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DYNAMICAL EVOLUTION OF TYPE II SUPERNOVAE.
INTERACTION WITH A PRE-EXISTING BUBBLE

L. Ciotti, R. Bedogni, A. D’Ercole

Osservatorio Astronomico, Bologna

I. Introduction

It is well known that Type II Supernovae explosion originates at the end
of the life of massive stars. The mass range of the progenitors is not firmly
established, but it is belived to be above 8 M;. Such stars spend the largest part
of their life on the main sequence (tms = 0.9t;0¢); during this time (107yr for
a 15M¢ star) they loose a substantial fraction of their mass through the stellar
wind mechanism with velocities V,, of about 2000 kms~! and mass loss rates M
of about 107 = 10~ "Mgyr—!.

It has been shown that the interaction of such a fast wind with the surround-
ing interstellar medium generates a large cavity, or "bubble”. The interior of the
bubble is filled with hot (T > 10° K) shocked stellar wind at low density and the
swept-up interstellar gas is compressed into a thin, spherical shell (Weaver et al.,
1977).

When the star becomes a red supergiant (t,; = 0.1¢4,¢), the mass loss prop-
erties change. The mass loss rate M becomes of the order of 10~5Mgyr—!, while
the stellar wind velocity becomes as low as 20 kms™!. It is quite natural there-
fore to assume that, when the SN explosion occours, stellar ejecta expands into a
medium with a r—2 density profile, provided that M and V,, remain constant.

On the other hand numerical models show that stellar material ejected by the
supernova explosion moves in free expansion with the velocity linearly increasing
with radius and the density decreasing as r ™. The interaction of this stellar
material with the circumstellar medium consisting of the previous red supergiant
slow wind gives rise to an interaction region which contains shocked ambient gas as
well as shocked stellar ejecta. This region tends toward the self-similar solution
given by Chevalier (1982). Such a solution holds as long as the unperturbed
density distribution of both the ejecta and the circumstellar medium mantains
the power low radial dependence. Howewer the external shock will eventually
reach the pre-existing bubble and the problem will be no longer self-similar.

Numerical computations are therefore needed to describe the later evolution
of the supernova remnant (SNR).

I1. Supernovae

The interaction region described by the Chevalier solution consists of two
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parts: the outer shell composed of the swept-up circumstellar material and the
inner one containing the shocked stellar ejecta. These two shells are separated by
a contact discontinuity. At this discontinuity the density of both shocked stellar
and circumstellar material tends to approach infinity while the temperature tends
towards zero (see fig. 1).

II1. Bubble

We compute the bubble structure (that will interact whit the SNR) following
the idealized interstellar bubble theory of Weaver et al. (1977). The assumptions
of the idealized model are:

(1) the ambient interstellar medium has uniform constant density
Po = UMHN,

(2) the star is at rest with respect to the interstellar medium,

(3) the stellar wind is isotropic,

(4) the wind power L., = MV2/2 is constant.

These assumptions are of course oversimplified. In particular, the uniformity
of the interstellar medium may be questionable. McKee et al. (1984) investigated
how the evolution of a stellar wind bubble modifies in a cloudy ambient medium.

During the main sequence lifetime, ¢,,,, photo-evaporation by the Lyman
radiation will tend to homogenize an initially cloudy medium of mean density n,,
out to a radius :

Rh(tms) = 561, pe (1)

‘The stellar wind will sweep a dense shell from the homogenized region and will
leave a low density bubble around the star.

When the homogenization radius is reached, further expansion will be primar-
ily constrained by the rate of growth of the homogenization radius. As long as the
bubble expands the pressure of the hot gas decreases and eventually reaches the
value of the pressure of the external HII region at a temperature Ty ; = 8000K.
At this time the exterior pressure becomes crucial and causes the outer shell to
stall. '

After that the bubble becomes stationary as long as M and V,, remain con-
stant. [t can be shown that the radius of the bubble is smaller than R, (Weaver
et al., 1977). This means that even if the bubble tends to overrun the radius of
homogenization R, during its dynamical phase engoulfing a number of clouds,
later on Ry tends still to grow while Rpgyspie remains at rest. In other words the
bubble is eventually surrounded by homogeneus medium.

We are interested only in the stationary structure of the bubble rather then
in its evolution and we therefore make the same simplifing assumption of Weaver
et al. (1977) in computing the bubble evolution (see fig.2).
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IV. Numerical code

We computed the expanding bubble and its interaction with the SNR in two
separated steps. First we followed the bubble making use of a moving grid which
follows the interacting region; in this way we mantain a quite high relative spatial
resolution at any time during the expansion. In the second step we calculated the
expansion of the supernova adopting the Chevalier solution as initial conditions.
Also in this case we use a moving grid.

The linear dimensions of the stationary bubble are of course much greater
than that of the SNR in the beginning of the interaction. We were therefore
forced to adopt, in computing the bubble, a grid with a huge number of zones
(800), in order to get a spatial resolution comparable with that of the supernova
calculation (with a grid of 200 mesh points).

IV.1 The remapping

During the computation of the expanding SNR the presence of the bubble
is considered through the boundary conditions at the external edge of the grid.
In other words, as long as the SNR merges in the bubble, the hydrodinamical
variables in the last mesh must be obtained taking in account the values of the
variables of the bubble at that point. The numerical meshes of the supernova
being smaller than that of the bubble, the evaluation of the external boundary
conditions are obtained through a "remapping” of the bubble’s variables over the
last grid of the SNR. Such a remapping is performed following van Leer (1979).

IV.2 The code

We express the gasdynamics equations in Eulerian form with spherical sym-
metry. To integrate these equations we make use of scheme II of van Leer (1977).
It is an upwind scheme in which the variables are approximated by linear func-
tions inside each mesh. ;

The SLIC algoritm (Noh and Woodward, 1977) allows to follow exactly the con-
tact surface.

Consider now the equation of continuity:

% + div(pv) =0 (2)
the equation of motion:
dpv _ dp
Elihaign 5 i
B + div(pv”) o (3)
and the equation of energy:
oF
— +diw(Ev) = —pdiv(v) — div(q) — L (4)

ot
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where ¢ is the heat fluz due to thermal conduction (Spitzer, 1962):

0= k1)L - (5

k is the conduction coefficient and L is the radiative luminosity. The two most
time-consuming routines in our code are those solving the divergence operator and
the heat diffusion term. This last term is isolated making use the time splitting
method (Richtmyer and Morton, 1967) and integrated separately following the
Crank-Nicholson method. This leads to the following numerical algorithm for the
interior points:

CATIT T T BT - CYly = 1) (6)

where A, B, C; are coefficients which contains, among others, the conduction
coefficient k, while D is the known term. The solution is given by:

Ty d=Gipsi Tt Hypo (7)

where: i ,
Cu By~ LGy ®)
e D;+CyH;_, )

e -GG

The left-hand boundary condition will determine G; and H,, after which the
recursive relations (8) e (9) can be used to calculate all G and H up to J = Jmaz —
1. Then Tjmqz is set from the right-hand boundary condition, and equation (7)
is used with the known A, B, C, D, and calculated G and H to solve recursively
for Ty from T;.;, marching down from J = Jyner — 1 to J = 1. Because of the
longer characteristic time-scale diffusion process in front of the dynamical time-
scale, many iterations are needed at each time-step before to reach a sufficient
convergence (|T**! — T*|/T* < 10~%). Unfortunately, however, because of the
recursive nature of such an algorithm, it can not be speeded by vectorisation.

On the other hand a considerable fraction of CPU time can be saved vec-
torising the routine that performs divergences.

As stated before we make use of the upwind finite difference scheme which
possesses the desirable transportive property. The effect of a disturbance is ad-
vected only in the direction of velocity. This property is as physically significant
as the conservative one. Schemes with space centered first derivatives are more
accurate in the sense of truncation error. However a perturbation can travel in
both directions, and the transportive property is lost. The algorithm for diver-
gence (in slab geometry for the sake of simplicity) can be written in the following
way:

i

pit+ At)—ps(t) = — 7 {Frt1 - Fy) (10)
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were At is the time-step and AR = Ry, — R, is the size of the spatial mnesh.
The computation of the flux F at the boundary of the mesh depends on the sign
of the fluid velocity v at that point.

3f v () F_‘:U(pJ_1/2+.5(1—0)SJ_1/2)

tfremagisl 25 =v(psr1/2 = 5(1+0)S,41/2)

where 0 = vAt/AR and S, /5 is the slope of the linear function approximating
p inside the mesh (R;; R, ).
We do not give here the details to obtain the previous formulae (Bedogni and
D’Ercole, 1986, see however fig.3). We just want to point out that the usual
statement IF in a DO LOOP in order to check the sign of v at each boundary mesh
is quite time expensive. Here however it is possible to get vectorisation making
use of the CVMGP statement which works as follows: CVMGP(Fj, F},vs). Such
a statement selects Fj or F} in a totally vectorised way depending on the sign of
vJ.

In this way we obtain a gain of a factor of 10 in the computation of the
divergence and a factor 2 in the run of the whole program.
For comparison we give the time spent for one cycle by the code which compute
the bubble over a grid of 800 meshes:

VAX11/780 8.05 sec

CRAY — XMP (Non vectorised) 0.056 sec
CRAY — XMP (Vectorised) 0.028 sec
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fig.1 Chevalier solution (adapted from Chevalier, 1982)
fig.2 Density and temperature profile of the bubble
fig.3 Advection in slab geometry (Bedogni, R., D’Ercole, A.: 1986)
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