The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito

High-redshift

Sample Selection

Spectral analysis and N_H

LogN-LogS

Conclusion

The High Redshift (z > 3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito Dipartimento di Astronomia - Università di Bologna INAF-OABO

and the CDF-S Team

Outline

The High Redshift (z > 3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito

High-redshi AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS

onclusions

- High-redshift AGN issues
 - 2 Sample Selection
- \bigcirc Spectral analysis and N_H distribution
- 4 LogN-LogS
- 6 Conclusions

High-redshift AGN issues

The High
Redshift
(z > 3) AGN
Population In
The 4 Ms
Chandra Deep
Field South

Fabio Vito

High-redshift AGN issues

Sample Selection

Spectral analysis and N_H distribution

 $\mathsf{Log}\mathsf{N}\text{-}\mathsf{Log}\mathsf{S}$

Conclusion:

- physical properties (obscuration)
- evolution (space density, obscured AGN fraction)
- Observables: spectral properties, number counts, etc.
- Need for large (high-redshift) samples

```
↓
(X-ray) surveys
COSMOS (Brusa et al. 2009,
Civano et al. 2011)
```

4 Ms CDF-S (Fiore et al. 2012, Lehmer et al. 2012)

Catalogues

The High
Redshift
(z > 3) AGN
Population In
The 4 Ms
Chandra Deep
Field South

Fabio Vito

High-redshif AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogIN-LogS

Conclusions

740 X-ray sources in the 4 Ms CDF-S main catalogue (Xue et al. 2011)

Spectroscopic redshifts:

Szokoly et al. (2004); Vanzella et al. (2008); Popesso et al. (2009); Silverman et al. (2010); Wuyts et al. (2008); Vanzella et al. (2010).

Photometric redshifts:

Luo et al. (2010), Cardamone et al. (2010); Rafferty et al. (2011); Santini et al. (2009); Wuyts et al. (2008); Taylor et al. (2009); Dahlen et al. (2010).

Selection criteria

The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito

High-redshif AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS

Conclusions

65 sources have zadopt > 3 in Xue et al. (2011)

96 sources have z > 3 in at least 1 of the considered catalogues

- "Secure" spectroscopic z > 3 (12 sources)
- ② "Insecure" spectroscopic z > 3, upgraded to "secure" through visual inspection (3 sources)
- **3** When more than 2 phot-z are available, $N_{z_{phot}>3} N_{z_{phot}<3} \ge 3$ **(7 sources)**
- When only 2 phot-z are available, both are at z > 3 (8 sources)
- When only one phot-z is available, its 1σ lower limit is at z>3 (4 sources)

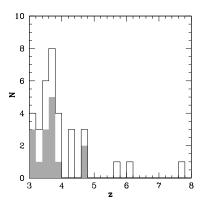
TOTAL: 34 SOURCES

Redshift distribution

The High
Redshift
(z > 3) AGN
Population In
The 4 Ms
Chandra Deep
Field South

Fabio Vito

High-redshif AGN issues


Sample Selection

Spectral analysis and N_H

LogN-LogS

Conclusions

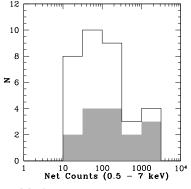
Following Xue et al. (2011), in order of preference: spec-z, phot-z from Luo et al. (2010), phot-z from Cardamone et al. (2010), phot-z from Dahlen et al. (2010)

Median redshift: z = 3.7

$0.5-7~{ m keV}$ Net-counts distribution

The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito


High-redshif AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS

Conclusions

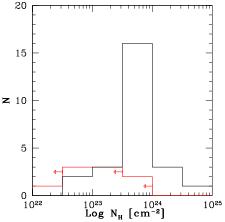
Median net counts: 80

Low statistics \downarrow simple spectral model \downarrow Absorbed power-law $(\Gamma=1.8)$ \downarrow Focus on the column density

N_H distribution

The High
Redshift
(z > 3) AGN
Population In
The 4 Ms
Chandra Deep
Field South

Fabio Vito


High-redshif AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS

Conclusion

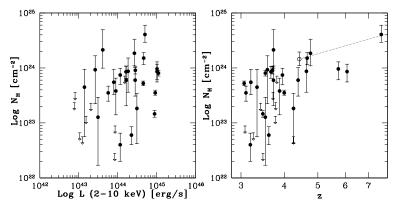
 $\sim 67\%$ strongly obscured $(N_H > 10^{23}\,\mathrm{cm}^{-2})$ sources

Possible bias due to low statistics and high-z (overestimate of the column density)

N_H distribution

The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito


High-redshi AGN issues

Sample

Spectral analysis and N_H distribution

LogN-Log

Conclusion

Median $L_{2-10~{
m keV}} = 1.52 \times 10^{44} \, {
m erg \ s^{-1}}$

Correction factors for the N_H distribution

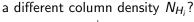
The High
Redshift
(z > 3) AGN
Population In
The 4 Ms
Chandra Deep
Field South

Fabio Vito

High-redshif AGN issues

Sample Selection

Spectral analysis and N_H distribution


LogN-LogS

Conclusions

Problem: possible N_H overestimation due to low statistics and high-z

How many times a X-ray spectrum intrinsically absorbed by a column density N_{H_j} is best-fitted by

Spectral simulations!

Correction factors P_{ij} (probability to derive N_{H_i} given an intrinsic N_{H_i})

Correction factors for the N_H distribution

The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito

High-redshif AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS

Conclusions

Sample divided into 3 N_H range (only sources with constrained best-fitting N_H):

- A: $log(\frac{N_H}{cm^{-2}}) < 23$ (2 sources)
- B: 23 < logN_H < 24 (19 sources)
- C: logN_H > 24 (4 sources)

Correction factors for the N_H distribution

The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito

High-redshif AGN issues

Sample Selection

Spectral analysis and *N_H* distribution

LogN-LogS

Conclusions

$$N_A = \sum_{j=A}^{C} X_j P_{Aj}$$

$$N_B = \sum_{j=A}^{C} X_j P_{Bj}$$

$$N_C = \sum_{j=A}^{C} X_j P_{Cj}$$

where N_i is the number of sources with (observed) best-fitting N_H in the i-th bin; X_j is the number of sources with intrinsic N_H in the j-th bin; P_{ij} is the probability to derive a best-fitting N_H in the i-th bin, given an intrinsic N_H in the j-th bin.

$$i, j = A, B, C$$

Correction factors for the N_H distribution: (basic) procedure

The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito

High-redshit AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS

Conclusions

For i, j = A, B, C:

- 1000 simulations of a X-ray spectrum with $\Gamma=1.8$, N_H in the j-th bin, 100 net counts at z=4 (\approx median values of the sample)
- ② Fit of the 1000 simulated spectra to derive the best-fitting N_H
- **3** Counting how many times the best-fitting N_H lies in the i-th bin $\rightarrow P_{ii}$

Corrected N_H distribution

The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

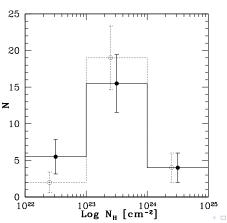
Fabio Vito

High-redshif AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS


Conclusions

$\Gamma = 1.8$					
P_{ij}	j=A	j=B	j=C		
i=A	0.361	0.0	0.0		
i=B	0.639	1.0	0.0		
i=C	0.0	0.0	1.0		

•
$$N_A = 2 \rightarrow X_A = 5.5$$

•
$$N_B = 19 \rightarrow X_B = 15.5$$

•
$$N_C = 4 \to X_C = 4$$

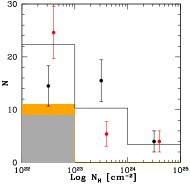
Dashed line: observed distribution

Solid line: corrected (intrinsic) distribution

Corrected N_H distribution

The High
Redshift
(z > 3) AGN
Population In
The 4 Ms
Chandra Deep
Field South

Fabio Vito


High-redshif AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS

Conclusions

Black points: intrinsic N_H distribution ($\Gamma = 1.8$)

Red points: intrinsic N_H distribution ($\Gamma = 1.6$)

$\Gamma = 1.6$				
P_{ij}	j=A	j=B	j=C	
i=A	0.147	0.0	0.0	
i=B	0.853	1.0	0.0	
i=C	0.0	0.0	1.0	

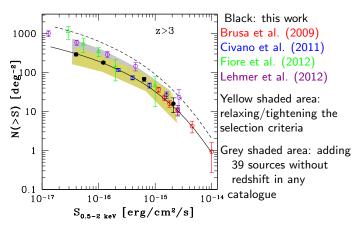
Shaded areas: upper limits

Histogram: Gilli et al. (2007) XRB synthesis model with high-z decline (no evolution with redshift at the 2σ c.l.)

z > 3 LogN-LogS

The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito


High-redshif AGN issues

Sample Selection

Spectral analysis and N_H

LogN-LogS

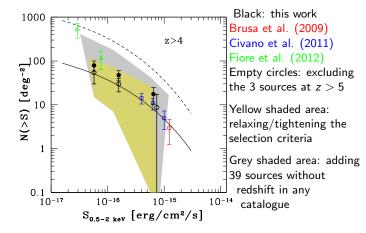
Conclusion

Model from Gilli et al. (2007) assuming (solid line) or not assuming (dashed line) a high-z decline in the AGN space density

z > 4 LogN-LogS

The High Redshift (z > 3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito


High-redshif AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS

Conclusion

Model from Gilli et al. (2007) assuming (solid line) or not assuming (dashed line) a high-z decline in the AGN space density

Conclusions

The High Redshift (z>3) AGN Population In The 4 Ms Chandra Deep Field South

Fabio Vito

High-redshit AGN issues

Sample Selection

Spectral analysis and N_H distribution

LogN-LogS

Conclusions

- 34 X-ray selected AGN at z > 3 in the 4 Ms CDF-S
- Spectral analysis assuming a simple spectral model $(\Gamma=1.8)$
- Large fraction (\sim 70%) of obscured sources (but possible biases). Typical luminosity $L_{2-10~{
 m keV}} \approx 10^{44}~{
 m erg~s}^{-1}$
- Spectral simulations to derive correction factors
- Corrected N_H distribution consistent (within 2σ) with no evolution of obscuration with redshift
- LogN-LogS in agreement with a decline in the high-z AGN space density