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Abstract. We describe a particular aspect of the effects of the parent cluster tidal
field (CTI) on stellar orbits inside cluster Elliptical galaxies (Es). In particular we dis-
cuss, with the aid of a simple numerical model, the possibility that collisionless stellar
evaporation from elliptical galaxies is an effective mechanism for the production of the
recently discovered intracluster stellar populations (ISP). A preliminary investigation,
based on very 1dealized galaxy density profiles (Ferrers density distributions), showed
that over an Hubble time, the amount of stars lost by a representative galaxy may sum
up to the 10% of the initial galaxy mass, a fraction in interesting agreement with ob-
servational data. The effectivencess of this mechanisim is due to the fact that the galaxy
oscillation periods near equilibrium configurations in the CTF are comparable to stel-
lar orbital times 1n the external galaxy regions. Iere we extend our previous study to
more realistic galaxy density profiles, in particular by adopting a triaxial Hernquist

model.

1 Introduction

Observational evidences of an Intracluster Stellar Population (ISP) arc mainly
based on the identification of intergalactic planetary nebulae and red giant stars
(see, e.g., [1],12],[3],|4].I5]). Overall, the data suggest that approximately 10%
(or even more) of the stellar mass of clusters is contributed by the ISP [6].
The usual scenario assumed to explain the finding above is that gravitational
imteractions between cluster galaxies, and interactions between the galaxies with
the gravitational field of the cluster, lead to a substantial stripping of stars from
the galaxies themselves.

Here, supported by a curious coincidence, namely by the fact that the char-
acteristie times of oscillation of a galary around its equilibrium position in the
cluster tidal field (CTF) are of the same order of magnitude of the stellar orbital
periods tn the external part of the galaxy itself. we explore the effects of interac-
tion between stellar orbits inside the galaxies and the CTF. In fact, based on the
obscrvational evidence that the major axis of cluster Es seems to be preferen-
tially oriented toward the cluster center, N-body simulations showed that model
galaxies tend to align., as observed. reacting to the CTF as rigid bodies [7
By assuming this 1idealized scenario, a stability analysis then showed that this
configuration 1s of stable equilibrium, and allowed to calculate the oscillation
periods in the lincarized regime [8]. In particular, oscillations around two sta-
ble equilibrium configurations have been considered, namely: 1) when the center
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of mass of the galaxy is at rest at center of a triaxial cluster, and the galaxy
inertia ellipsoid is aligned with the CTF principal directions, and 2) when the
galaxy center of mass i1s placed on a circular orbit in a spherical cluster, and the
galaxy major axis points toward the galaxy center while the galaxy minor axis
is perpendicular to the orbital plane.

Here, prompted by these observational and theoretical considerations, we
extend a very preliminary study of the problem [9], by evolving stellar orbits
in a more realistic galaxy density profile: for simplicity we restrict to case 1)
above, while the full exploration of the parameter space, together with a complete
discussion of case 2), will be given elsewhere [10]. It is clear, however, that both
cascs are rather exceptional. Most cluster galaxies neither rest in the cluster
center nor move on circular orbits, but they move on elongated orbits with
very different pericentric and apocentric distances from the cluster’s center; in
a triaxial cluster many orbits are boxes and some orbits can be chaotic. These
latter cases can be properly investigated only by direct numerical simulation of
the stellar motions inside the galaxies, coupled with the numerical integration
of the equations of the motion of the galaxics themselves.

2 The Physical Background

b

Without loss of generality we assume that in the (inertial) Cartesian coordinate
system C', with the origin on the cluster center, the CTFE tensor T 1s in diagonal
form, with components T; (i = 1, 2,3). By using three successive, counterclock-
wise rotations (¢ around x axis, ¢ around y’ axis and 3 around z” axis), the
linearized equations of the motion for the galaxy near the equilibrium configu-
ration can be written as

. JAVESVAVEYD
P = -

- AT‘:“A[{H : AJTQIAIQJ_
p, U= v, Y=
I I {3

W, (1)

where AT is the antisymmetric tensor of components Al;; = 1; — 1, and ; arc
the principal components of the galaxy inertia tensor. In addition, let us also
assume that Ty > 1y > Ty and Iy < I, < Iz, 1.e.. that ATy, ATs and ATy,

arc all less or equal to zero (see, c.g., [8], [10]). Thus, the equilibrium position
associated with (1) is linearly stable, and its solution is

o = pan cos(wyt), 0 =y cos(wet), ¥ = Yy cos{wyt), (2)
where
ATH3 Al AT 13A14 ATyo Al f
w(p — y w’tﬁl — : w"t,f_',ﬂ — . (d)
Iy 15 IE

For computational reasons the best reference system in which calculate stellar
orbits is the (non inertial) reference system C’ in which the galaxy is at rest,
and its inertia tensor is in diagonal form. The equation of the motion for a star
‘. Yr oD
im C" is

=R 20NV —2nrx' —2AN (21T, (4)
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where £ = R(p. 9, ¢)x’, and
2 = ($costcost) +Jsiny, —pcosPsingy + Jcosy, osind + ). (5)

In (4)
RY& = -Vauod, + (RTTR)x', (6)

where ¢, (') is the galactic gravitational potential, Vg is the gradient opcrator
in . and we used the tidal approximation to obtain the star acceleration due
to the cluster gravitational held.

3 Galaxy and Cluster Models

For simplicity we assume that the galaxy and cluster densities are stratified on
homeoids. In particular, the galaxy density belongs to ellipsoidal generalization
of the widely used y-models ({11],[12]):

M, 3 -7 1
oy Ar o mY(1 +m)t=

pg () = (7)

where M, is the total mass of the galaxy, 0 <~y < 3 and

1 > (o 2 (X3, (8)
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The inertia tensor components of a generic homeoidal density distribution
(in the natural reference system adopted in (8)), are given by
4
2 2
—i—(}fl(_]ﬁgﬂf.g((}j -+ (llf.k)hg.} (9)

r

]

[

where hy = [7 pg(m)m*dm, and so I; < I < I3. Note that, from (3) and (9)
it results that the frequencies for homeoidal stratifications do not depend on the
specific density distribution assumed, but only on the quantities (1, o, cxz). We
also introduce the two ellipticities

(¥ , |
‘=1—c¢, > =1-y, (10)
(Y1 (¥

(¥

where ¢ < 1 < 0.7.

A rough estimate of characteristic stellar orbital times inside m is given by
Poop(m) =~ 4Pqn(m) = /37 /Gpg(m), where pg(m) is the mean galaxy density
inside m. We thus obtain

i (1 =€) (1 —n)
M, 11

Poyp(m) ~ 9.35 x 10° mY 21 +m)B 2 yrs, (1)

where M, 11 is the galaxy mass normalized to 10 My, vy is the galaxy “core”
major axis in kpc units (for the spherically symmetric v = 1 Hernquist model 113,
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Fig. 1. Distribution of the d,,ax/d; ratio vs. d;/«; after an Hubble time for the model
calaxy at rest. d; 1s the initial distance of the star from the galaxy center, while d,,.«
is the maximum distance from the galaxy center reached during the simulation.

R. ~ 1.8 }): thus. in the outskirts of normal galaxies orbital times well exceed
' A - . o
10% or even 10Y yrs. For the cluster density profile we assume

Pe.0
1+ m?)?

pe(m) = ( (12)

where m is given by an identity similar to (8), with a; > a2 > as. and. in
analogy with (10) we define as/ay =1 — pand az/ay =1 — v, with p < v <1,
[t can be shown (see. e.g., [8].[10]) that the CTF components at the center of a

non-singular homeoidal distribution are given by

'T? = —27 GIOC,UUJ?;(/_L: Lﬂ’): (13)

where the dimensionless quantitics w,; arc independent of the specific density
profile, w; < wo < wy for a; > as > ay, and so the conditions for stable
equilibrium in (1) are fulfilled (8],[10}). The quantity pc o is not a well measured
quantily in recal clusters, and for its determination we use the virial theorem.
ﬂf(_ﬂ% — —U. where U% is the virial velocity dispersion, that we assume to be
estimated by the observed velocity dispersion of galaxies in the cluster. Thus,

we can now compare the galactic oscillation periods:

2 8.58 x 10° (11 250
Pi?& — ™ }F'I'S .

Wi \/ (v — p)(n — ) Tv.1000
27T 8.58 x 10° ay 250

Py ="~ yrs
Wy v/ V1] TV ,1000
27 8.58 x 10% 1 250

Py = — ~ VTS .
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(for small galaxy and cluster flattenings, where ay 250 = a1 /250 kpe and ov 1000 =
ov /107 km/s. [10]) with the characteristic orbital times in galaxies. Thus, from
(11) and (14abc). it follows that in the outer halo of giant Es. stellar orbital
times can be of the same order of magnitude as the oscillatory periods of the
galaries themselves near their equilibrium position i the C'TF. For example. in
a relatively small galaxy of My = 0.1 and a1 = 1. I = | Gyr at m >~ 10
(i.c., at o~ 5 R, ). while for a galaxy with M, 11 =1 and a1 1 = 3 the same orbital
time characterizes m ~ 7 (i.c., >~ 3.5[1,).
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Fig. 2. Distribution of the diax/di Tatio vs. d; /oy after an Hubble tune for the same
calaxy model as in IFig. 1, when oscillating around its equilibrium position in the CTF.

In order to understand the cffects of the galaxy oscillations on the stellar
orbits, we performed a set of Monte-Carlo simulations. in which we followed
the evolution of 10% - 107 *1-body problems”™ over the Hubble time by inte-
orating nmumerically (4). At variance with 9], where we used simple and easy-
to-integrate Ferrers density profiles, here we study orbital evolution m a more
realistic {(but also more demanding from the numnerical point of view) galaxy
density profile. namely a triaxial Hernquist model, obtained by assuming ~ = 1
in (7). The gravitational potential inside the galaxy density distribution, 1
a form suitable for the numerical integration. was obtained by using an ex-
pansion technique useful in case of small density flattenings ([10].[14]). The
initial conditions are generated by using the Von Neumann rejection method
in phasc-space (for details sce [10]): note that, at variance with the analy-
sis [9], now “stars” arc characterized by initial velocities that can be difterent
from zero. The code, a double-precision fortran code based on a Runge-kKutta
scheme, runs on GRAVITOR, the Geneva Observatory 132 processors Beowult
cluster (http://obswww.unige.ch/ pfennige/gravitor/gravitor_e.html).
The computation of 10* orbits usually requires 2 hours when using 10 nodes.
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4 Preliminary Results and Conclusions

We show here, as an illustrative casc, the bchavior of the ratio dyax/di as a
function of d; /c, for a moderately flattened galaxy model (¢ ~ (.2 and n ~ 0.3),
with M, — 10 AL, semi-mayor axis «; = 3 kpe, and maximum oscillation
angles equals to 0.1 rad. The cluster parameters are ay 250 = ov. 1000 = 1, pt = 0.2,
v = 0.4, and the total number of explored orbits is Niot = 10*. In order to show
the eftect of oscillations, in the following simulations we artificially eliminated
the direct contribution of the CTF, as given by the second term in the r.h.s. of
(6).

In Fig. 1 we show the result of a first simmulation in which the galaxy is not
oscillating: obviously, the ratio d,,.x/d; is in general (slightly) larger than unity,
due to the mitial velocity of each star. In Fig. 2 we show the result tor the same
galaxy model, when oscillating around the equilibrium position: the etffects ot
the galaxy oscillations are clearly visible as a global “expansion” of the galaxy.
As a reference, the solid line indicates the expansion ratio required to reach the
representative distance of 1012, from the galaxy center. Thus, it is clear that the
galaxy oscillations are certainly able to substantially modity the galaxy density
profile. In particular, it will be of interest the study of the (more realistic) case in
which the galaxy is in rotation around the cluster center. In this case we expect
a different behavior of stellar orbits as a function of the distance of the galaxy
center of mass from the cluster center: in fact, while inside the cluster core the
CTF is compressive (sce, c.g., [7],|8]), outside the CTF is expansive along the
cluster radial direction, and 1n this latter case its dirccet effect should increase
the expansive effect due to the galaxy oscillations. These cases are discussed in
detail in [10)].
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