The Hunt for the Site(s?) of the r-Process

Francesca!

Friedrich-K. Thielemann
Dept. of Physics
University of Basel

We met the first time at the 1980

Santa Cruz Workshop, I learned skiing
with (because of) you at a Moriond
Winter School, and we had many
encounters in Erice, Vulcano, Trieste,
NIC and other Meetings.

It was always a pleasure and I hope it

continues .......
I am very sorry I could not make it at the

very end, life is still a rat race..
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providing photons with sufficient energy (=>hot r-process).
In matter with fast expansion and still high neutron densities
at low temperatures this might not be established
(=>smeared-out distribution, cold r-process)
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Explosive Burning above a critical temperature destroys (photodisintegrates) all
nuclei and (re-)builds them up during the expansion. Dependent on density, the full
NSE is maintained and leads to only Fe-group nuclei (normal freeze-out) or the
reactions linking “He to C and beyond freeze out earlier (alpha-rich freeze-out).



n/seed ratios for high entropy conditions are are function of entropy

Farouqi et al. (2010)

High—Entropy Wind Parameters: V - 7500 km/s, Y =045
Charged-Particle Process, 1624 Nuclei (Neutron and H to Pd-140)
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Abundance, Y (Y=X/A, ZX =1)
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The essential quantity for a successful r—process to occur is to have a
n/seed ratio so that A  _+n/seed=A

actmldes



Electron Abundance

n/seed ratios as function of S and Y,

Two options for a successful r-process
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neutrino wind? Freiburghaus et al. (199A9)/Neutron star mergers and polar jets?



What is the site of the r-process?

from S. Rosswo L

NS mergers, BH-NS mergers (Freiburghaus et al. 1999,

from H.-T. Janka

R [km] A Neutrino Cooling and Neutrino-
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Driven Wind (t ~ 10s)

ve.u.*t*ve.u:t

Rosswog.., Panov et al., Bauswein et al., Korobkin et al.

2012.)

or alternatively polar jets from supernovae (Cameron 2003,

Fujimoto et al. 2008, Winteler et al. 2012)
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SN neutrino wind (originally introduced by
Hoffmann, Woosley, Meyer, Howard..),
problems: high enough entropies attained?
Ye<0.5? neutrino properties???



How do we understand:

low metallicity stars ... galactic evolution?
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Average r-process (Eu) behavior
resembles CCSN contribution, but
large scatter at low metallicities!!



What is the site of the r-process(es)?

* Neutrino-driven Winds (in supernovae?) ? Arcones, Burrows, Janka, Farougqi,
Hoffman, Kajino, Kratz, Martinez-Pinedo, Mathews, Meyer, Qian, Takahara,
Takahashi, FKT, Thompson, Wanajo, Woosley ... (no!?)

*Electron Capture Supernovae ? Wanajo and Janka (weak!)

*SNe due to quark-hadron phase transition Fischer, Nishimura, FKT (if? weak!)

* Neutron Star Mergers? Freiburghaus, Goriely, Janka, Bauswein, Panov,
Arcones, Martinez-Pinedo, Rosswog, FKT, Argast, Korobkin

* Black Hole Accretion Disks (massive stars as well as neutron star mergers,
neutrino properties) MacLaughlin, Surman, Wanajo, Janka, Ruffert

* Explosive He-burning in outer shells (???) Cameron, Cowan, Truran,
Hillebrandt, FKT, Wheeler, Nadyozhin, Panov

* CC Neutrino Interactions in the Outer Zones of Supernovae Haxton, Qian
(abundance pattern ?)

* Polar Jets from Rotating Core Collapse? Cameron, Fujimoto, Kdppeli,
Liebendorfer, Nishimura, Nishimura, Takiwaki, FKT, Winteler



Growing set of 2D CCSN Explosions

(i.e., core collapse supernovae are finally also exploding in

computations, here Hanke & Janka 2013 — MPA Garching)
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Simulations in 3D Liebendorfer et al. (Basel)

xy-Plane, Time wrt Core-Bounce: 0.07000 s
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Finally multi-D core collapse supernovae calculations lead to explosions! (see T. Janka,

A. Mezzacappa, C. Ott, etc.; here the Basel version).
There are two transitions: (i) 8-10M_ progenitors even explode in spherical symmetry, (ii) from regular core

collapse SNe with neutron star formation - to faint SNe with fall back and BH formation - BH formation and
hypernovae???
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What determines the neutron/proton or proton/nucleon=Ye ratio?

Y, dominantly determined by ¢* and 1, 7. captures on
heutrons and protons

Vetnepte

Jetponte

s high density / low temperature — high Er for electrons
— e-captures dominate — n-rich composition

s if el.-degeneracy lifted for high T — v.-capture
dominates — due to n-p mass difference, p-rich
composition 7

If neutrino flux sufficient to have an effect (scales with 1/r?), and total
luminosities are comparable for neutrinos and anti-neutrinos, only
conditions withE_ -E V>4(1nn—mp) lead to Y <0.5!

General strategy for a successful r-process:

1. either highly neutron-rich initial conditions + fast expansion (avoiding neutrino interactions!)
2. have neutrino properties to ensure (at least slightly) neutron-rich conditions (+ high entropies)
3. invoke (sterile?/collective) neutrino oscillations
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Possible Variations in Explosions and
Ejecta

model—2520
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Y, after explosion |
requires averdge anti-neutrino
energies to be' 5.2 MeV larger
than neutrino Irenergies (not seen
in long-term simulations of
Janka & Hiidepohl, Fischer et

al. 2010) !

Izutani et al. (2009)

* reqgular explosions with neutron star
formation, neutrino exposure, Vp-
process.

*How to obtain moderately neutron-
rich neutrino wind and weak r-process
or more ?? (see e.g. Arcones & Montes
2011, Roberts et al. 2010, Arcones &
Thielemann 2013)

* under which (special?) conditions can
very high entropies be obtained which
produce the main r-process nuclei?

Innermost ejecta as a function of
initial radial mass and also time of
ejection, innermost zones ejected
latest in the wind!
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Long-term evolution up to 20s, transition
from explosion to neutrino wind phase

Fischer et al. (2010) these 2010 findings see a

longterm proton-rich composition, late(r) transition to
neutron-rich ejecta possible?

(&)

10" 10° 10 10° 10°

Baryan Density, |ﬂg|g{p [g.fcrng]]

{b)
' 1 .2 .3 .-1. =1
10 10 10 10 10
Radius, [kzrm]
{dl

= "y 5
10 10 10 10
Radius, r [km]



Inclusion of medium Effects, potential U in dense medium
Martinez-Pinedo et al. 2012, see also Roberts et al., Roberts &
Reddy 2012, changes neutrino and anti-neutrino energies

p?
E;i(p:) = 5 : + m; + U,

m;

1= W.p

E, =E.. —(my—m,)— (U, —-U,)
EE-E = He+ + ('-"n-n, — Tn-;m) + (U-n, — U;u)

Can reduce slightly proton-rich

conditions (Ye=0.55) down to
Ye=0.4!
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FIG. 1. (Color online) Opacity and emissivity for neutrino

(left panels) and antineutrino (right panels), evaluated at con-
ditions p = 2.1 x 10" g em ™", T = 7.4 MeV and Y, = 0.035.



Individual components for high entropies,

if such entropies are attained in SNe
Farougqi et al. (2010), above S=270-280 fission back-cycling sets in

such high entropies are apparently not obtained in present models!!!
HEW, ETFSI-Q, Vo= 7500 km/s, Y = 0.45
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Neutron Star Mergers are observed
A ‘kilonova’ associated with the short-duration y-ray burst GRB 130603B
N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth, R. A. Hounsell,
K. Wiersema, & R. L. Tunnicliffe (2013, Nature)
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Short-duration y-ray bursts (less than about two seconds) are produced by a relativistic jet created by

the merger of two compact stellar objects (specifically two neutron stars or a neutron star and a black hole).
Mergers of this kind are also expected to create significant quantities of neutron-rich radioactive species,
whose decay should result in a faint transient, known as a ‘kilonova’, in the days following the burst.

Recent calculations suggest that much of the kilonova energy should appear in the near-infrared, because of
the high optical opacity created by these heavy r-process elements. Here we report optical and near-
infrared observations of such an event accompanying the short-duration y-ray burst GRB 130603B.



Fission Cycling in Neutron Star Mergers

Trajectory from Freiburghaus, Rosswog, and Thielemann 1999
(F, =0.1,n/S eed = 238).
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with parametrized fission yield contribution
(see also Goriely, Bauswein, Janka 2011)



Recent neutron star merger
updates (Korobkin et al. 2012)

S Ep— L Variation in neutron star masses
T : fission yield prescription
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—  Panov et al. 2008 _ Eichler et al. (2013)
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abundance

Variations in fission yield
distributions (ABLA from

Kelic et al. GSI).

Fills somewhat A=140-160
gap and moves A=195 peak
down slightly (related to fission
yield distribution and corres-
ponding neutron emission)

120 140 160

The final abundance pattern
Also depends when the neutron
capture from fission neutrons
occurs. If still n,y-y,n equilibrium
persists, the fit is better than with
late neutron capture in a type of
n-process. The first is the case if
beta-decay rates above Z=80 are
faster (recent evidence)..
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SN rates and NS merging rate
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3D Collapse of Fast Rotator with Strong Magnetic Fields:
15 M_ progenitor (Heger Woosley 2002), shellular rotation with period of 2s

at 1000km, magnetic field in z-direction of 5 x10'* Gauss,
results in 10> Gauss neutron star

log10(gas to magnetic pressure) [-], t = 0.023437s
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3D simultitions by C. Winteler, R. Kdppeli, M. Liebendb’rferyg?] al. 2012
Eichler et al. 2013
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Nucleosynthesis results

neutrino effect small opposite to neutrino wind
with slow expansion velocities

From fast rotators with
strong magnetic fields, i.e
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* r-process peaks well reproduced

* Trough at A=140-160 due to FRDM and fission yield distribution
« A=380-100 mainly from higher Ye similar to mergers!!!

. i — —3
A > 190 mainly from low Ye Mr,ej ~6 % 10 M@
» Ejected r-process material (A > 62):



Effect of Fission Yield Distribution
(Eichler et al. 2013)
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Effect not as strong as in neutron star merger case, as conditions slightly
less neutron-rich and influence of fission less prominent.



Observational Constraints on r-Process Sites
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Observational indications: heavy r-process and Fe-group uncorrelated,
Ge member of Fe group, Zr intermediate behavior, weak correlations
with Fe-group as well the heavy r-elements (Cowan et al. 2005)
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Argast et al. (2004): Do neutron star mergers show up
too late in galactic evolution, although they can be dominant
contributors in late phases?
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This is the main question related to mergers, which will also be discussed at this meeting ([Fe/H]
can be shifted by different SFR in galactic subsystems), Is inhomogenous galactic evolution
implemented correctly?? The problem is that the neutron star-producing SNe already produce Fe
and shift to higher metallicities before the r-process is ejected!!!



Galactic chemical evolution

e If all r-process material in the Galaxy from CCSNe:
10-10° M_ required per event (here: 6 10°M_)
— If only 1 CCSN in 10-100 produces a jet, this could account for sufficient r-
process material
— would explain scatter in r-process elements at low [Fe/H]
(neutron star mergers would have similar behavior in frequency and
ejecta, only deficiency: occurrance too late???)
» only needed at low [Fe/H|], later neutron star mergers could take over

* progenitor configuration (B, Q) for magnetic jet supernovae:

« Not reached in common evolutionary paths (Heger 2005)

» Possible for small fraction (~1%) of low metallicity models
(Woosley&Heger 2006)

e present magnetar knowledge permits ~1% of CCSNe resulting in
magnetar S (Kramer 2009, Koveliotou et al. 1998)



Summary

The r-process in astrophysical environments comes in at least two versions (weak-
main/strong)??

Does the neutrino wind in core collapse SNe lead initially to proton-rich conditions (and vp-
process, LEPP) or also to a weak r-process (extending up to Eu)?

Weak r-process contributions are also possible in EC SNe and Quark-Hadron EoS SNe.

The main/strong r-process comes apparently in each event in solar proportions, but the
events are rare. The site is not clearly identified, yet. Options include rotating core collapse
events with jet ejection, neutron star mergers and accretion disks around black holes (either

from mergers or massive star collapse).

How to identify the signatures in chemical evolution for these different contributions?
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