday, June 1, 2012

• improve ensemble and individual structure functions

• improve evaluation of β_{ox} with errors

•try X-ray/UV cross correlations to determine lags

disk-corona relation CIV blueshift 3 bright sources in L-z plane N_{epo} histograms cross-correlations optical and X-ray images

X-ray/optical interplay

CIV Equivalent Width and blueshift

L-z plane

N_{epo} histograms

Friday, June 1, 2012

β, r and P(>r)

cross-correlation

with quite large number of epochs, it could be possible to try **cross-correlations** to determine time-lags between X-ray and optical

methods to estimate probabilities within the gaps could be applied (Zu et al 2011)

optical image, VEIS

X-ray image, 4Ms Chandra

