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Abstract. In this paper I study the structural and dynamical
properties of isotropic spherical galaxies with surface luminosity
profile following the R'™-law. For these models the luminosity
density, the potential, the velocity dispersion and other related
deprojected properties are presented in detail, together with an-
alytical expressions for their asymptotic behavior at small and
large radii. The parameter m for the computed models covers the
range [2,10]. Moreover, I construct and study the dimensionless
self-consistently generated distribution function ﬁ?m(g”m), and
the normalized differential energy distribution Nm(g,,,), where
Em = & /pm(0) is the relative binding energy &, normalized to
the central value of the potential of the model, ,,(0). The two
functions DF m(gm) and N, (Z”,,,) are calculated under the assump-
tions that the velocity dispersion tensor is isotropic and that the
mass-to-light ratio (M /L) is constant. The main results are the
following:

1) For any m, both 51:“,,,(3,,,) and its derivative are positive for
bound stars, ie. for positive values of &,. This means that the
investigated models are physically admissible and stable.

2) For any m, a large interval of width Agm exists over which
Nm(gm) is very well described by the Boltzmann formula Ny (&) =
Noexp(—ﬁgm), with § > 0. Moreover, A&, is nearly independent
of m, being Agm ~ 0.5.

3) Finally, for any m, I compute AM,,/M,, ie. the fraction of
stellar mass within the Boltzmann range AE,,,, normalized to the
total mass of the model, M,,. I find that AM,,/M,, depends in a
very sensitive way on the parameter m, having a maximum for
m = 4, i.e. for the de Vaucouleurs law.
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1. Introduction

The RY*-law was introduced by de Vaucouleurs (1948) to describe
the projected luminosity density (or surface brightness) I(R) of
elliptical galaxies (see Eq. (1) below, with m = 4). It has no free
parameters and depends on two well defined physical scales: a
characteristic linear scale, R,, and a luminosity density factor,
I,. The surface brightness of elliptical galaxies is well fitted by
the RV4-law: Kormendy (1977) has shown that this law, when
compared to other empirical laws often used, provides the best fit
for dynamically unperturbed elliptical galaxies. De Vaucouleurs
and Capaccioli (1979) have shown that the surface brightness of
NGC 3379 (an E1 galaxy) is fitted (with residuals smaller than

0.08 magnitudes) over 10 magnitudes and more than two decades
in radius by such a law, and new fits made by Capaccioli et
al. (1990) based on fresh data are in excellent agreement with
the previously cited results. However, Makino et al. (1990) stated
that in the range of radii usually investigated in the observations,
RYmlaw models are practically indistinguishable from the de
Vaucouleurs law, for 3 < m < 10, and then that the universality
of the R/4-law is only apparent. In any case, given the empirical
success of the R'/*-law, much theoretical work has been devoted
to study the dynamical properties of stellar dynamical models
characterized by such a law (for constant M/L ratio). Useful
numerical tables of the spatial values for density and for other
related deprojected properties were calculated by Poveda et al.
(1960) and Young (1976). Mellier and Mathez (1987) presented
an analytical fit to the numerical values of the luminosity density,
whose projection gives the RV*-law: in the range 0.1 < R/R, <
100 the logarithmic error is less than 0.01.

On the physical side, by means of N-body simulations, dis-
sipationless collapses have been shown to produce systems fol-
lowing the de Vaucouleurs law very closely (see, e.g. van Albada
1982, Villumsen 1984, Aguilar and Merritt 1990, Londrillo et
al. 1991). In these simulations the differential energy distribution
dM/dé&, ie. the star mass fraction for unit energy, is usually
plotted as indicator of the relaxation of the system (May and
van Albada 1984). Bertin and Stiavelli, using a selection criterion
derived mostly from the results of N-body simulations of colli-
sionless collapse (Bertin and Stiavelli 1984, 1987; Stiavelli and
Bertin 1985; Bertin, Saglia and Stiavelli 1988), were indeed able
to construct a distribution function which, for a sufficiently high
central concentration of the system, recovers naturally the de
Vaucouleurs law. Binney (1982, hereafter B82), assuming a con-
stant M /L ratio, spherical symmetry, and isotropy of the velocity
dispersion tensor, showed that the distribution function of the
RY*law is positive for any admissible value of &, and that its
differential energy distribution is well approximated by the Boltz-
mann formula with positive “temperature” over the radial range
where the de Vaucouleurs law has a secure observational support.
This exponential behavior is substantially confirmed by N-body
simulations. In contrast, Bertin and Stiavelli (1989) argued that
“the properties of the energy distribution are more a measure of
the core concentration of the system than a consequence of the
projected luminosity being in agreement with the de Vaucouleurs
law”.

This discussion shows that a number of empirical and theo-
retical studies point to the importance of the R'/*-law and that
at the same time it is not clear whether other laws, which for
simplicity we parametrize as R/™-laws, could equally fit the ob-
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servational data and the theoretical framework that has been
recently developed to explain the photometric profiles of ellipti-
cal galaxies. Therefore, in this paper I investigate the dynamical
properties of R/™ models focusing on the following questions:
1) Is the property of an exponential differential energy distri-
bution a characteristic of stellar systems following the de Vau-
couleurs law or is it a more common feature of sufficiently
concentrated stellar systems, as R!/"-law models with m > 1?

2) If this is the case, is there a significant physical property that
characterizes the de Vaucouleurs law among all the R!/"-law
models?

In order to answer these questions, I carry out an extensive
investigation of the main properties characterizing stellar sys-
tems following the RY™ luminosity law. In Sect. 2 I present the
basic, photometric, spatial and dynamical properties of the RY/"-
law models derived under the assumption of spherical symmetry,
constant mass—to-light ratio M /L, and isotropy of the velocity
dispersion tensor; thus I compute some properties of the assumed
surface brightness profile, the spatial luminosity and density, the
potential, the spatial and line-of-sight velocity dispersion for
2 < m < 10. In Sect. 3 I present the dimensionless distribution
function 57’,,,(?,,,), and the normalized differential energy dis-
tribution Nm(gm), associated with these models. A characteristic
property of the distribution N, is identified. Finally, in Sect. 4 I
summarize the results. In Appendix A the asymptotic formulae
for the luminosity density and other properties are given, and in
Appendix B the central behavior of the distributions DF m(g‘m)
and N,,,(%m) is analytically deduced for models with m > 1.

2. The R'/™-law models

2.1. The photometric (projected) properties

The RY/™-law models can be defined as a one-parameter family
of stationary, spherical stellar systems, with surface brightness
profile generalizing the de Vaucouleurs law in the following way:

InI(R) = InI, — by'/™, 1)

I, is the central surface brightness and # = R/R,, where R, is the
effective radius (i.e. the projected radius inside which the projected
luminosity, given by Eq. (2), equals half of the total luminosity).
The defining parameter is m, a positive real number, while b
is a dimensionless parameter whose value is determined by the
definition of R,, as shown in Eq. (5); thus b can be seen as a
function of m: for m = 4, b(4) = 7.66924944. In Fig. 1 (left) the
family of curves Au(n) = p(0)—pu(n), where u(y) = —2.51log; I(R),
is shown for 2 < m < 10.

The projected luminosity, i.e. the integrated luminosity inside
the cylinder of radius R, is given by

R
LP(R) =27 / I(R)R'dR.. 2)
0

We can write LP,(R) = I,R? x ij’m(n), where the dimensionless
function LP,(y) is given by:

~ 2nm m
LPy(n) = 5y (bn'™, 2m). 3)
Here y is the incomplete gamma function (see, e.g., Erdély, Mag-

nus, Oberhettinger, Tricomi 1953, hereafter EMOTS53, vol. II, p.
153). The expression for the total luminosity L,, is obtained by

taking the limit of Eq. (3) for # — oo, and the total mass of the
model is then immediately given by M,, = (M /L) x L,,. We have
L, =I,R? x L,, where

T = 2" o), @)

b2m

and I is the complete gamma function (EMOTS53, vol. I, p. 1).
The values of logy, L, are listed in Tab.l, and the family of
the normalized projected luminosities, defined as Ef’m(n) /Lo, is
shown in Fig. 1 (right).

From the definition of R, and Egs. [(3),(4)], b(m) can be
obtained as the solution of the following equation:

== ©)

The function b = b(m) is very well fitted by the linear interpo-
lation b(m) = 2m — 0.324, for 0.5 < m < 10, with relative errors
smaller than 0.001. The exact values of b(m) are recorded in Tab.1
for 2 <m < 10.

Table1. The dimensionless parameters b(m), log, Z,,,, and

log,o Pm(0), for 2 <m < 10

m b(m) logo Lim logyo ¥m(0)
2 3.67206075 -0.38227831 -0.22672973
3 567016119 -1.16709006 -0.88057497
4 7.66924944 -1.97535251 -1.5567402
5 9.66871461 -2.79677451 -2.2456025
6 11.6683632 -3.62663241 -2.9426671
7 13.6681146 -4.46236234 -3.6454698
8 156679295 -5.30241629 -4.3525124
9 17.6677864 -6.14578764 -5.0628162
10 19.6676724 -6.99178484 -5.7757066

2.2. The spatial (deprojected) properties

The most important deprojected quantity is the luminosity density
v, which is related to the mass density via p(r) = (M/L)v(r). As
usual, r is the spatial (or deprojected) radius. I assume a constant
M/L ratio, so that the fundamental quantities (mass inside r,
potential, velocity dispersion, etc.) depend only on the luminosity
density v(r), which is related to the surface brightness profile by
an Abel integral equation (see, e.g., Binney and Tremaine 1987
hereafter BT87):

s

I(R) } ©)

1 “dl  dR .
vr) =—- — e — lim ———
TL' , dR VR2 — 2 R-w y/R2 — 2
The second term in the r.h.s. of Eq. (6) is zero for any positive

value of m. The luminosity density v, can be expressed as v,,(r) =
(Io/R,) x Vm(S), with

m.1—m
T = 5 ), ™
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Fig. 1. Left panel: the family of curves Au(n) = u(0) —u(n) for the computed models. The upper curve is relative to m = 2 and the lower to m = 10. For
any two values of the parameter m, the 5 of the intersection of the corresponding Ay is given by [b(m)/b(m')]™/¢n=m)_Right panel: the normalized

projected luminosities, Eﬁm(n) /Zm, for 2 < m < 10. In the abscissae scale, = R/R,

where the function %% () is defined in Appendix A. Here and
in the following « = bs'/™ is the reduced radial coordinate, and
s = r/R,. The asymptotic behavior of v,, for r — oo is given by:

Tnls) ~ 1/ Zzb; exp(—bs'/m)sti=2m/2m, ®

and, for »r - 0 and m > 1, by:

o ~ B2 /2m)

where B(x,y) is the complete beta function (EMOTS53, vol. I,
p- 9). The derivation of Egs. [(7)—(9)] is given in Appendix A.
For the particular case of m = 4, the relevant exponent at the
origin is —3/4, as reported by Mellier and Mathez (1987), and
the numerical values of V4 obtained are in full agreement with
the tables of Young (1976). For m # 4, the accuracy of the
computation is tested by comparing the values given by Eq.
(1) with those obtained by projecting the luminosity density
calculated numerically. In Fig. 2 (left) the family of log;y Vi(s)
for 2 < m < 10 is shown. It should be noted that for m > 1
the density diverges at the origin as r'~™/" and therefore the
divergence of p is worse for higher-m models.

From the luminosity density we can calculate the integrated
spatial luminosity, L(r) = 4n for v(¥)r'2dr’. For the RY/™-law mod-
els we have L, (r) = I,R? X Loy (8). In Fig. 2 (right) the family of the
normalized spatial luminosity L,(s)/L,, is shown for 2 < m < 10.
From Fig. 2 it is evident that, if one defines s, as the spatial
half-light radius of a model normalized to its effective radius R,,
this number is practically independent of m. Exact values of s,
are reported in Tab. 2.

exp(—bs"/™)sU—m/m, ©)

2.3. The dynamical properties

The fundamental property which defines the dynamical behavior
of the R'/"-law models is their associated potential. I will refer
to the positive function y,(r) = G(M/L)I,R, X ¥,(s), where G is
the gravitational constant and, from the Gauss theorem,

Tnls) = / L)

x2

(10)

The integral in Eq. (10) cannot be solved in terms of elementary
functions, but for » = 0 one can use the following general relation
for spherical systems:

*dl
0) = —46M/L) | “LRar, 1
w0 =—sc00/n) [ o (1

from which the value of the central potential is found to be:

4T (m + 1)

Pnl0) = =

(12)

In Tab. 1 I list the values of the quantity log,, ¥, (0), and in Fig. 3
(left) I show the family of the normalized potentials ,,(s)/Pm(0).
It is easy to note that models with low m have a potential well
much flatter than models with high m, in agreement with the
central behavior of the density, as reported in Eq. (B1) for x = 0.

Table2. The dimensionless parameters s;, su/s;, f(m) and
AM,,/M,,, for 2 <m < 10

m Sh sh/SG ﬁ(m) AMm/Mm
2 13386 04137 1.52 0.50
3 13428 04287 1.88 0.54
4 13490 04536 2.26 0.56
5 13490 04854 251 0.27
6 13490 05259 278 0.19
7 13552 0.5726  3.00 0.12
8 1.3552 0.6268 3.19 0.09
9 13552 0.6908 3.39 0.08
10 1.3552 0.7624  3.57 0.05

As far as the velocity dispersion is concerned, under the
assumption of isotropic pressure (see Sect. 3), and of spherical
symmetry, the Jeans equation becomes d(va?)/dr = vdy/dr, with
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Fig. 2. Left panel: the luminosity densities, log;o Vm(s), for 2 < m < 10. Right panel: the normalized spatial luminosities, Z,,,(s) /Lo, for the same range

of m. In the abscissae scale, s =r/R,

the usual boundary condition given by va? — 0 for r — co. This
yields:

Ga(s) =

! / * Ln(x) Ton()dx, (13)

Vm(S) x2

where 62(r) = G(M/L)I,R, x 32(s). In the case of the R/*-law,
the result is in agreement with B82: o, peaks at ~ 0.08R,. In Fig.
3 (right, solid line) the logarithm of the 1-dimensional velocity
dispersion is shown for 2 < m < 10. It is important to note the
presence of the central depression, which is a common property
of the R/™-law models, as already pointed out by Binney (1980)
for the de Vaucouleurs law. This behavior can be explained in the
general way described by Binney (1980), by taking into account
Eq. (B6). But, in the particular case of the R!/™ stellar models a
direct approach is perhaps useful. From Eq. (B8) we find that the
central value of the velocity dispersion vanishes for any m > 1:
consequently, near the center, the velocity dispersion can only
increase outwards. It is also important to note in Fig. 3 that the
central depression of the velocity dispersion is large for smaller
values of m. This important feature can be easily understood: for
a fixed (small) radius, the derivative of the velocity dispersion
can be found from Eq. (B8), and it turns out to be proportional
to s~U+m/2m e it is a decreasing function of m. For r — 0, at
higher values of m there corresponds a smaller divergence of the
velocity dispersion derivative.

The dashed lines in Fig. 3 refers to the dimensionless line—
of—sight velocity dispersion Gp,(1): of course, the dimensional
factor of normalization is the same as that for the spatial velocity
dispersion, while the dimensionless function is given by

~ “_ AP,
Fhat) = —20x006n"™) | 500 T /5
n

(14)

This formula is obtained from the general definition of 5p,, given,
e.g., in BT87 (Eq. (4.57), p. 205), integrating by parts and using
the Jeans equation. In this way we can eliminate the divergence
of the argument of the integral, and obtain a best suited formula
for numerical computation. The main feature of the line—of-sight
velocity dispersion is the nearly total absence of the previously
cited central depression: in any case, from the observational point

of view, it is important to note that op,, follows closely o,,, for
0.1 <y <10

Another useful parameter in the description of a spherical
system is the gravitational radius rg, defined by the relation |W| =
GM?/rg (BT87), where |W| and M are the potential energy and
the total mass of the system respectively. Referring to an RY/"-
law galaxy, if the dimensionless gravitational radius s¢ = rg/R,
is known, from the virial theorem it is possible to derive the total
mass of the system as M,, = R, < 02, > 55/G, where < 02, > is
the luminosity weighted velocity dispersion over the whole object
(see, e.g. Djorgovski and Davis 1987, Eq. (4)). It is interesting to
note that the parameter s is weakly sensitive to variations of
m. In fact, it is bounded between 3.24 for m = 2 and 1.78 for
m = 10. For the de Vaucouleurs models the value obtained for
s is in agreement with that given by Poveda (1958).

Finally, for the classification of the models, it is interesting
to study the concentration parameter s,/sq (Spitzer 1969): the
higher is the value of this parameter, the higher is the model
concentration. As one can see from Tab. 2, s,/s¢ is an increasing
function of m, which takes the value 0.41 for m = 2, and 0.76 for
m = 10. For the particular case of the R'/*-law, the concentration
is ~ 045, in agreement with the value given by Stiavelli and
Bertin (1985).

3. The distributions DF,, and N,, for the R/™-law models
3.1. DF,(6)

For a general collisionless system the distribution function DF,
which can be interpreted as the phase space density, is the solution
of the collisionless Boltzmann equation, and depends on the
phase space variables and time. It is related to the density p of
the system by the equation:

px, 1) = / DF(x,v,t)d%v, (15)
where the integral is extended to the whole velocity space. A
requirement for any physically admissible DF is clearly its non-
negativity over the accessible phase-space of the system. If the
system is stationary, the DF depends on the phase space co-
ordinates only through the isolating integrals of motion (Jeans’
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Fig. 3. Left panel: the normalized relative potentials, P, (s)/¥m(0), for 2 < m < 10. Right panel: the one-dimensional velocity dispersions, log;o o (s)
for —2.5 < log; s < 2 (solid lines), and the line-of-sight velocity dispersions, log;o Gpm() (dashed lines), for —2.5 < logjon < 2

Theorem, Chandrasekhar 1942), and moreover if the system is
spherical and its velocity dispersion tensor is isotropic, then its
DF depends on the binding energy for unit mass only. Generally,
the negative value of the binding energy, the relative binding en-
ergy & is used. Thus, indicating with yp(r) the absolute value of
the potential of the system, the positivity condition for the DF is
that DF(8) = 0 for 0 < & < (0) (bounded stars) and DF(&) =0
for & < 0 (unbounded stars).

Using the Eddington technique (Eddington 1916) we can
obtain the self-consistently generated DF (&) of a system described
by a density-potential pair (p, ) in the following way:

DF(6) = (16)

! / Tp_dy [ 1dp
\/gnz 0 dwz Véﬂ_lp \/gdlp |w=0.
The DF obtained in this way is not automatically physically
consistent, in the sense that the Eddington inversion does not
guarantee its positivity. If for some positive value of & the DF
is negative, then the assumption of isotropic velocity dispersion
is inconsistent with the assumed density profile. For the R/"-law

models, the second term in the r.h.s. of Eq. (16) vanishes. In
fact, the derivative (dp/dtp)lw:O = lim, .o, (dp/dr) (dr/dy) ~
0 (s ") x exp(—bs'/™) — 0 for any positive value of m. Thus,
defining & = G(M/L)I,R, X &,{m(0), where &, = &/pn(0), we

have that DF,,(€) = [G*(M/L)I,R%]~'/2 x DF,,(&,). The dimen-
sionless term is given by:

. 1 °° An(x)
DFm(éam) = — /~ dx, (17)
TV 8P 0) SiEn /& — () /i 0)
and (B82),
2 [dW(x)  dvp(x) (2 4nx*.(x)
An(x) = ~x - . 18
® Lm(x)[ TR (x L.() )] 1

In Eq. (17), the integration variable is transformed from potential
to radius s(?m), i.e. the maximum radius reachable by a star of
binding energy Z”m, At small radii the DF,, diverges for any m, as
stated by Eq. (B6) and showed in Fig. 4 (left), where the family
of logy, ﬁf’m(gm) vs. &, is reported. In any case, the central

divergence of the DF, is not a problem: in fact, although the
central phase space density of the models diverges, the mass
corresponding to this energy does not.

The main result of the computation is the positivity of the
l/)\lj“m(gm) for any model, ie., the RY™law stellar systems can
be supported by an isotropic velocity dispersion tensor. Moreover,
again from Fig. (4), one can see that the derivative of DF,, with
respect to & is positive for any model: this implies that the RY/™
models are stable to radial and nonradial perturbations (see, e.g.
BT 87, pp. 306-307).

3.2. Np(&)

For the study of a dynamical system it is also useful to know
the differential energy distribution, dM/d& = DF(&) x G(8),
where the factor G(&)d& is the volume element of the phase
space. For the RY™ models one can express the volume factor as
Gn(&) = [G(M/L)I,R1)"? X Gp(& ), where:

3(}/m)
Cnl@n) = 160/ 2O / B0/ (0) — Fudx. (19)
0

In Fig. 4 (left), the family of curves log, 5,,,(?,,,) vs. &, for
2 < m < 10 is shown. One can note the central convergence at
zero of these functions, as stated by Eq. (B2). I will use the nor-
malized differential energy distribution, i.e. the dM/dé& function
normalized to total mass M,,, and with & normalized to the cen-
tral value of the potential, ,,(0). I will indicate this dimensionless
function with Nm(gm), so that
Nu(&n) = DF (&) X Gn(Em) X Pm(0) /L. (20)
By definition, the integral of N,,,(?m) over all the energy range
0 < &, < 1 must be 1, and this property can also be used to
test the accuracy of the computation. In Fig. 4 (right), the family
of logy Nm(gm) vs. 3‘",,. is shown. As for the 'va(gm), the central
value for N,,(&,) is zero, as shown by Eq. (B7).

It is evident that the principal characteristic of the Nm(gm)
is its exponential behavior over a substantial range of energy.
This range and its amplitude can be quantitatively defined by

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1991A%26A...249...99C&amp;db_key=AST

FTI91ARA © Z 2497 ~.799T

104
— T o s e e SO
E . 4
¥ oo10 m=10
5 :
[a) - - )
) m=2 ; 1 &
= -10 - 1 .
. S . Zo
& m=2 f m=10 —2?)3
g 0 . -
(&)
ED—IO { _4_
m=10 L
oo b b b e e Ly o N b v b e by e
0 2 4 .6 .8 2 4 .6 .8 1
gm ’é/m

- Fig. 4. Left panel: the distribution functions, log;q DF, m(’é'v”,,,) (top), and the logq Em(ém) (down) functions. Right panel: the normalized differential

energy distributions, logq Nm(gm) for 2 < m < 10. In the abscissae scale &y, = &/pm(0)

fitting the exponential zone using a standard least square method
and a parametric Boltzmann formula Ng(&) = Noexp(—ﬁgm). In
the following, I will call Boltzmannian zone the widest energy
range for which the correlation coefficient of the fit is higher
than 0.999, and Agm its amplitude. It turns out that A%m ~ 0.5,
nearly independent of the parameter m. This shows that the large
extension in energy of the Boltzmannian zone is not a special
property of the de Vaucouleurs model, but is more a measure
of the concentration of the model, as pointed out by Bertin and
Stiavelli (1989). As far as the parameter f is concerned, one
can note from Tab. 2 that its value is an increasing function of
the model concentration, as already pointed out by Stiavelli and
Bertin (1985).

Taking into account the previous result, it is natural to ask
whether there exists some physically interesting quantity in the
family of RY™ stellar systems which is characteristic of the de
Vaucouleurs law. In this context I define AM,,/M,, as the mass
fraction of the models corresponding to the Boltzmannian zone
of the function N,,,(Em), i.e. the integral of Nm(gm) over Agm. The
values of this function are reported in Tab. 2. The main result
is that this function has a different behavior for 2 < m < 4, for
which it assumes values relatively higher than those for 4 <m <
10. Moreover, AM,,/M,, is maximized by m = 4, ie. in the case
of the de Vaucouleurs law.

4. Conclusions

The results of this work are the following:

1) The distribution function 517",,,(3,,,) is nowhere negative in
the phase space, for spherical, isotropic R'/™ stellar systems with
2 <m< 10, i.e. these systems are physically admissible. Moreover,
dDF,y(&,)/d&, > 0 for 0 < &, < 1, and this shows that these
systems are stable to both radial and nonradial perturbations.
2) The exponential behavior of the differential energy distribution
N(&,) is a common property of all the RY"-law models. Thus,
it is really an effect of the central concentration.

3) The special property shown by the R/4-law is that the mass
fraction corresponding to the Boltzmannian zone is maximized.
This is due to the special behavior of the functions Nm(gm) for

r — co. In fact, while the fraction A&, of the binding energy
where the function Nm(gm) is exponential is nearly independent
of the value of m, its position depends on m. For 10 > m > 4, this
range moves towards low energies; in contrast, for 4 > m > 2 it
moves towards high energies. In other words, models with lower
concentration than the de Vaucouleurs law are depressed in the
external part of the N,, (&) with respect to a pure Boltzmann law,
and models with higher concentration have too high a differential
energy distribution: generally, in a stellar system, most of the
mass is bound at higher energies, i.e. near the tidal radius, and
then the behavior of the AM,,/M,, for the R'*-law model is
easily understood.
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Appendix A

In this Appendix I derive the asymptotic expansions for « — 0
and o — oo of the functions %% (), and discuss their connection
with the derivatives of the luminosity density v, [see Eq. (7)].
The function %% (o) is given in integral form as:

X 1B exp(—at)dt
1 Viim —1 ’

where B is a real constant, m > 0, and « > 0; we recall that
o = bs'/™ is the reduced radial coordinate. The derivatives of
@® («) with respect to o, which enter in the expression of A, (x)
[see Eq. (18)], follow the relation:

fgﬁ, () = lim

X -0

(41)

065 (@)

— (_1\npb+n
S = (16 6).

(42)

The argument in the integral of the %% («) function is singular
at t = 1, but this singularity is independent of the value of the
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parameters f§ and o, and it is integrable for any value of m. The
integral in Eq. (A1) diverges at oo only in the case of « = 0 and
m—pf <1

For large values of «, we have for any value of  and m:

A exp( o)

2m Jx

In fact, for & — oo, the double limit in Eq. (A1) is zero indepen-
dently of the order. Thus, changing the variable of integration in
Eq. (Al) t = x/a, inverting the double limit, and expanding in
power series the argument in the integral, we obtain the proof of
Eq. (A3). Then, for any value of m, the asymptotic behavior of
the luminosity density for « — oo is shown in Eq. (8). It is also
interesting to note that the first term of the asymptotic expansion
of %% («) at infinity is independent of B.

For o — 0, three different results are obtained for m— f > 1,
m— B =1,and m— B < 1. In the case m — f > 1, the integral
(A1) converges at a = 0: changing the variable of integration
x =t—1, we have

@l (o) ~ (43)

& (@) ~ /% (';'m" D/2m] o ep(—). (44)
For f = 0 we have that, for m > 1,
Vmlct) ~ B[1/2é7(tr:1nb—_i)/2m] exp(—o)al™. (45)

Thus, the luminosity density for « — 0 diverges as shown in Eq.
9).

In the case of m — f = 1, setting f = 0 in Eq. (Al) and
changing the variable of integration t = cosh(x), we have v;(x) =
b(1)Ky () /7 where Ky is the zeroth-order modified Bessel function
of the third kind (EMOTS3, vol. I, p. 5-9), and then

().

Finally, in the case m — f < 1, if one changes x = at in Eq. (Al),
for small radii we have

b(l)

Vi) ~ — (46)

@ (@) ~T(1 + p —mpam P, (A7)

and

V(o) ~ ml__m) (A8)
T

Appendix B

In this Appendix I record the asymptotic behavior for s — 0 and
m > 1 of the functions é,,,(%m), DF,,(&,), and Nu(&,). The first
therm of the asymptotic expansion of the velocity dispersion for
s — 0 is also given.

The density for s — 0 is given in Eq. (9), which can be
written as p,(s) ~ co(m) x s*, where A = (1 —m)/m and —1 <
A < 0. Therefore, the mass 1ns1de s is given by M, (s) ~ ¢ (m)s*+3,
where ¢o(m) and c;(m) are positive constants. Then, the potentlal
difference required in Eqgs. [(18),(19)] is given by

Pn(x) = Bnls) ~ calm) (2 = x*) 5 calm) >0 (B1)
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Inserting Eq. (B1) in Eq. (19), and normalizing the variable of
integration to s(gm), we have:
Gn(En) ~ c3(m) X 5(E) T cy(m) > 0. (B2)
So, we have the property that the asymptotic behavior of G, (&)
for s — 0 is nearly independent of m, with the exponent ranging
from 3.5 for m — oo to 4 for m — 1.

The situation is more complicated for the distribution func-
tion ﬁm(g’m). From Eq. (17) we should note that only the sign
of the function A,(x) can determine the positivity of the dis-
tribution function. It is also straightforward to show that the
asymptotic behavior of this function for x — oo is exponentially
decreasing for any value of m (see Egs. (8),(18)). Thus, if for
s — 0,the function DF. (&) diverges, its sign and its asymptotic
behavior are given by the integral of the asymptotic expansion
of the integrand close to the center. For m > 1,

C4(m)

m() 5
x3

ca(m) > 0. (B3)

As far as the square root in the denominator of Eq. (17) is
concerned, Eq. (Bl) must be used. Defining

A
dx

L,(A,s) = — v 0 , B4
ﬂ,( ) /S X”m ( # ) ( )
for s — 0, we have:

o), fu+v>1;
I, (A,8) ~ < O[—1In(s)]; ifpu+v=1; (B5)

o(1); ifu+v <l

Then, in our case, from Egs. [(B1),(B3)], we have ¢ = 3 and
v = (1 + m)/2m: these values make the integral in Eq. (17)

diverge. Thus, the DF m(é"m) diverges at the center as:

DF (&) ~ cs(m) X s(E) 52 c5(m) > 0. (B6)

The exponent of Eq. (B6) spans the range | — 3,—2.5[ for 1 <
m < oo. Finally, the central behavior of the differential energy
distribution is given by:
Nin(En) ~ colm) X s(En);

cg(m) > 0, (B7)

i.e. it is independent of m.
The velocity dispersion is zero for s — 0 and m > 1. In fact,

if we consider Eq. (13), the integral at the r.h.s. converges to

some positive constant. Thus, the Lh.s. also converges, and the

first term of the asymptotic expansion for the velocity dispersion

is:

Gn(s) ~ c7(m) x 5742

¢7(m) > 0. (B8)
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