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Free-free absorption effects on Eddington
luminosity

.. Ciotti* and J.P. Ostriker’

*Astronomy Department, Bologna University, Italy
"loA, Cambridge, UK and Dept. of Astrophys. Sciences, Princeton University, NJ, USA

Abstract. In standard treatments the Eddington luminosity i1s calculated by assuming that the
electron-photon cross section 1s well described by the Thomson cross section which 18 gray
(frequency independent). Here we discuss some consequence of the introduction of free-free
opacity in the Eddington luminosity computation: 1n particular, due to the dependence of
bremsstrahlung emission on the square of the gas density, it follows that the associated absorption
cross section increases linearly with the gas density, so that in high density environments Edding-
ton luminosity 1s correspondingly reduced. We present a summary of an ongoing exploration of the

parameter space of the problem, and we conclude that Eddington luminosity 1n high density envi-
ronments can be lowered by a factor of ten or more, making it considerably easier for black holes
to accelerate and eject ambient gas.

INTRODUCTION

The Eddington luminosity plays a fundamental role in our understanding ot accretion
phenomena and, as a consequence, of the AGN physics and evolution. In turn, 1t 1s also
clear that AGNs played a central role 1n galaxy formation, as testified by several empir-
ical scaling relations between the mass of the supermassive BHs at the center of stellar
spheroids (i.e., bulges and elliptical galaxies) and global properties of the spheroids
themselves. In standard treatments Eddington luminosity 1s calculated by assuming that
the electron-photon cross section 1s well described by the electron scattering Thompson

cross section. Here we discuss the modifications to this simple picture by taking into ac-
count bremsstranlung opacity also: due to the dependence of bremsstrahlung emission
on the square of the gas density, 1t follows that the associated absorption cross sec-
tion increases linearly with the gas density, so that Eddington luminosity 18 correspond-

ingly reduced. It 1s then expected that this opacity source will be important 1n the range
spanned by cold accretion solutions (see, Park & Ostriker 1999). These high-density
conditions were certainly present at the epoch of galaxy formation, thus a quantitative
estimate ot the reduction of Eddington luminosity as a function of ambient gas density
and temperature 1s of direct interest when modeling the early stages of galaxy formation
(see, e.g., Haiman, Ciotti & Ostriker 2003). In the following discussion we often refer to
formulae provided in Ciott1, Ostriker & Pellegrini (2003, hercafter COP): eq. (1) there
will be indicated as COP1, and so on.
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THE EFFECT OF FREE-FREE ABSORPTION

Let Lgy = eMpyc® be the bolometric luminosity associated with an accretion rate of
Mgy, where € 1s the accretion efficiency and c is the speed of light. The momentum
transfer to the gas electrons per unit time, frequency and volume at the radius r is given

by (e.g., see Krolik 1999):

_A_p B N}/e(V) “ I}K B LBH(?’,, V)O'[(V)He(r) (1)
At At ¢ dnric ’
where Ny (V) is the number of photon—electron interactions as given in COPI, ne(r) is

the electron number density. /1 is the Planck constant, and &; is the total electron cross—
section corresponding to the various absorption processes (e.g., see Krolik 1999). For
simplicity we restrict to the optically thin regime: as a consequence, from now on we
assume Lpgy(r, V) = Ly X fau(Vv) (see COP). The net acceleration field experienced
by the accreting gas with density profile p(r) is given by geir(r) = —GMgn /r> +
fo (Ap/At)dv /p(r) where G is the gravitational constant. By imposing g = 0 one
obtains

p(?‘) 47'CGCMBH

FBdd = ne(r) Jo o(v)feu(v)dv :
4

(2)

when oy = or = 87g2/3mzc* ~ 6.65 x 107> cm?, the classical expression for Lggg
1s recovered. Here we consider two different opacity sources for the emitted photons.
The first 1s due to electron scattering as described by the Klein—Nishina cross sec-
tion oxn(V) = or6kn(x), where x = v/vr and vy = mec”/h (see COP2). The sec-
ond 1s due to free—free absorption: its cross cross section Oy 1S obtained from the
bremsstrahlung emission formula (per unit volume, frequency, over the solid angle,

Spitzer 1978, hereafter S78)

B 211/2(76/3)3/2113(;2):5niZfzgff.i MeC- Uzex hv
B mgc4 kBT P kBT

Jii(V) (3)

and the Kirchhoff's law ji(v) = kgBy(T), where By (T) = 8whv ¢ /[exp (hv /kgT) —
[ and kg is the Boltzmann constant. Accordingly,

Ket qg.cz < gff > Z;Hizg \/mecz 1 “exp(—h\f/kg T) )

OV ) = — OT
(V) Fle Vérh kpT v

where < gg > 1s the mean free-free Gaunt factor. We assume that a mass fraction
X of the accreting material 1s made of fully 1onized hydrogen, and the remaining

fraction Y = 1 — X by fully ionized helium. Thus, ny = Xp /m,, nge = (1 —X)p/4my,
ne = (14+X)p/2mp, ny = (3+5X)p/4my, and finally Y2, n,Z? = p /my,. In other words,

at variance with the standard electron scattering case, Gy depends (linearlv) on the gas
densityv. As in COP, we also adopt a (normalized) spectral distribution made by the sum

of rwo distinct contributions

X+ Z fuy

- (5)

fBH(V) =




fx describes a (normalized) double-slope, non thermal distribution of total luminosity
Lx, with low and high-frequency slopes &, and &| + &,, respectively, and break frequency
vy, (COPY). fuv 1s a normalized black—body distribution of temperature 7y and total
luminosity Lyy = #ZLx (COP10); thus Lgy = Lx + Lyy = (1 + % )Lx. Accordingly, we
study
Lrag o Jo Oifxdv+Z [y orfuvdv
L‘E"d*(‘iﬂ | fom OKN fxdV + X fgm oknfuvdv

We now compute the tour integrals appearing in €q. (6) for some representative values of
the parameters entering fgy(Vv). AsinCOP, we fix §;, =0.9and & = 0.7, and # ~ 1 - 2,
so reproducing the observed Compton temperature in quasar spectra (see, €.g., Krolik
1999; Sazonov, Ostriker & Sunyaev 2003). We obtain

(6)

o0 —0.05
/ OknN fxdv >~ 0.79 (—) O (/)
0

as a very good fit over the range 0.1 < v,/vr < 10. The estimate of [;,” oxknfuvdV is
trivial: in fact, the 99% of Lyv 1s emitted at Av < 10kgTyy < hvt for any reasonable
value of Tyvy. Thus ogn ~ or, and from the normalization condition

/0 O'KNfUVa’V =~ OT. (8)

We then obtain

por 15h? gzc® < gif > \/m,_;c* =~ 1 —exp(—ax) dx. 9)

My 62K T kBT exp(x) — 1

/ Ot fuvdV =
/0 TRA A

where a = Tyy /T, and the dimensionless integral equals y+ W(1 + a), with y =
0.5772... and W(x) = dInl'(x)/dx. Note that if Tyy = T then the integral equals 1;

moreover, ¥ +¥(1+a) ~ w2« /6 for & — 0 and ¥(1 + a) ~ In(a) when o — co. Thus
we have

1.52 x 10°
P OT T T3%

O fuivdV ~ X ,}
/o /U m 0.93 x 102 Tirv
p 3 1/2 y_l_ ln o ? TUV >> Ta
TUVT T

TuvsT,

(10)

where temperatures are in Kelvin, and we assumed < gg >~ 9.8 (see §78). The integral
fo o fxdv is affected by a formal infrared divergency if (as in our case) fx ~ V=5 with

E\ > —1:in fact, o ~ v~ for v — 0. In order to have a proper physical description we
integrate only at frequencies v > y v, where

: 1 4+ X
VpE\/neqe ~ 6.35 x 103\/( +X)p g ! (11)

Ef”c f”p




1s the plasma frequency. Under the condition 1 <y < kgT /hv,, the opacity contribu-
tion comes mainly from the Rayleigh-Jeans regime in eq. (4), and the asymptotic value
of the integral is

o0 7 8 % 1012 vb)-—vo.l ( D )0.05
Ort/xdV ~ 5\ — Or. 12)
/va fffX xl‘()(] +X)0.95T3/,-_ (VT I?'Ip T (

Thus, if X =0.75, vi,/vr = 0.5, % = 2 and Tyyyv = T we obtain

L . 17x102 /p\"® 50 p )

For T2 10% K the free-free opacity contribution to Eddington luminosity is fully domi-

nated by the low frequency tail in the non-thermal spectral distribution. For example, a
reduction factor of Eddington luminosity of the order of 10 is obtained for ¥ ~ 300 and
x ~ 15, when T = 10° Kand T = 10° K, respectively.

Of course, the present analysis leaves open several questions, such as the astrophysi-
cal status of the high-density gas at low temperatures, the characteristic linear scale over
which the gas becomes optically thick, and the detailed shape of the non-thermal radi-

ation distribution in AGNs at (very) low frequencies. All these aspects of the problem
should be proprerly addressed when applying the present results to numerical models.
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Self-consistent stellar dynamical tori

L. Ciotti*, G. Bertin” and P. Londrillo™

*Astronomy Departinent, Bologna University, Italy
"Phvsics Department, Milano University, [taly
**INAF-Bologna Astronomical Observatory, Italy

Abstract. We present preliminary results on a new family of distribution functions that are able
to generate axisymmetric, truncated (i.e., finite size) stellar dynamical models characterized by
toroidal shapes. The relevant distribution functions generalize those that are known to describe

polytropic spheres, for which all the dynamical and structural properties of the system can be
expressed in explicit form as elementary functions of the system gravitational potential. The model
construction is then completed by a numerical study of the associated Poisson ¢quation. We note

that our axisymmetric models can also include the presence of an external gravitational field, such
as that produced by a massive disk or by a central mass concentration (e.g.. a supermassive black
hole).

INTRODUCTION

Constructing self-consistent collisionless equilibrium models is a key step to understand
the structure and the dynamics of stellar systems. The construction process usually
starts with the assignment of a phase-space distribution function (DF) obeying the Jeans
theorem (and thus a solution of the collisionless Boltzmann equation that describes such
“oravitational plasma’), which leads to an expression for the density as a function of the
potential; models are then calculated by solving the Poisson equation, as a non-linear,
second-order partial differential equation for the potential. In the presence of special
symmetries (for example, in the case of spherical models) the problem can be reduced
to the study of an ordinary differential equation, and the model construction is relatively
straightforward. For more general symmetries the procedure is inherently difficult. In
general, solutions have to be found numerically and turn out to exist only for a finite
range of the parameters appearing in the adopted DF.

Here we present the basic properties of the simplest member of a new family of
DFs that are able to generate axisymmetric, truncated (i.e., finite size) stellar dynamical
models characterized by roroidal shapes. The complete description of our family of DFs,
together with the results of N-body simulations aimed at the study of the stability of these
collisionless equilibrium configurations, will be presented in a separate paper (Ciotti,

Bertin, Londrillo 2004). We recall that toroidal, self-consistent models are sometimes
mentioned in the literature (e.g., see Lynden-Bell 1962; the Author expressed concerns
about their stability). With our models we will investigate this matter turther, also

considering the possible stabilizing effect of a massive dark matter halo. Astrophysical
applications will address the modeling of peanut-shaped bulges (e.g., see Aronica et
al. 2003, and references therein) and the problem of the central depression recently
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discovered (Lauer et al. 2002) in the luminosity profiles of some elliptical galaxies
hosting supermassive black holes.

THE MODELS

The particular set of axisymmetric models presented here is defined by the DF

f(0.J2) = folJ-I*(Q — Q)P ®(0 — Qv). (1)

where fp is a (dimensional) physical scale, Q = & —J/(2R3), ® is the Heaviside step
function, and o and  are two dimensionless constants; the natural coordinates are

.-""

cylindrical, (R,z,9). In addition, & = Wt — [|v||*/2 = Wt — (v + v + 1%)/2 is the
binding energy per unit mass, J, = Rv,, is the axial component of the angular momentum
(per unit mass), and Qgy and R, are a truncation energy and an anisotropy radius,
respectively. The function Wt = Wr(R,z) represents the total gravitational potential;

for the moment, we only require that ¥t ~ O(r~') for r — oo, where r = VRZ + 72
We allow for an external component also, i.e., W1 = ¥ + W,y where W is the potential

associated with the density distribution derived from eq. (1) as given by the following eq.

(4). while Wey, 1s taken to be a given function (equal to zero in the fully self-consistent
case). Note that we can write

1_,2 1:2 RE
—\p m P | 4 1 9
Q=" 5> 75 ( Rg) (2)
where v2 = VE% + vg 1s the square of the meridional (or poloidal) velocity component.

Some dynamical properties of the systems associated with eq. (1) are the following:
(/) no net rotation is present, and (ii) the two components ¢; and o- of the velocity
dispersion tensor are equal. In addition, note that for o = 0 if we formally consider

R, — oo we recover the polytropic spheres, while for integer o and B the distribution
function 1s a sum of Fricke’s (1952) DFs. The functional dependence of the system
structural and dynamical properties on Wr is obtained by integration over Q(x), the
velocity section of phase-space over which f > 0 at given x. The coordinates (v, . &) to
be used to integrate the various quantities over the rotationally symmetric (ellipsoidal)
region (x) are naturally defined by

- veos(
V1+RI/RY

(3)

Vg =vsingcosg, v, =vsin{sing, vy

where 0 < ¢ <7, 0 < & < 2x. With this choice, the ellipsoidal radius v of the velocity

section Q(x) runs in the range 0 <v < /2[W1(x) — Qg|. Integration over the two angular
coordinates gives

(0 +3/2,B+1)2971)2
200+ 1

B :
p = 4n fog(R) (Pr—00)* P H20Wr—0y), @)
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where B(x,y) = fol t*~1(1 —¢)*dr is the Euler Beta function,

RZ(I
(] +R2/R§)a+1/2’

g(R) = (5)

and for convergence it is required that a > —1/2, f > —1. Moreover,

Bla+5/2,B+ 1)20+3/2

0o HBA5/2 B
ot a3 T Qo) OWr—Qp) (6)

poy, = 4 fog(R)

and

 4mfog(R) B(a+5/2,B +1)203/2
1+ R?/R? 200+ 3

(Wr - Qo)* PPH12e(Wr — Q). (7)

< 2

foJs)

The number of free parameters (excluding those associated with the external potential)
needed to describe a model completely is five: the three dimensional quantities fg,
R,, and Qp, and the two dimensionless constants & and . The relation between the

meridional velocity dispersion 62 and the azimuthal (toroidal) velocity dispersion 6;},,
can be described by the amisotropy distribution

20, _ R*/R;—2a
o, RY/R:+1

a(R,z) =1 (8)
The velocity dispersion tensor is isotropic when a = 0, tangentially anisotropic when
a < 0, and meridionally anisotropic when a > 0. Note that the velocity dispersion
anisotropy is constant on cylinders. It can be proved that eq. (8) holds also when the
factor (Q — Qp)P in eq. (1) is replaced by a generic function 4#(Q — Qo) (Ciotti et al.
2004). We now impose the system consistency, 1.e., we require that

AY = —47nGp, (9)

with ¥ a nowhere negative function. In order to obtain the numerical solution ot eq. (9),
the Poisson equation is first recast in dimensionless form, by referring to the physical
scales R, for lengths and Qg for potentials. After rescaling, we are then led to the solution
of the following problem:

Rp=-Ap,  p=gR)(pr—1)O(¢r—1). (10)

where Y= ot + 3 +3/2 > 0, and the dimensionless quantities are defined as ¢t = W1/ Qp.
R=R/R,, and g(R) = R*®/(1 + R>)*' /2 with

167G RN P P (a4 3/2, B+ 129413

0
A= 200+ 1 | (I
It follows that 00 A
0 AP
— 12
P GR:? 4n (12)
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FIGURE 1. Isodensity contours of a meridional section of the dimensionless density distribution asso-
clated with the models (o, y) = (1,3) for A ~ 3.1 (left) and A ~ 10.3 (right).

and

e 2 h2a+1(¢}1‘“1)®(¢?'[“—|)

Equation (10), a classical non-linear elliptic partial differential equation, is then solved
by using a Newton iteration scheme, described in detail by Ciotti et al. (2004). In

general, for assigned model parameters we found convergence only for finite intervals
of A. In Figure 1 we show the meridional sections of the density distribution of two
representative truncated and fully self-consistent (Wq,; = 0) toroidal models, obtained
by fixing a > 0 (see eqgs. [5] and [10]), for two different values of A.

< o

ACKNOWLEDGMENTS

The work of G.B. and L.C. has been partially supported by a grant CoFin 2000 of the
Italian MIUR.

REFERENCES

l. Aronica, G., Athanassoula, E., Bureau, M., Bosmna, A., Dettmar, R.-J., Vergani, D., & Pohlen, M. 2003,
Astrophys. Sp. Sci., 284, 753

2. Ciotti, L., Bertin, G., Londrillo, P. 2004, to be submitted to Astron. Astrophys.
3. Fricke. W, 1952, Astron. Nachr., 280, 193
4. lLauer, T, et al. 2002, Astron. J., 124, 1975

J. Lynden-Bell, D. 1962, Mon. Not. Roy. Astron. Soc., 123, 447



The role of Compton heating
In cluster cooling flows
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Abstract. Recent observations by Chandra and XMM-Newton demonstrate that the central gas
In “cooling flow” galaxy clusters has a mass cooling rate that decreases rapidly with decreasing
temperature. This contrasts the predictions of a steady state cooling flow model. On the basis of these
observational results, the gas can be in a steady state only if a steady temperature dependent heating
mechanism is present; alternatively the gas could be in an unsteady state, i.e.. heated intermittently.
Intermittent heating can be produced by accretion on the supermassive black hole residing in the
central cluster galaxy, via Compton heating. This mechanism can be effective provided that the
radiation temperature of the emitted spectrum is higher than the gas temperature. Here we explore
whether this heating mechanism can be at the origin of the enigmatic behavior of the hot gas in
the central regions of “cooling flow” clusters. Although several characteristics of Compton heating
appear attractive in this respect, we find that the fraction of absorbed heating for realistic gas and
radiation temperatures falls short by two orders of magnitude of the required heating.

INTRODUCTION

X-ray observations of the central regions of a large fraction of galaxy clusters prior to
Chandra and XMM — Newron were interpreted in terms of cooling and condensing of
the intracluster medium (ICM), leading to a subsonic, steady central inflow called cool-

ing flow (Cowie & Binney 1977, Fabian & Nulsen 1977). The measurements of radiative
cooling times lower than a Hubble time within a cooling radius (7o) of < few hundreds
of kiloparsecs were at the basis of this idea. However, cool gas in the cluster cores (in

the form of massive-star formation or formation of low-mass stars, optical emission line
nebulae or cold gas) has never been discovered in a quantity large enough to fit with
the steady state cooling flow predictions (e.g., Donahue & Voit 2003). Moreover recent

observations from the Chandra and XMM — Newton satellites have ruled out the simple
steady state cooling flow model (e.g., Molendi & Pizzolato 2001, Peterson et al. 2003).
In this model one expects emission from gas over the entire temperature range (from
I'max, the ambient ICM temperature, down to temperature values at which the ICM is
undetectable in the X-rays), with the same mass cooling rate M at each temperature.
The strengths of a few observed emission lines reveal how much gas cools through
each temperature, and high resolution spectroscopic observations now show a deficit of
emission relative to the cooling flow predictions from gas below ~ T« /3 (Peterson
et al. 2003). In addition, the spectra show increasingly less emission at lower tempera-
tures than the cooling flow model would predict. Empirically, the differential luminosity

.

distribution AL/AT o« T'¥~ instead of being temperature-independent as expected in
g P P P
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the radiative cooling flow model. Lower spectral resolution observations, as from the

Chandra ACIS-S detector, also suggest significantly lower mass cooling rates than ob-

tained from previous analyses of ROSAT and ASCA data (McNamara et al. 2000).
These observational results have produced an important astrophysical puzzle and a

number of 1deas have been suggested to solve it, but none has been proven conclusive
yet. For example, cooling may be opposed by heating (Soker et al. 2001) or thermal
conduction may suppress cooling (Ruskowkski & Begelman 2002). ‘Cooling flows’
generally have embedded non-thermal radio sources and this association suggests that
feedback tfrom an AGN may help suppress the cooling of the ICM. This feedback may
come from the impact of the radio jets on the cooling gas (Reynolds et al. 2002, Omma et
al. 2003) or from mixing and turbulent heating as buoyant radio plasma rises through the
ICM (Briiggen & Kaiser 2002). Another plausible (intermittent) heating source could be

Compton heating resulting trom accretion of the cooling gas on the central supermassive
black hole of the central galaxy 1n the cluster core. Although the gas over the body of
the galaxy 1s optically thin, numerical simulations showed that this mechanism is very
ettective in heating the interstellar medium of giant elliptical galaxies (Ciotti & Ostriker
2001). Here we explore whether it can provide effective feedback also in the case of

cluster cores.
The bolometrlc 1um1n031ty associated with accretion in the galactic nucleus 1s Lgy =
£ Mgy ¢, where Mpy is the accretion rate on the black hole, € is the accretion efﬁmency

(usually spanning the range 0.001<e<0.1) and ¢ is the speed of light. Taking Mgy of
the order of few 10s of M., yr=!, as suggested by the most recent estimates of the mass
accretion rate in ‘cooling flows’ (Peterson et al. 2003), the power available for heating of
the ICM turns out to be ~ 10*” erg s~ 1. The power required to balance the cooling of the

ICM 1n the ‘cooling flow’ reglon must be of the order of its observed X-ray luminosity;
this goes from ~ 10 erg s™! in the Virgo cluster up to ~ 10% erg s~! in the most
massive clusters like A1835. Therefore 1t seems that during the phases of accretion

there could be enough power to balance the cooling. The problem 1s: How much of

Ly 1s actually trapped by the inflowing gas and therefore 1s effectively available for its
heating” It 1s clear that tor extremely low opacities Lgy would be unable to affect the

flow. In the following we estimate how much of Lgy is absorbed by the ICM in the core
regions ot galaxy clusters, for typical temperature and density profiles.

SETTING THE PROBLEM

The number of photon—electron interactions per unit volume and in the time interval Az
at any radius r 1n a plasma can be written as:

B okN(V)ne(r)  Lgg(v,r)At  oxn(V)ne(r)
Nye(Vor) = Nylv,r) > am? hv T an? ()

where n.(r) is the electron number density, # is the Planck constant and ok is the
Klein-Nishina electron scattering cross-section (Lang 1980):

3or [ 1+x[2(1+x) In(14+2x)| In(I+ 2x) | +3x } )

OKN(V) = v {

x> | 1+2x X " 2.x (14 2x)-
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where x = v/vr, v = mac? /h is the Thomson frequency, m, is the electron mass and
ot 1s the Thomson cross section. Here for simplicity we assume a gray absorption, i.e.:

LBH(V,?‘) == fBH(V) X LBH(I')., /UmeH(V)dV — ], (3)

where Lgy (7) is the bolometric accretion luminosity that reaches the radius r from the
nucleus.

The gas Compton heating (or cooling) per unit frequency at radius r is given by
AE = —Nye(V)AEy(V,T), where AE is the internal energy per unit volume gained (or
lost) by the gas from radiation at frequency v, and AEy 18 the energy variation of a
photon of frequency v interacting with an electron of gas at temperature 7. A simple
approximation for the energy transfer factor is':

MeC (4)

where kg 18 the Boltzmann constant. After substitution of (1) and (4) in the expression
for the Compton heating, and integration over all frequencies, one has:

fg@ B ne(r) E(r) Leu(r) 8Ic _] B Ile (5)
At om(r)4nr? mec® 3| T(r)
where n(r) is the total number density,
(14 3x-/8 V)OogN(V
FcE/ ( / )fBHE ) ORN )dv (6)
0 1 +x
and the spectral temperature T is given by:
¢ = x(14x2 V)okn{V
= e / (1+ )fBH(}) KN ( )dv, 7)
dkpl'c Jo ] 4 x-

where mec-/4kg = 1.48 x 10? K.
Integrating on r the equation of energy conservation dLgy(r)/dr = —4nr’dE(r)/ot,
one has

LBH(r):LBH(O)exp{S s /0 rE(r)ZT((:)) (1 TC)>dr}. (8)

3 mec- T(r

From the above equation we can compute the amount of energy actually trapped
to heat the gas, for any gas temperature and density profile and any spectral energy

distribution of the nuclear photons.

' This formula reproduces the well known relations AE y ~ L.5kgT — mec’x + O(1/x) for relativistic
photon energy (v > m.c*). and AE, ~ dkgTx — MeC X~ - O(:rc3 ) in the classical limit (hv < m.c*).



We assume that the spectral energy distribution fgy(Vv) is made of two distinct contri-
butions. The first is a non thermal distribution of total luminosity Lx(v) = fx(Vv) x Lx,

with
& [r0-&) ( vo ) el
avr | & VT (Vp/vr)52 + x5
where hvy, is the spectrum break energy and &; and &; + &, are the spectral slopes at low

and high frequencies. The second is a blackbody distribution Lyy(v) = fuv(V) x Lyy
at a temperature Tyy, with

fx(v) = ()

154° v 8.17x 1043 V3

~ (5).
kg Ty exp (hv /kgTyy ) — 1 Ty exp(hv/kgTyy) —1 o
For these distributions [,” fx(v)dv =1 and [; fuv(v)dv = 1. We also assume that
Lyv = #Lx, where Z# is a dimensionless parameter measuring the relative importance
of the “UV bump” with respect to the high energy part of the spectral energy distribution.
Following this choice, the frequency distribution of Ly in (3) can be written as

fuv(v) =

- IX+Z fuy
fBH(V) = T (11)
and LBH(O) = Lx +Lyy = (l —I—L@)LX
THE RESULTS

We first estimate the dependence of I'c and T, i.e., of the integrals in (6) and (7),

on the free parameters Tyy, vy, &1, §. We adopt & = 0.9 and &> = 0.7; these values
reproduce the observed spectral shapes of the X—ray and y-ray emission of AGNs (e.g.,
Nandra & Pounds 1994; Lu & Yu 1999). The coefficient I'c is evaluated numerically by
considering the range 0.1 < vy, /vy < 10 for fx and the classical limit for fgy(Vv), i.e.,
kgTyv < hvr. We obtain

0.77 x (vp/vy) "0+ 7
1 +%

A similar evaluation of the dimensionless integral on the r.h.s. of (7) gives

FC EFX“}—@FU\,IT:‘

X OT. (12)

- 8.6 x 107 x (Vb/VT)O'l% +ZTuv
T 077 x (vp/vp) 006 1 77

(K). (13)

For observed values of v,/vr ~ 0.2 and & ~ 1 (e.g., Fabian 1996), T =4 x 10’ K
(independently of Tyvy). This value for T¢ is very similar to that derived by Sazonov et
al. (2003) from composite mean QSOs spectra.

We next performed the integration in (8) to estimate Lgy(r) — Lgy(0), which is the
amount of energy actually trapped by the ICM within a radius r. The integration was
extended out to the “cooling radius’ (r¢y(), within which a ‘cooling flow” could develop.
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FIGURE 1. The amount of nuclear radiation that actually heats the ICM within r .. vy, /v s fixed at
0.2. The upper set of curves refers to Tc — T = 5 x 107 K. the lower set to Tc — T = 107 K. Solid lines
refer to # = 1, dashed ones to % = 2 and dotted ones to % — 0.5

For low T¢ values (~ 1—2 keV, as allowed by the study of Sazonov et al. 2003),
Feool €ncloses the only region within which the ICM temperature T is lower than 1c.
We assume that the gas is isothermal at a temperature I within rg,. The adopted
ICM density profile is a deprojection of the 8—model commonly used to reproduce

the observed X-ray surface brightness (i.e., Sarazin 1986): Peas = Poi 1+ (r/ rc)2]—3ﬁ /2

where r 1s the core radius (~ 250 kpc on average) and Po 1s the total particle density at
r = 0. The integration in (8) gives:

4l ¢ na

)
e C= Hy

| ¥ oo )
Lin(reoot) = Ly (0) exp kp{Tc — T )ngref ( = ﬂ-ﬁ) (14)

Ve

where ng = po/pm, with um » the average particle mass. For our choice of Yeool Ste, the
function f & reo0) /7 and is independent of B. This approximate value for the integral is
within 25% of the true value, for B = 0.3 —0.9. In Fig. 1 we plot the amount of nuclear



radiation that actually heats the ICM within ) as a function of nyre,. The range of

variation for ngrqyo 18 chosen by considering the observed ranges for r.oo (50 — 200
kpc, Peterson et al. 2003) and ng (2 x 1073 —0.1 cm ™). Taking n./n; = 0.5, the free
parameters left in the expression for Lgy(rcoo1) in (14) are v, /vy, #Z and Tc — T. In
Fig. 1 we consider a possible range for # = 0.5 — 2 and two extreme cases for the
difference Tc — T, corresponding to a high T¢ value [~ (5 —6) x 107 K] and a low one
(Tc ~ 2 x 107 K). Note that I'¢ varies by < 10% for v, /vy = 0.1 — 1, and so the results
are totally unaffected by variations of v;,/ vy in this range.

CONCLUSIONS

From Fig. 1 1t appears that the power actually available for heating of the ICM within
the cooling region goes from few x lO‘ﬁLBH(O), in the small clusters, up to 10_4LBH(0)
in the most massive ones. This makes Compton heating fall short by ~two orders of

magnitude of the required heating and therefore an unplausible mechanism to balance
the cooling of the gas in the cluster core, at variance with the situation in elliptical

galaxies (Ciott1 & Ostriker 2001).
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