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Radially anisotropic systems with r−α forces – II: radial-orbit instability
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ABSTRACT
We continue to investigate the dynamics of collisionless systems of particles interacting via
additive r−α interparticle forces. Here we focus on the dependence of the radial-orbit instability
on the force exponent α. By means of direct N-body simulations, we study the stability of
equilibrium radially anisotropic Osipkov–Merritt spherical models with Hernquist density
profile and with 1 ≤ α < 3. We determine, as a function of α, the minimum value for stability
of the anisotropy radius ras and of the maximum value of the associated stability indicator
ξ s. We find that for decreasing α, ras decreases and ξ s increases, i.e. longer range forces are
more robust against radial-orbit instability. The isotropic systems are found to be stable for all
the explored values of α. The end products of unstable systems are all markedly triaxial with
minor-to-major axial ratio >0.3, so they are never flatter than an E7 system.
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1 IN T RO D U C T I O N

Self-gravitating collisionless systems with equilibrium initial condi-
tions characterized by a large degree of radial anisotropy (i.e. when
a significant fraction of the system’s kinetic energy is stored in low-
angular momentum orbits) are known to be violently unstable. Such
instability is commonly referred to as radial-orbit instability (here-
after ROI, e.g. see Polyachenko 1992; Binney & Tremaine 2008;
Maréchal & Perez 2011; Bertin 2014).

The importance of the ROI for the dynamics of elliptical galaxies
is evident. For example, the ROI has been invoked as the physical
mechanism responsible for the origin of the triaxiality of elliptical
galaxies (see e.g. Aguilar & Merritt 1990; Theis & Spurzem 1999;
Bellovary et al. 2008; Pakter, Marcos & Levin 2013; Gajda, Łokas
& Wojtak 2015; Sylos Labini, Benhaiem & Joyce 2015; Worrakit-
poonpon 2015; Benhaiem et al. 2016). In the context of the study of
the origin of the scaling laws of elliptical galaxies, Nipoti, Londrillo
& Ciotti (2002) investigated the implications of the ROI on the thin-
ness and tilt of the Fundamental Plane (Djorgovski & Davis 1987;
Dressler et al. 1987). Remarkably, N-body simulations, confirming
a conjecture proposed by Ciotti & Lanzoni (1997), revealed that the
whole tilt of the Fundamental Plane cannot be explained invoking
a systematic increase of radial-orbital anisotropy with mass, due to
the limits imposed by stability requirements. We finally note that in
Newtonian gravity, numerical simulations show that the presence
of a spherical dark matter halo has a mild stabilizing effect against
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ROI (Stiavelli & Sparke 1991; Meza & Zamorano 1997; Nipoti
et al. 2002).

Notwithstanding the great importance in astrophysics, and the
vast amount of work done on this subject (e.g. see Polyachenko
& Shukhman 1981; Merritt & Aguilar 1985; Palmer &
Papaloizou 1987; Saha 1991; Bertin et al. 1994; Cincotta, Nunez
& Muzzio 1996; Perez & Aly 1996; Meza & Zamorano 1997;
Maréchal & Perez 2010; Polyachenko & Shukhman 2015), a fully
satisfactory understanding of the ROI has not been reached yet, even
though some results are now well established. In fact, the degree of
anisotropy of a spherical model can be quantified by the so-called
Fridman–Polyachenko–Shukhman stability indicator (Fridman &
Polyachenko 1984)

ξ = 2Kr

Kt
, (1)

where Kr and Kt = Kθ + Kφ are the radial and tangential components
of the kinetic energy tensor, respectively. The main result is that,
albeit with some dependence on the specific equilibrium model, for
ξ > ξ s � 1.5 ± 0.2, the systems are unstable. Unfortunately, it is
not clear how much the ROI depends on the density profile of the
initial equilibrium configuration, and, at fixed ξ , on the anisotropy
profile.

Of course, even less is known in the case of alternative theo-
ries of gravity where the force differs from the Newtonian 1/r2

law. Among others, we recall the Modified Newtonian Dynamics
(MOND; see e.g. Milgrom 1983, Bekenstein & Milgrom 1984), the
Modified Gravity (see e.g. Moffat 2006; Moffat & Rahvar 2013),
the Emergent Gravity (see e.g. Verlinde 2016) and the so-called f(R)
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gravities (see e.g. Buchdahl 1970; Sotiriou & Faraoni 2010; Zhao,
Li & Koyama 2011).

In the context of MOND, for example, it is natural to ask whether
radially anisotropic MOND systems are more or less prone to the
ROI than their equivalent Newtonian systems1 (ENSs). Nipoti,
Ciotti & Londrillo (2011, hereafter NCL11) found that, on one
hand, MOND systems are always more likely to undergo ROI than
their ENSs. On the other hand, MOND systems are able to support
a larger amount of kinetic energy stored in radial-orbits than one-
component Newtonian systems with the same baryonic (i.e. total)
density distribution.

Here we extend the study of the ROI to the case of a family of
radially anisotropic (Hernquist 1990) models with additive inter-
particle r−α forces with 1 ≤ α < 3. In this investigation, we limit
for simplicity to the force exponents in the range 1 ≤ α < 3. In fact,
this range spans the relevant cases of forces with an exponent larger
and smaller than 2, and also corresponding to the MOND-like case
(α = 1). We also note that a scale-free force law is also expected in
the weak field limit of some of the theories mentioned above (see
e.g. Capozziello et al. 2004, 2017; Zakharov et al. 2006).

Note that the study of attractive r−α interparticle forces is not
new, as it can be traced back to Newton’s Principia (e.g. see Chan-
drasekhar 1995). Relatively recently, Ispolatov & Cohen (2001a,b)
studied the dynamical phase transitions in systems with r−α in-
teractions undergoing violent relaxation (Lynden-Bell 1967), and
Iguchi (2002) and Marcos, Gabrielli & Joyce (2012) investigated
the existence and stability of the stationary states of such systems
(see also Bouchet, Gupta & Mukamel 2010, Levin et al. 2014, and
references therein), while Chavanis (2013) developed a kinetic the-
ory for generalized power-law interactions. More recently, Chiron
& Marcos (2016) and Marcos, Gabrielli & Joyce (2017) extended
the original Chandrasekhar (1941, 1943) approach to quantify the
dynamical friction force and evaluate collisional relaxation times in
Newtonian systems to the case of r−α forces.

Di Cintio & Ciotti (2011, hereafter DCC11) and Di Cintio, Ciotti
& Nipoti (2013, hereafter DCCN13) studied the collisionless re-
laxation process and the end products of dissipationless collapses
of initially cold and spherical systems of particles interacting via
additive r−α forces and characterized by different virial ratios. This
approach allowed us to implement a simpler direct N-body code
for the simulations of collapses for different force indices α and
initial virial ratios at the cost of relatively longer computational
time with respect to particle-mesh MOND simulations (Londrillo
& Nipoti 2009). This study presents additional technical problems,
because in the set-up of the initial conditions, we must recover the
phase-space distribution function and check for its positivity as a
function of the anisotropy radius and force exponent α. The analyt-
ical set-up of the initial conditions is presented in Di Cintio, Ciotti
& Nipoti (2015, hereafter DCCN15).

This paper is structured as follows. In Section 2, we describe the
set-up of the initial conditions and introduce the quantities that we
will use to check the stability of numerical models. In Section 3, we
show the evolution of isotropic and marginally consistent radially
anisotropic systems, and study the structural properties of their

1 The ENS of a MOND system is a Newtonian system where the baryonic
component has the same phase-space distribution as the parent MOND
model. This requires the presence of a dark matter halo (which, in general, is
not guaranteed to have positive density everywhere) in the ENS. Similarly,
we could introduce the concept of equivalent r−α system, and study the
properties of the associated dark matter halo.

final states as functions of the force exponent α. In Section 4, we
determine numerically the critical value of ra and ξ for stability,
and study the evolution and the end products of unstable anisotropic
systems. The main results are finally summarized in Section 5.

2 N U M E R I C A L M E T H O D S

2.1 Initial conditions

In line with previous studies (e.g. Meza & Zamorano 1997, Nipoti
et al. 2002; NCL11; DCCN15), we consider the stability of spherical
systems with Hernquist (1990) density profile

ρ(r) = Mrc

2πr(rc + r)3
, (2)

where M and rc are the total mass and the core radius, respectively,
and

M(r) = M ×
(

r

rc + r

)2

(3)

is the cumulative mass profile.
In order to build initial conditions with a tunable degree of ra-

dial anisotropy, as required by our experiments, we adopt the stan-
dard Osipkov–Merritt (Osipkov 1979; Merritt 1985, hereafter OM)
parametrization. It is easy to show that the integral inversion needed
to recover the phase space distribution function (Eddington 1916;
Binney & Tremaine 2008) is independent of the force law (while, of
course, the potential is not); we already adopted the OM inversion
to set up initial conditions in MOND (NCL11), and for r−α forces
(DCCN15). The anisotropic OM distribution function f(Q) for our
systems is given by

f (Q) = 1√
8π2

∫ Qsup

Q

d2ρa

d�2

d�√
� − Q

, (4)

where

Q = E + J 2

2r2
a

. (5)

E and J are the particle’s energy and angular momentum per unit
mass, ra is the anisotropy radius, and the augmented density is
defined by

ρa(r) =
(

1 + r2

r2
a

)
ρ(r). (6)

Note that we do not adopt the convention, common in Newtonian
gravity, of using the relative potential and energy. We recall that the
velocity–dispersion tensor is nearly isotropic inside ra, and more
and more radially anisotropic for increasing r. Therefore, small
values of ra correspond to more radially anisotropic systems, and to
larger values of ξ .

For α-forces, the potential �, due to the spherically symmetric
density2 ρ(r), is given by

�(r) = −2πG

r

∫ ∞

0
ρ(r ′)

(r + r ′)3−α − |r − r ′|3−α

(α − 1)(3 − α)
r ′dr ′ (7)

2 The general expressions of � for a generic distribution ρ(x) is given in
DCCN15 (equations 2.4– 2.7; see also DCC11). For the density distribution
in equation (2), when 1 < α < 3, it is possible to fix x0 = ∞ and �(x0) =
0, while for α = 1, we set x0 = 0 and �(x0) = GM × [1 + ln(rc/rn)],
therefore obtaining the expressions (7) and (8). We recall that for 1 < α < 3,
�(0) = GM/rα−1

c × 2B(3 − α, α)/(α − 1), where B(x, y) is the complete
Euler beta function (DCCN15).
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Figure 1. Left-hand panels: critical OM anisotropy radius for consistency
of the Hernquist models, rac (top panel, in units of the half-mass radius
r∗) and corresponding value of the stability indicator ξ c (bottom panel) as
functions of the force exponent α. Right-hand panels: critical OM anisotropy
radius ras for stability (top panel) and corresponding value of ξ s (bottom
panel) as functions of the force exponent α. Crosses show the critical value
of ξ computed for particles within the half-mass radius r∗ only.

for 1 < α < 3, and

�(r) = πG

r

∫ ∞

0
ρ(r ′)

[
(r + r ′)2 ln

(
r + r ′

rn

)

− (r − r ′)2 ln

( |r − r ′|
rn

)
− 2rr ′

]
r ′dr ′ (8)

for α = 1 (DCC11), where G is a dimensional coupling constant
and rn is the scalelength used to normalize interparticle distances.
In our case, the natural choice is to use rn = rc. From equations (7)
and (8), it is not difficult to show that in equation (4), Qsup = 0 for
α > 1 and Qsup = ∞ for α = 1.

Since the maximum amount of radial anisotropy that a given
system can sustain is limited by the phase-space consistency (i.e.
positivity of the phase-space distribution; Ciotti & Pellegrini 1992;
Ciotti 1996, 1999; Ciotti & Morganti 2009, 2010a,b; An 2011; An,
Van Hese & Baes 2012), it is natural to investigate preliminarily how
this limit depends on the force exponent α. In fact, in DCCN15, we
determined, for the family of OM anisotropic Hernquist models,
the minimum value, rac, and the associated maximum value of the
stability indicator, ξ c, for phase-space consistency. In Fig. 1 (left-
hand panels), we show these quantities, and their numerical values
are given in Table 1 (columns 2 and 3).

As described in in DCCN15, it turns out that rac increases with
α, and ξ c correspondingly decreases, i.e. high values of α (‘short-
range’ forces) lead to phase-space inconsistency in more isotropic
models than low values of α (‘long-range’ forces). In practice,
for given α, only models with ra above rac and ξ below ξ c are
characterized by a nowhere negative f(Q). Therefore, at a fixed
density profile, systems with a lower α can sustain a larger amount
of radial OM anisotropy.

Once the phase-space distribution function f(Q) is computed, the
radial coordinate for the N particles of mass m = M/N is extracted
from equation (3). The angular coordinates ϑ and ϕ are randomly
assigned to each particle sampling cos ϑ from a uniform distribution
in (−1,1), and ϕ from a uniform distribution in (0, 2π). Then, the
potential �(r) is numerically evaluated from equations (7) and (8)

Table 1. Properties of initial conditions and final states of the numerical
models as functions of α. From left-hand to right-hand columns: force
exponent, normalized critical anisotropy radius for consistency, maximum
value of the stability indicator, final value of the stability indicator, final
value of the axial ratio for the maximally anisotropic models, normalized
critical anisotropy radius for stability, corresponding value of the stability
indicator, and critical value of the stability indicator when restricting to
particles within the half-mass radius r50 = r∗.

α rac/r∗ ξ c ξfin (c/a)fin ras/r∗ ξ s ξhalf, s

1.0 0.064 39.3 4.23 0.28 0.58 3.87 1.59
1.1 0.065 25.6 3.77 0.27 0.67 3.18 1.63
1.2 0.066 20.2 3.54 0.26 0.78 2.76 1.49
1.3 0.067 17.6 3.29 0.27 0.82 2.59 1.39
1.4 0.068 15.7 3.03 0.28 0.85 2.15 1.33
1.5 0.069 13.5 2.87 0.28 0.80 1.86 1.37
1.6 0.071 12.8 2.66 0.29 0.83 1.83 1.34
1.7 0.074 11.4 2.52 0.31 0.86 1.80 1.33
1.8 0.076 10.4 2.40 0.33 0.83 1.78 1.35
1.9 0.078 8.95 2.23 0.36 0.81 1.77 1.30
2.0 0.080 8.23 2.11 0.36 0.82 1.71 1.31
2.1 0.084 6.70 1.99 0.40 0.87 1.59 1.24
2.2 0.089 5.83 1.82 0.45 0.91 1.44 1.22
2.3 0.100 4.64 1.75 0.47 1.01 1.33 1.18
2.4 0.105 4.06 1.59 0.42 1.10 1.27 1.15
2.5 0.125 3.44 1.33 0.56 1.19 1.20 1.09

at the position of each particle. Following Nipoti et al. (2002) and
DCCN15, we construct the dimensionless vector u = (u1, u2, u3),
with components sampled from a uniform distribution in (−1,1),
rejecting the triplets with ||u|| > 1. The putative physical velocity
components are then defined as

vr =
√

2|�|u1, vϑ =
√

2|�|u2√
1 + r2/r2

a

, vϕ =
√

2|�|u3√
1 + r2/r2

a

. (9)

At this point, equation (4) is evaluated with Q = (1 − u2)�. Ap-
plying the von Neumann rejection method, if f(Q) ≥ f(�), then the
velocity vector (vr, vϑ , vϕ) is accepted. Otherwise, the velocity is
discarded and the procedure repeats.

2.2 The numerical code

For the numerical simulations, we use our direct N-body code,
already tested and employed to simulate dissipationless collapses
of cold systems interacting with r−α forces (DCCN13). In order to
compare the results obtained for different values of α, we define the
time-scale t∗ from the dimensionless ratio

GMt2
∗

2rα+1∗
= 1, (10)

where the normalization length-scale r∗ ≡ (1 + √
2)rc is the half-

mass radius of the initial density distribution. The natural velocity
scale is then obtained as

v∗ ≡ r∗
t∗

. (11)

The physical scales r∗ and t∗ are used to recast the equations of
motion in dimensionless form (DCCN13), which are integrated
with a standard second-order symplectic integrator (see also e.g.
Grubmüller et al. 1991). The fixed time-step �t ranges from �
t∗/80 for α = 1 to � t∗/250 for α = 2.9. The divergence in the
force and potential at vanishing interparticle separation is prevented
by introducing the softening length ε, so that r → √

r2 + ε2 in
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the potential. The value of ε is chosen as a function of α so that
the softened force on a particle placed at �5r∗ from the centre
of mass of the system differs by less than 0.01 per cent from the
unsoftened force (see DCCN13 and DCCN15 for a discussion). For
the simulations in this work, ε increases from 10−3rc for α = 1 up to
6.5 × 10−2rc for α = 2.9. With such a combination of parameters,
the energy conservation is ensured up to one part in 105 at the end
of the simulation.

All the simulations use N = 20 000 particles and were run up to
40t∗ on an Intel R©Xeon E5/Core i7 Unix cluster, each simulation
taking roughly 80 h on a single processor. We performed additional
simulations with different number of particles (from N = 15 000 up
to 30 000) for fixed values of α and ra, finding that the main results
are unchanged.

In the numerical simulations, the perturbation responsible for
triggering the instability is the numerical noise produced by dis-
creteness effects in the initial conditions plus the round-off error in
the orbit integration.

2.3 Diagnostics

As indicators of the instability and subsequent relaxation of the
models, we monitor the time evolution of the stability indicator
ξ , of the virial ratio 2K/|W| (where K is the total kinetic energy
and W is the virial function), of the minimum-to-maximum axial
ratio c/a and of the Lagrangian radii r5, r50 and r90 (i.e. radii en-
closing 5 per cent, 50 per cent and 90 per cent of the total mass M,
respectively).

As it is clear from equation (1), a proper definition of ξ can be
given only for spherical systems. However, unstable systems do
not remain spherically symmetric, therefore we need to introduce
a more general definition of ξ that can be applied also during the
evolution of unstable systems, and that reduces to the standard
definition in the spherical case. In order to define the fiducial radial
and tangential kinetic energies Kr and Kt, which are evaluated at
each time-step, we proceed as follows: First, the position xi and
velocity vi of each particle are referred to the centre of mass of
the system as xc

i = xi − xcm and vc
i = vi − vcm, where xcm and

vcm are, respectively, the instantaneous position and velocity of
the centre of mass as numerically determined by the simulation.
Then, for each particle, the radial velocity component is obtained
as vri = vc

i · ei , where ei = xc
i /||xc

i || is the radial versor. Therefore,
Kr = ∑

i mv2
ri/2 and Kt = K − Kr.

For what concerns the virial ratio, we recall that the virial function
W is given by

W =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫

ρ(x)〈x, ∇�〉d3x,

N∑
j �=i=1

mi〈xi , aji〉,
(12)

where the first expression holds for a continuum density ρ, and the
second holds for a discrete system of N particles with masses mi,
where

aji = −Gmj

xi − xj

||xi − xj ||α+1
(13)

is the acceleration at the position of particle i due to particle j. For α

�= 1, the virial function W is related to the potential energy U of the
system (provided U converges for the specific density distribution
under consideration) by the identity

W = (α − 1)U, (14)

where

U = 1

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
ρ(x)�(x)d3x,

N∑
i �=j=1

mi�ji,
(15)

and again the first expression holds in the continuum case, while
the second holds for a system of particles, and �ji is the potential
at the position of particle i due to particle j.

Remarkably, for α = 1 (as for systems in deep-MOND regime;
Nipoti, Londrillo & Ciotti 2007, see also Gerhard & Spergel 1992),
W is independent of time, being

W = −G

2

⎧⎪⎨
⎪⎩

M2,
N∑

i �=j=1

mimj ,
(16)

and again the first expression holds for a continuum distribution,
while the second holds for a system of particles.

For what concerns the time evolution of the axial ratio, at a given
time-step, the code computes the second-order tensor

Iij ≡
∑

k

mkr
(k)
i r

(k)
j , (17)

where the sum is limited to the particles inside the sphere of
Lagrangian radii r90, r70 and r50, (i.e. the radius of the sphere con-
taining 90 per cent, 70 per cent and 50 per cent of the total mass of
the system, respectively). Note that in terms of Iij, the inertia tensor
is given by Tr(Iij)δij − Iij. The matrix Iij is iteratively diagonalized,
with tolerance set to 0.1 per cent, to compute the three eigenvalues
I11 ≥ I22 ≥ I33. For a heterogeneous ellipsoid with density stratified
over concentric and coaxial ellipsoidal surfaces of semiaxes a ≥ b
≥ c, we would obtain I11 = Aa2, I22 = Ab2 and I33 = Ac2, where A is
a constant depending on the density profile. Accordingly, we define
the fiducial axial ratios b/a = √

I22/I11 and c/a = √
I33/I11, so

that the ellipticities in the principal planes are ε1 = 1 − √
I22/I11

and ε2 = 1 − √
I33/I11. In the following, we focus our attention

only on the c/a ratio, corresponding to the largest deviation from
sphericity.

Finally, for all simulations, we also consider the evolution of the
differential energy distribution n(E), a useful diagnostic in the study
of stellar systems (see van Albada 1982; Binney 1982; Ciotti 1991;
Trenti & Bertin 2006; DCC11; DCCN13). n(E) is defined by the
relation

∫ Emax

Emin

n(E)dE = N, (18)

where the extremes of integration Emin and Emax are the minimum
and maximum energies attained by the particles, respectively.

The problem of determining the (numerical) stability of a given
anisotropic model is a delicate one. As a heuristic criterion, for
systems not showing any appreciable evolution of ξ and 2K/|W|,
we have determined first as a function of α the time average mc/a

and the standard deviation σ c/a of c/a for the isotropic models over
40t∗. Typically, for the models presented here, mc/a ≈ 0.97 and σ c/a

≈ 2.5 × 10−3, with a very weak dependence on α. Then, in order to
determine whether a given model is prone to ROI, we monitor the
time evolution of its axial ratio c/a, and check if its value averaged
over the last 20�t falls below the value of mc/a − σ c/a.

MNRAS 468, 2222–2231 (2017)
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Figure 2. From top to bottom panels: evolution of the stability indicator ξ , of the virial ratio 2K/|W|, of the c/a ratio and of the Lagrangian radii r5, r50 and r90

for the isotropic (left-hand panels) and maximally anisotropic (right-hand panels) Hernquist models. Lines corresponding to α = 1, 1.5, 2 and 2.5 are indicated
with different colours.

3 PRELIMINA RY EXPERIMENTS

3.1 Stability of isotropic models

Being interested in the stability of anisotropic systems, the first nat-
ural question to address is to check whether the isotropic systems
are stable for different values of α. In the case of Newtonian force,
analytical stability results are available for the isotropic case, and it
is known that phase-space distribution functions with df(E)/dE ≤ 0
correspond to stable systems (the so-called Antonov theorem; see
e.g. Binney & Tremaine 2008); moreover, it has been conjectured
that models prone to ROI are characterized by non-monotonic f(Q)
(e.g. see Hjorth 1994, see also Meza & Zamorano 1997; Binney &
Tremaine 2008). When α �= 2, at the best of our knowledge, there
are no analytical results even in the isotropic case, so we must test
the stability of isotropic systems by using N-body simulations. In-
terestingly, we found that for all the explored values of α, isotropic
Hernquist models are always associated with monotonic distribu-
tion functions and are clearly stable. The situation is illustrated in
Fig. 2 (left-hand panel), where we show, for some representative
values of α, the evolution of the anisotropy parameter ξ , of the
virial ratio 2K/|W|, of the axial ratio c/a, and finally, of the La-
grangian radii r5, r50 and r90. It is apparent that the equilibrium of
the initial conditions is preserved for all the considered values of
α over the entire simulation up to t = 40t∗. The fluctuations are of
the order of �1 per cent in ξ and 2K/|W|, of �5 per cent in c/a, and
of �3 per cent in the Lagrangian radii. It follows that the isotropic
Hernquist models are numerically stable for 1 ≤ α < 3. Remarkably,
NCL11 found that isotropic MOND systems are also stable.

The stability of the isotropic systems is confirmed also by Fig. 3
(left-hand panel), where we compare the final angle-averaged den-
sity profile with the initial profile given by equation (2). The initial
density profile is preserved down to r/r∗ � 0.025 in the best case
(α = 1.5) and to r/r∗ � 0.2 in the worst case (α = 2.5). The

Figure 3. Angle-averaged three-dimensional (normalized) density profile
at the final time t = 40t∗ for isotropic (left-hand panel) and maximally
anisotropic (right-hand panel) Hernquist initial conditions with α = 1, 1.5, 2
and 2.5. In both panels, the heavy solid line represents the analytic Hernquist
profile, and the density scale in units of ρ∗ = ρ(r∗) is the density value of
the initial condition at the half-mass radius r∗ = (1 + √

2)rc. The vertical
dashed lines mark the value of the softening length ε used in the simulations.

softening length (in units of r∗), which fixes the spatial resolution
of the simulation, is ε = 2.4 × 10−3, 1.4 × 10−2, 2.7 × 10−2 and
4.5 × 10−2 for α = 1, 1.5, 2 and 2.5, respectively.

3.2 Maximally anisotropic models

In a second set of preparatory numerical experiments, we study the
evolution of the maximally anisotropic equilibrium models. These
marginally consistent models are characterized by the OM phase-
space distribution function f(Q) constructed with ra � rac (i.e. such
that a smaller value of ra would produce a negative f(Q) for some
admissible value of Q; see e.g. fig. 1 in DCCN15), and are therefore
associated with the maximum value of the stability indicator ξ c.
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Figure 4. Differential energy distribution n(E)/N of the initial conditions (solid lines), and at a selection of times (dashed lines), for maximally anisotropic
systems with α = 1.0, 1.5, 2 and 2.5. For each value of the force index, the normalization energy is E∗ = |�(0)| as given in footnote 2.

In Fig. 2 (right-hand panel), we show the evolution of ξ , 2K/|W|,
c/a and r5, r50 and r90 up to 40t∗ for α = 1, 1.5, 2 and 2.5 and
ξ c � 39, 13.5, 8.2 and 3.4, respectively. As expected, the models
appear to be violently unstable. From the evolution of the stability
indicator ξ , it appears that for all values of the force exponent α, the
models rapidly (i.e. within �t∗) reduce their degree of anisotropy.
The virial ratio 2K/|W|, with the exception of the α = 1.5 case,
shows a dramatic increase with a peak at �0.8t∗ and then relaxes
back to unity within a few t∗, a well-known feature of violent
relaxation. Note, however, that low-amplitude oscillations last over
all the simulation times (cf. the left-hand and right-hand panels of
the virial ratio in Fig. 2), and that, in general, models with a low
value of α oscillate for longer times in units of t∗, as already found
in the MOND case (similar to the α = 1 model; NCL11), and for
simulations of collapses in DCCN13. The reason will be briefly
recalled in Section 5.

The axial ratio c/a (shown in Fig. 2, restricting to particles within
r90 in order to avoid numerical noise due to a few escapers) also
experiences a rapid decrease with the same time-scale (and with the
same dependence on α) of the other properties. Note that a robust
measure of c/a is quite difficult especially in the case of high-α
values: As already found in the case of collapses after relaxation,
such systems produce a characteristic ‘core-halo’ structure with
some fraction of their mass (of the order of 5 per cent) ejected
at large distances, but still bound to the main body of the stellar
system (DCCN13). In case some of the halo particles belong to the
set particles adopted to compute c/a, this leads to secular variation
of the axial ratio itself. This can be seen in the last panel of Fig. 2
where the Lagrangian radii do not present significant evolution
except for r90 and α = 2.5, with a slow but systematic increase with
time, i.e. a consequence of the expansion of the outer regions of the
system.

The final values of ξ and c/a at t/t∗ = 40 for the maximally
anisotropic models for 1 ≤ α ≤ 2.5 are given in Table 1 (columns 4
and 5). Note that the end products are less and less anisotropic for
increasing α, reflecting the trend of the initial conditions. Moreover,
the variation of the value of ξ , a measure of the redistribution of
kinetic energy between radial and tangential motions, decreases for
increasing α. This trend is also confirmed by a few test simulations
(not shown here) with α as large as 2.9. Curiously, at variance with
the quite significant dependence on α of the previous quantities, the
final values of the axial ratios are not strongly dependent on α with

(c/a)fin ranging from �0.28 for α = 1 to 0.56 for α = 2.5 (Table 1,
column 5). The maximum value of the final axial ratio, �0.7, has
been obtained for the case α = 2.9. Therefore, the end products
are less flattened for large values of α, and, remarkably, no system
is found to be significantly flatter than an E7 galaxy3, similarly to
what was found by DCCN13 for the end products of cold collapses
with r−α forces.

Additional information about the structure of the end products
is obtained by inspection of their three-dimensional angle-averaged
density profiles 〈ρ〉. In Fig. 3 (right-hand panel), we show 〈ρ〉 at
t = 40t∗ for the maximally anisotropic initial conditions. Interest-
ingly, when excluding a central region where softening effects are
important, the averaged density profiles do not present significant
departures from the initial Hernquist density profile (see Fig. 3,
right-hand panel, solid lines). The only significant feature is associ-
ated with the model with α = 2.5 where a clearly detectable overden-
sity above the initial profile is present in the range 10 < r/r∗ < 100:
This is a consequence of the already mentioned core-halo structure
characteristic of the final configurations of models with high values
of α, and, in fact, this feature becomes more prominent for even
larger values of α (not shown here).

In Fig. 4, we present the evolution of the differential energy dis-
tribution n(E) for the maximally anisotropic models with α = 1, 1.5,
2 and 2.5. For the low-α cases, there is little or no variation in n(E)
(dashed lines) with respect to the initial state (solid lines). For larger
values of the force exponent, the variations from the initial n(E) are
apparent. A few per cent of the initial mass in these systems attains a
positive energy and escapes after the violent phase in which the ROI
takes place (Trenti, Bertin & van Albada 2005). Remarkably, the
behaviour of n(E) of violently unstable anisotropic models is also
strongly resemblant to what found in cold dissipationless collapses
with r−α forces. For example, for low values of α, also in DCCN13,
the n(E) of the end products was found to depart weakly from that
of the initial state.

We conclude by noticing that in the context of Newto-
nian gravity, it has been speculated (see e.g. Efthymiopoulos

3 We note that cold and oblate expanding ellipsoids of charged plasma
become prolate at large times with axial ratios limited at c/a > 0.86. The
reasons are, however, different from instability (see Grech et al. 2011; Di
Cintio 2014).
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& Voglis 2001; Barnes et al. 2005; MacMillan, Widrow &
Henriksen 2006; Efthymiopoulos, Voglis & Kalapotharakos 2007,
see also Voglis 1994) that n(E) is connected to the form of the
circularized density profile, and, if the latter does not change sig-
nificantly during the process of virialization, n(E) of the final state
should not deviate significantly from that of the initial condition.
The present findings appear to support this conjecture, as the only
models showing significant evolution of n(E) are those with circu-
larized final density profiles that depart more from the initial profile,
i.e. those with high α.

4 R ESULTS

4.1 Critical ras and ξ s for stability

After having assessed the stability of isotropic and maximally
anisotropic systems, we are now in position to determine numer-
ically, as a function of the force exponent α, the minimum value
of ra for which the system is stable. We call this critical value ras,
and once ras is determined, we compute the value of the associated
stability indicator ξ s. This is one of the main focuses of this paper.

For each of the 16 different values of the force exponent in the
range 1 ≤ α ≤ 2.5 (see Table 1), we performed several runs with
initial conditions characterized by ra ≥ rac(α). Moreover, we also
explored the behaviour of a few additional models with 2.5 ≤ α ≤
2.9, which confirmed the trends shown in Table 1. In practice, for
each value of α, we started with models corresponding to ra = rac

(the violently unstable models described in Section 3) and we sys-
tematically increased the value of ra up to a fiducial value for which
the model remains stable over the simulations time 40t∗. We then re-
fined the determination of the critical value of ra by bisection around
the successive approximations of ras, and the values reported in Ta-
ble 1 give the numerical value of ras within ±0.01: For example, for
α = 2, the true value of ras is numerically found between 0.81 and
0.83.

Fig. 1 (top right-hand panel) shows ras as a function of α. We find
that ras increases monotonically for increasing α, showing, however,
a curious plateau in the range 1.4 � α � 2. The trend of ξ s with
α shown in Fig. 1 (bottom right-hand panel) and the corresponding
values are given in Table 1. The behaviour of ξ s nicely mirrors that
of ras, with ξ s decreasing for increasing α. Again, the plateau is
clearly visible. For the Newtonian case (α = 2), we recover the
well-known result ξ s � 1.7 (corresponding to ras � 0.8r∗; see e.g.
the review by Maréchal & Perez 2011 and references therein).

Therefore, we conclude that equilibrium configurations in the
presence of forces with low values of α (i.e. forces ‘longer ranged’
than Newtonian gravity) are able to support a larger amount of ki-
netic energy stored in radial-orbits than systems with a larger force
exponent α. This trend of a greater stability for decreasing α is
consistent with the special nature of systems with particles interact-
ing with the harmonic oscillator force (α = −1) where instabilities
are impossible (Lynden-Bell & Lynden-Bell 2004; DCCN13). As
it is well known when α = −1, each particle, independently of the
position of the others, oscillates in a time-independent harmonic os-
cillator field produced by a fixed point mass placed at the barycentre
of the system and with a mass equal to the total mass of the system.
It follows that no instabilities can develop. We interpret the numer-
ical results of our simulations for decreasing α as the natural trend
towards this behaviour. It is reasonable to expect that when entering
in the superharmonic regime (α < −1, not explored in this paper),
collective phenomena will take place again, similarly to what is
found in our collapse simulations (DCCN13).

In line with these results, we recall that NCL11 also found a
higher value of ξ s (�2.32) for the OM Hernquist model in MOND
than for its Newtonian counterpart without dark matter (�1.64).
As can be seen from Table 1, ξ s for the α = 1 force (qualitatively
similar to the deep MOND case) is larger than for α = 2. However,
the analogy between additive α = 1 force and the deep MOND
case is not (as expected) complete. In fact, NCL11 also found,
at variance with the present results for α = 1, that ras for the OM
radially anisotropic Hernquist model in MOND is larger than ras for
the corresponding one-component Newtonian system without dark
matter. This different behaviour is due to the fact that the internal
distribution of radial orbits is different in the two force laws, so
a MOND model with larger ra than a Newtonian model does not
necessarily have a lower ξ .

We note that it has been suggested that the ROI in Newtonian
systems is triggered by particles with orbital frequencies close to
satisfying the condition �P ≡ 2�ν − �r � 0, where �ν is the az-
imuthal frequency, �r is the radial frequency and �P is the preces-
sion frequency (Palmer & Papaloizou 1987; Palmer 1994a,b). Once
a small non-spherical density perturbation is formed in a system
dominated by low �P orbits, it will grow more and more, as more
and more particles tend to accumulate to it. In this interpretaion, the
time-scale of the ROI therefore depends on the distribution of �P,
and it is clear that models with fixed density profiles but different
r−α forces have different radial distributions of the precession fre-
quencies. However, this investigation is well beyond the scope of
this paper.

Following NCL11 and Gajda et al. (2015), we also computed
the value of the critical anisotropy parameter for stability when
restricting to particles within the half-mass radius r∗. We call this
quantity ξ half, s (see Fig. 1 and Table 1). Not unexpectedly, the value
of ξ half, s changes with α much less than ξ s: This is a consequence
of the radial trend of OM anisotropy, as summarized after equation
(6). Such result hints that a big enough, almost isotropic core could,
in principle, stabilize against ROI a model with substantial radial
anisotropy in the external regions, as found by Trenti & Bertin
(2006) in case of cold dissipationless collapses.

4.2 Evolution and end products of unstable models

Here we focus on the evolution of models with ξ s < ξ (0) < ξ c,
which are unstable but not maximally anisotropic. As we have
previously done for isotropic and maximally anisotropic models,
for these unstable models, we have monitored the evolution of the
stability indicator ξ , of the virial ratio 2K/|W|, of the axial ratio c/a
and of the three Lagrangian radii r5, r50 and r90. These quantities
are plotted in Fig. 5 as functions of time (up to 40t∗) for models
with initial anisotropy parameters ξ (0) = 2 (left-hand panels) and 3
(right-hand panels), and α = 1, 1.5, 2 and 2.5. For all these models,
the virial ratio and the Lagrangian radii do not show any significant
change at late times, with the exception of the models with α = 2.5
that show a systematic drift with time of r90 due to escaping particles
(see also Section 3.2). From the evolution of ξ and c/a, it is apparent
that at fixed ξ (0), models with higher α take less time (in units of
t∗) to develop the ROI. For the models shown in Fig. 5, the time tROI

at which the instability sets in (defined as the time when the system
departs significantly from the spherical symmetry; see Section 2.3)
is never found to exceed �7t∗. However, unstable models with lower
values of ξ (0) are characterized by larger values of tROI, up to 20t∗.

Fig. 6 shows for four relevant values of α = 1, 1.5, 2 and 2.5
the final axial ratio (c/a)fin as a function of both ξ (0) and ra/r∗. For
similar values of ξ (0), the end products of models with larger α tend
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Figure 5. From top to bottom panels: evolution of the stability indicator ξ , of the virial ratio 2K/|W|, of the c/a ratio and of the Lagrangian radii r5, r50 and
r90 for the anisotropic Hernquist models with α = 1, 1.5, 2 and 2.5 and initial value of the anisotropy parameter ξ (0) = 2 (left-hand panels) and 3 (right-hand
panels). The stable cases for ξ (0) = 2, and α = 1, 1.5, and for ξ (0) = 3 and α = 1, are clearly visible.

Figure 6. Final axial ratios (c/a)fin within r90 versus the initial value of the
stability indicator ξ (left-hand panel), and the normalized initial anisotropy
radius ra/r∗ (right-hand panel) for α = 1, 1.5, 2 and 2.5. The horizontal
dashed line just marks the typical fiducial value of the final axial ratio c/a
for stability. It appears clear, from both indicators (ra and ξ ), that the models
with larger values of α are more prone to the ROI.

to be more flattened, while, as a general trend, for fixed α, models
with smaller ra/r∗ lead to more flattened end products, consistent
with the results of Newtonian simulations (see e.g. Perez et al. 1996;
Meza & Zamorano 1997; Nipoti, Londrillo & Ciotti 2002; Barnes,
Lanzel & Williams 2009; NCL11). Interestingly, such behaviour
is reminiscent of the trend of (c/a)fin with the initial virial ratio
2K/|W| found in DCCN13 for cold collapses with r−α forces: The
end states of systems with lower initial virial ratio are more flattened.
The physical origin of the findings of DCCN13 and of the present
work is the same: Collapses with colder initial conditions are more
dominated by radial-orbits and therefore more affected by the ROI.

We note that for the maximally anisotropic models, the final
values of the stability indicator ξfin are systematically larger than
ξ s, as observed also for the end products of collapses dominated by

radial orbits (see e.g. Trenti et al. 2005; Efthymiopoulos et al. 2007).
The reason for this is that such models have rather flattened end
states (therefore not described by OM distribution functions), and
considerations on the maximum amount of anisotropy for stability
for spherical models cannot be applied to non-spherical systems.

As we have observed for the end states of maximally anisotropic
models, the averaged final density profile of unstable models does
not depart significantly from the initial density profile. Consistently,
the differential energy distribution n(E) shows little to no evolution
for such unstable systems (data not shown here).

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, the follow-up of a preliminary investigation
(DCCN15), we have studied the onset of ROI in equilibrium Hern-
quist models with OM radial anisotropy and additive interparticle
forces of the form r−α , with 1 ≤ α < 3. The aim of this work is to
elucidate how the main properties of the ROI, routinely studied in
the α = 2 case, depend on the force exponent α, a measure of the
‘force range’. For the simulations, we adopted our well-tested direct
N-body code, already employed for the study of cold collapses of
self-gravitating systems with r−α forces (DCCN13); the anisotropic
equilibrium initial conditions have been constructed with the nu-
merical inversion described in DCCN15. The main results are the
following:

(i) We confirmed that for all the explored α, isotropic models are
associated with a phase-space distribution function f(E) monotonic
in terms of energy, and are numerically stable (DCCN15). There-
fore, it is tempting to conjecture that the Antonov (1973) theorem
(see e.g. Binney & Tremaine 2008) may hold not only in Newtonian
gravity but more generally for r−α forces.

(ii) Following DCCN15, we determined the minimum value of
the anisotropy radius for phase-space consistency, rac, and the
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associated value of the stability indicator, ξ c, confirming the prelim-
inary indications that rac increases and ξ c decreases for increasing
α. All marginally consistent models (i.e. models with ξ close to ξ c)
are violently unstable and are characterized by strongly triaxial end
products. In general, the end products are more triaxial for lower
values of α, with (c/a)fin � 0.3 for α = 1 increasing to (c/a)fin �
0.56 for α = 2.5. Remarkably, even the most triaxial end products
are not more elongated than E7 systems, as already found for the
end products of cold collapses with r−α forces (DCCN13).

(iii) With N-body simulations, we determined the fiducial value
ras of the (minimum) critical anisotropy radius for stability and we
found that its value increases with α. The corresponding critical
value of the stability indicator ξ s decreases for increasing α. For
α = 2, we found ξ s � 1.7 in agreement with previous works in
Newtonian gravity. These results indicate that systems with high
values of α can support smaller amounts of radial anisotropy than
systems with similar density profiles but ‘longer range’ forces.
This is also in agreement with the fact that systems with α = −1
(harmonic oscillator interparticle force) cannot develop instabilities
or relaxation phenomena.

(iv) For α = 1 (MOND-like force), ξ s is larger than the corre-
spondent quantity for the same model in Newtonian gravity, sim-
ilarly to what happens for the OM radially anisotropic Hernquist
model in deep-MOND regime. However, the values of ras and ξ s

in the α = 1 and deep-MOND cases are quite different due to the
different orbital distributions of the two models in their external
regions.

(v) Mildly unstable models (i.e. models that are unstable but not
as extreme as models with ξ ≈ ξ c) develop significant changes in
c/a and ξ well within 15t∗ and typically such systems relax in (say)
10t∗. Not unexpectedly, the end products of all unstable models are
less flattened than E7. In general, at fixed α, the flattening of the
end products directly correlates with the value of ξ of the initial
condition. Instead, the differential energy distribution n(E) remains
qualitatively unaffected by the relaxation process, with the only
exception of models with high values of α.

The results of the present investigation, and those of DCCN15,
then lead us to conclude that ROI is a quite universal feature of col-
lisionless sytems with low global angular momentum, not restricted
to the special nature of the r−2 force law.
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