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ABSTRACT
The gravitational potentials of realistic galaxy models are in general non-integrable, in the sense that they admit orbits that do not
have three independent isolating integrals of motion and are therefore chaotic. However, if chaotic orbits are a small minority in
a stellar system, it is expected that they have negligible impact on the main dynamical properties of the system. In this paper, we
address the question of quantifying the importance of chaotic orbits in a stellar system, focusing, for simplicity, on axisymmetric
systems. Chaotic orbits have been found in essentially all (non-Stäckel) axisymmetric gravitational potentials in which they have
been looked for. Based on the analysis of the surfaces of section, we add new examples to those in the literature, finding chaotic
orbits, as well as resonantly trapped orbits among regular orbits, in Miyamoto-Nagai, flattened logarithmic and shifted Plummer
axisymmetric potentials. We define the fractional contributions in mass of chaotic (ξ c) and resonantly trapped (ξ t) orbits to a
stellar system of given distribution function (DF), which are very useful quantities, for instance in the study of the dispersal
of stellar streams of galaxy satellites. As a case study, we measure ξ c and ξ t in two axisymmetric stellar systems obtained by
populating flattened logarithmic potentials with the Evans ergodic DF, finding ξ c ∼ 10−4 − 10−3 and ξ t ∼ 10−2 − 10−1.
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1 IN T RO D U C T I O N

In stellar dynamics, the most important class of axisymmetric and
triaxial gravitational potentials known to be integrable are those of
the Stäckel (1893) family: the separability of the Hamilton–Jacobi
equation in ellipsoidal coordinates ensures the existence of three
global independent isolating integrals of motion and thus that all
orbits are regular (see e.g. de Zeeuw 1985 and de Zeeuw & Lynden-
Bell 1985). The gravitational potentials of realistic galactic models,
which in general are not of Stäckel form, are not guaranteed to be
integrable and can admit chaotic orbits, i.e. orbits that do not have
three independent isolating integrals of motion. The integrability
of non-spherical galactic potentials and the contribution of chaotic
orbits to stellar systems with non-integrable potentials are important
questions for galactic dynamics, which can be addressed by classi-
fying samples of numerically integrated orbits.

In the present work, we focus on axisymmetric potentials. Though
chaos is often studied in the context of triaxial potentials (e.g.
Schwarzschild 1979, 1982; Miralda-Escude & Schwarzschild 1989;
Valluri & Merritt 1998), chaotic orbits are also found in axisym-
metric potentials (e.g. Henon & Heiles 1964; Hunter 2003, 2005;
Zotos & Carpintero 2013). In fact, chaotic orbits have been found
in essentially all (non-Stäckel) axisymmetric potentials in which
they have been looked for. Hunter (2005) suggested that a possible
exception could be the family of Miyamoto-Nagai (hereafter MN)
potentials (Miyamoto & Nagai 1975), whose limiting cases – the
Plummer (1911) sphere and the Kuzmin (1956) disc – are integrable,
but it turns out this is not the case, because, as we show in this
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paper, the MN family admits chaotic orbits. Using the surface-of-
section (SoS) method (Henon & Heiles 1964; Binney & Tremaine
2008), we add new examples to those previously considered in the
literature, demonstrating that a few more families of axisymmetric
potentials are non-integrable (at least for some values of their
parameters): not only the aforementioned MN potential, but also
the shifted Plummer axisymmetric and the flattened logarithmic
potentials.

Of course, while it is sufficient to find a chaotic orbit to demonstrate
that a given potential is non-integrable, it is impossible to proof with
numerical integration of orbits that a given potential is integrable.
However, for many practical purposes it is not so important to
determine whether a given potential is integrable or not, but rather
to estimate the fractional contribution of chaotic orbits to a stellar
system. There is general consensus, mainly based on the results of
numerical investigations (Schwarzschild 1979; Richstone 1982), that
in realistic galactic potentials ‘most of the orbits are regular’ and that
reasonable dynamical models can be built by neglecting the small
fraction of chaotic orbits. However, especially in an era in which
the galactic dynamical models are more and more sophisticated (e.g.
Binney 2020) and the observational data are characterized by high
resolution and high statistics (Kordopatis et al. 2013; Majewski et al.
2017; Gaia Collaboration 2018a,b, 2020), one would really like to
make more quantitative statements about the relative contributions
of regular and chaotic orbits. An astrophysical application in which
the knowledge of these contributions is highly relevant is the study
of stellar streams of galaxy satellites, often used as tracers of the
host galaxy gravitational field and thus mass density distribution
(Helmi & White 1999; Fardal, Huang & Weinberg 2015; Bonaca
et al. 2020; Mestre, Llinares & Carpintero 2020). In essence, the time
over which a stream is dispersed is expected to be much shorter if the
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orbit of its progenitor satellite (globular cluster of dwarf galaxy) is
chaotic than if it is regular. In some cases even orbits with extremely
long characteristic chaotic time-scales can produce chaotic effects
on relatively short time-scales (Price-Whelan et al. 2016).

Quantitative estimates of the fractional contributions of chaotic
and regular orbits to stellar systems are rare in the literature. Maffione
et al. (2015), extracting particles from solar neighbourhood-like
volumes of dark-matter only cosmological simulations of Milky-
Way like haloes, estimated the fractions of chaotic and regular
orbits, integrated in triaxial analytic approximations of the simulated
gravitational potentials. A similar systematic study was carried out
by Maffione et al. (2018), who considered more realistic N-body
realizations of Milky-Way-like galaxies extracted from hydrody-
namic cosmological simulations. Here, adopting a non-cosmological,
but fully self-consistent approach, we consider stellar systems with
given distribution function (DF), for which we provide rigorous
definitions of the fractional contributions in mass of regular and
chaotic orbits.

Regular orbits include the special family of resonantly trapped
orbits. While a resonant orbit is such that its fundamental frequencies
are commensurable, an orbit is said to be resonantly trapped when it
is, in phase space, close to a resonant orbit (see Binney & Tremaine
2008). Resonantly trapped orbits must be treated with special care,
since they behave differently from the other regular orbits in the
angle-action space (Binney 2016). Also the aforementioned dispersal
of stellar streams can be significantly affected, or even dominated,
by the presence of families of resonantly trapped orbits in the host
gravitational field. The time over which a stream is dispersed can
be relatively short if the orbit of the progenitor satellite is close to a
separatrix, i.e. the boundary between two orbit families, each defined
by a different orbital resonance (a phenomenon known as separatrix
divergence; Yavetz et al. 2021). In the following, we will refer to
regular orbits that are not resonantly trapped as untrapped. Thus, in
addition to chaotic orbits, in this work, we also classify separately
resonantly trapped and untrapped regular orbits, detecting them with
the SoS method and measuring their fractional mass contributions to
a stellar system.

As a case study, we present the results obtained by estimating
the fractional contributions in mass of regular and chaotic orbits
to flattened axisymmetric stellar systems with luminous component
with Evans (1993) DF, embedded in an external logarithmic gravi-
tational potential. Evans’ models, though idealized in some respects
(they are isotropic and they do not account explicitly for the self-
gravity of the luminous component), are interesting for applications
in galactic dynamics, because their luminous density distribution
is, for a range of values of their free parameters, a reasonably good
model of the luminous density distribution of galactic spheroids. The
flattened axisymmetric logarithmic potential has been widely used in
applications to galactic dynamics: gravitational potentials belonging
to this family has been adopted, for instance, by Helmi (2004a) and
Helmi (2004b) to model the dark matter halo of the Milky Way, by
Bovy (2014) to study tidal streams, and by Sanders et al. (2016)
to model dark matter haloes of dwarf spheroidal galaxies. More
recently, Hagen, Helmi & Breddels (2019) used Evans models to
build mock dwarf spheroidal galaxy models.

The paper is organized as follows. After recalling the definition of
the SoS in Section 2 and describing the adopted numerical methods
in Section 3, in Section 4 we present new results on SoS-based
classification of orbits in axisymmetric potentials. In Section 5, we
define the fractional mass contributions of regular and chaotic orbits
to a stellar system with given DF, and we present the results of our
case study. Section 6 concludes.

2 SU R FAC E S O F S E C T I O N FO R O R B I T S I N
AXI SYMMETRI C POTENTI ALS

Let �(R, z) be an axisymmetric potential in cylindrical coordinates
(R, φ, z), and let γ be the trajectory in phase space of a star moving
under the action of �. The Poincaré map or SoS is the plane having
(R, pR) as axes, where pR is the momentum conjugated to R. The
trace of an orbit in the SoS is the set of the orbit’s consequents,
i.e. the points with coordinates (R, pR) defined by the intersections
of γ with the equatorial plane (z = 0). Potentials that are time-
independent and invariant with respect to rotation around a given
axis (chosen to be the z-direction) admit as global integrals of motion
the specific (i.e. per unit mass) energy E and the z-component of the
specific angular momentum Lz. For given E and Lz, the points of a
trace belong, by construction, to the manifold defined by the implicit
function

E = 1

2

(
p2

R + p2
z

) + �eff (R, 0), (1)

where pz is the momentum conjugated to z and

�eff (R, z) = L2
z

2R2
+ �(R, z) (2)

is the effective potential.
While the manifold (1) is 2D, the trace of an orbit in the SoS can

be either 1D or 2D. For given E and Lz, the consequents of an orbit
are confined to a region which is given by the relation

E − �eff (R, 0) ≥ 0. (3)

Also, traces of different orbits with the same values of E and Lz cannot
cross each other in the SoS: if the traces of two orbits intersected at
one or more points in the SoS, there would exist a point on γ where
the two orbits have the same (E, Lz, R, pR) at z = 0. Thus, the two
orbits would have the same trajectory, because equation (1) implies
that they could only differ in the sign of pz. The sign ambiguity
is usually resolved by tracing a point on the SoS only when the
crossing of the equatorial plane occurs with pz > 0. Here, we do not
conform to this convention but, as done for instance in Richstone
(1982) and Hunter (2005), we trace a point in the SoS for crossings
with both pz > 0 and pz < 0. We find this choice convenient because,
following Richstone (1982), we then classify an orbit as resonantly
trapped if its trace in the SoS consists of two or more unconnected
loops.

For axially symmetric potentials, given a trace of consequents, the
existence of a third isolating integral is deduced by the dimensionality
of the trace in the SoS. A 1D trace implies that the motion is further
constrained on to an additional surface, defined, for instance, by pR =
pR(R, z, pz), leading to the conclusion that the orbit is regular. Instead,
when there is no additional integral of motion, the consequents
populate 2D regions of the SoS and the orbit is chaotic. SoS have
been used to study the existence of a third isolating integral since the
mid 1960s (e.g. Henon & Heiles 1964; Bienaymé, Robin & Famaey
2015).

3 N U M E R I C A L M E T H O D S

Before presenting the results obtained applying the SoS method to
classify orbits in a few axisymmetric potentials (Sections 4 and 5),
we describe here the adopted numerical tools that allow us to obtain
the required accuracy in the computation of the orbits’ traces in the
SoS.
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Regular and chaotic orbits in stellar systems 1467

Figure 1. Left-hand panel: relative energy variation as a function of time for a chaotic orbit integrated in the potential (23) with q = 0.75 and Rc = σ = 1,
using the symplectic Forest–Ruth algorithm (red curve) and the RK 4 scheme (black curve) described in Section 3.1. Middle panel: trace in the SoS of the same
orbit as in the left-hand panel integrated with the Forest-Ruth scheme. Right-hand panel: same as the middle panel, but using the adaptive RK 4 scheme. The
small insets in the middle and right-hand panels show zoomed-in views of the red boxes in the corresponding main panels.

3.1 Numerical integration of the orbits

As done in other works on orbit classification in galactic potentials
(e.g. Richstone 1982; Price-Whelan et al. 2016), we opted for a
Runge–Kutta (RK) algorithm to integrate numerically the equations
of motion. Specifically, we computed the orbits using an adaptive
fourth-order RK integrator (hereafter RK 4; Butcher 1996). The
integration is performed in Cartesian coordinates according to the
following scheme (Press & Teukolsky 1992):

(i) Let w = (x, y, z, vx, vy, vz). Starting from the phase-space
position wn at a time tn, we evaluate the proposals w�tn

n+1 and w�tn/2
n+1

at a subsequent time tn + 1, corresponding, respectively, to time steps
�tn and �tn/2.

(ii) We evaluate εn = maxi |1 − w
�tn
n+1,i/w

�tn/2
n+1,i | and compare it to

some predetermined accuracy ε. w
�tn
n+1,i and w

�tn/2
n+1,i , with i = 1, ..., 6,

are the i-th elements of the vectors w�tn
n+1 and w�tn/2

n+1 , respectively.

(a) If εn > ε, both proposals w�tn
n+1 and w�tn/2

n+1 are rejected,
and new proposals for w�tn

n+1 and w�tn/2
n+1 are found using as new

time step

�tnβ(ε/εn)1/(h+1), (4)

and its half, respectively, where β and ε are dimensionless
parameters, and h = 4 is the order of the RK scheme.

(b) If εn < ε, wn+1 = w�tn/2
n+1 and the new timestep is

�tnβ(ε/εn)1/h. (5)

RK algorithms are known to be dissipative, in the sense that
they do not ensure the conservation of the mechanical energy in
a Hamiltonian system. As shown for instance by Stuchi (2002), if
the numerical integration of a test particle in a Hamiltonian system
proceeds for sufficiently long time, when using dissipative algorithms
the energy drifts because of numerical dissipation and the consequent
deviation of the integrated phase-space position from the true one can
in principle shift the target particle from a region of regularity to a
region of chaos. This can make an intrinsically regular orbit appear
as chaotic after a long-time integration. For this reason, in the context
of numerical integration of orbits and their classification as regular or
chaotic, it is sometimes preferred the use of symplectic integrators,
which are not dissipative (e.g. Barnes 2001; Mestre et al. 2020).

Our adaptive RK scheme implementation allows us to keep very
high precision in the orbit integration and minimize numerical

dissipation. In equations (4 and 5), we set β = 0.9 and ε =
10−12, obtaining energy conservation of a part over 1012 − 109,
depending on the maximum time integration required, which is a
strong indication that the effects of dissipation should be negligible.
As an additional check that our results are not significantly affected
by numerical effects related to accuracy and the dissipative nature of
the adopted integrator, we integrated all the orbits classified as chaotic
based on the RK 4 integration with ε = 10−12, also requiring ε =
10−15 in equations (4 and 5), and also with the fourth order symplectic
Forest-Ruth integrator (Forest & Ruth 1990; Yoshida 1990; Candy &
Rozmus 1991), finding very good agreement between the numerical
results and confirming the classification. In Fig. 1, we compare
the relative energy variation of a chaotic orbit integrated in the
potential (23) using our implementation of the RK 4 scheme and the
aforementioned symplectic Forest-Ruth scheme. Although the RK
scheme introduces numerical dissipation, the energy drift is always
comparable with the energy oscillations produced by the Forest-Ruth
scheme and, as shown in the middle and right-hand panels of Fig. 1,
the orbit manifests its chaotic behaviour when integrated with both
algorithms. In terms of time performance, our implementation of
the adaptive RK 4 scheme is 1.5–7 times faster than the considered
Forest-Ruth scheme (depending on the specific orbit) and allows us
to evaluate very precisely the phase-space coordinates at the times
of crossing of the equatorial plane (see Section 3.2).

3.2 Computation of the traces in the surface of section

Central to evaluate consequents in the SoS is the ability to compute as
precisely as possible w at the time corresponding to each crossing of
the equatorial plane. Each time znzn + 1 < 0 (i.e. a crossing through the
equatorial plane has occurred), together with equations (4 and 5), we
make the further requirement that |zn + 1 − zn|/R0 < εz, where R0 is a
characteristic radius, for instance R0 ≡ Rc in case of the logarithmic
potential of Section 5.2. When the condition is not satisfied a new
guess for zn + 1 is made halving the time step. Such condition ensures
that zn + 1 is close to the equatorial plane to a precision dictated by
εz. Throughout this work, we have adopted εz = 10−6. In Fig. 2,
we show the consequents in the SoS of an orbit integrated in the
potential (23) using εz = 10−1 (left-hand panel) and εz = 10−6

(right-hand panel). The traces belong to a regular trapped orbit (see
also Section 4.1), whose loops are so tight in the SoS that, if the
crossings of the equatorial plane are not precisely evaluated (as in
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1468 R. Pascale, C. Nipoti and L. Ciotti

Figure 2. Left-hand panel: trace in the SoS of a test resonantly trapped orbit integrated in the potential (23) whose crossings of the equatorial plane have been
evaluated using εz = 10−1. Right-hand panel: same as the left-hand panel, but with εz = 10−6.

the left-hand panel), the orbit could be misclassified as chaotic. The
inset in the right-hand panel of Fig. 2 demonstrates that the choice
εz = 10−6 guarantees the required accuracy.

4 FINDIN G C HAOTIC ORBITS IN
AXIS Y M M ETR IC GRAV ITATIONA L
POTENTIALS

Here, we apply the SoS method to classify orbits in two families
of axisymmetric potentials: the shifted Plummer and MN potentials.
Orbits in the shifted Plummer potentials, as far as we are aware, have
not been studied before. Orbits in a MN potential have been classified
by Hunter (2005) and Zotos & Carpintero (2013), who found only
regular orbits (see also Greiner 1987, 1990). In Sections 4.1 and
4.2, we present examples of potentials belonging to these families,
showing that they admit, together with regular orbits, also chaotic
orbits. Among regular orbits, we identify also members of the special
family of resonantly trapped orbits. A third family of gravitational
potentials, the flattened axisymmetric logarithmic potentials (Binney
1981), is considered in Section 5.2. Orbits in these logarithmic
potentials have been studied in previous works (Richstone 1982;
Barnes 2001), but, to our knowledge, only regular orbits have been
found so far: in Section 5.2, we show examples of chaotic orbits in
two potentials of this family.

4.1 Orbits in a shifted Plummer potential

The complexification is a shift x → x − ia that maps a potential �(x)
into �(x − ia), where a = (a1, a2, a3) is a triplet of real numbers.
As shown by Ciotti & Giampieri (2007) and Ciotti & Marinacci
(2008), the complex shift method can be used to obtain analytic
density–potential pairs (ρ, �) for axisymmetric models starting from
spherical ones. If � satisfies the Poisson equation ∇2� = 4πGρ

with analytic � and ρ, thanks to the linearity of the shift and of
the Poisson equation, the shift gives birth to two analytic density–
potential pairs given by the real and complex parts of �(x − ia) and
ρ(x − ia). The method was first introduced in electrostatics by Appell
(1887), Whittaker & Watson (1950), Carter (1968), and others, and
later applied to gravitational potentials (Ciotti & Giampieri 2007,
Ciotti & Marinacci 2008, and reference therein). The complex shift
method is of special interest for the purposes of this work. It is, for
instance, reasonable to speculate that during the complexification of a
spherical potential some of the integrability properties are transferred

to the complexified versions, as shown by the surprising integrability
properties of the complexified point-mass potential (Lynden-Bell
1962, 2000, 2003).

Following Ciotti & Giampieri (2007), let us consider the gravita-
tional potential

�(R, z) = −GM

b
ψ(R, z), (6)

where

ψ(R, z) =
√

d + 1 + r̃2 − ã2

2d2
, (7)

with

d =
√(

1 − ã2 + r̃2
)2 + 4ã2z̃2. (8)

Here R̃ ≡ R/b, z̃ ≡ z/b, ã ≡ a/b, and r̃2 = R̃2 + z̃2. Known as
shifted Plummer model, the axisymmetric potential (6) is obtained
by means of the complexification of a classical Plummer (1911)
sphere with mass M and core radius b. The potential (6) corresponds
to the real part of the shift of the spherical Plummer model, with a =
(0, 0, a), so a is the amplitude of the shift (0 ≤ a ≤ b). The density
that generates the gravitational potential (6) is

ρ = 3Mψ

4πb3

[
ψ4 − 10ã2z̃2

d4
+ 5ã4z̃4

d8ψ4

]
. (9)

Here, we consider the shifted Plummer model with a/b = 0.5,
whose potential and density maps in the meridional plane are
shown in Fig. 3. We have integrated numerically several orbits in
this potential, finding untrapped regular orbits, chaotic orbits, and
resonantly trapped regular orbits. The top three panels of Fig. 4 show
the traces in the SoS and the trajectories in the (R, z)-plane of three
representative orbits, having the same values of E and Lz (their initial
conditions are given in Table 1). Throughout this paper, as done for
instance in Hunter (2005), we show only the pR > 0 part of the
SoS since it is sufficient for the purpose of illustrating the nature of
an orbit. In the SoS, the consequents of the untrapped regular orbit
(left-hand panel in Fig. 4) align on a 1D path since, as discussed in
Section 2, the orbit conserves a third isolating integral of motion,
which lowers the dimensionality of the phase-space manifold on
which the orbit lies. The consequents of the chaotic orbit (middle
panel in Fig. 4) fill a 2D region, meaning that a third isolating
integral of motion does not exist. The right-hand panel of Fig. 4
shows the trace in the SoS of an orbit, which is regular (its trace in
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Regular and chaotic orbits in stellar systems 1469

Figure 3. Left-hand panel: iso-potential contours in the (R, z)-plane of the shifted Plummer model (equation 6) with a/b = 0.5, labelled by the values of �/�0,
where �0 is the central potential. Right-hand panel: iso-density contours of the same model as in the left-hand panel, labelled by the values of ρ/ρ0, where ρ0

is the central density.

Figure 4. Top panels: traces in the SoS of a regular orbit (blue points, left-hand panel), a chaotic orbit (black points, middle panel), and a resonantly trapped
orbit (orange points, right-hand panel) in the shifted Plummer potential (6) with a/b = 0.5. In each panel, the inset shows the trajectory of the corresponding
orbit in the meridional plane. Bottom panel: traces of the same regular, chaotic, and resonantly trapped orbits as in the top panels, but plotted all in the same
SoS. The left inset shows a zoomed-in view of the region marked with a red box in the main panel. The right inset shows a zoomed-in view of the region marked
with a red box in the left inset. The ICs of the orbits are given in Table 1.
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1470 R. Pascale, C. Nipoti and L. Ciotti

Table 1. Initial conditions in cylindrical coordinates, specific energy E, and vertical component of the
specific angular momentum Lz of the regular, chaotic, and resonantly trapped orbits of Fig. 4 (φ is arbitrary
and pφ = Lz). The orbits are integrated in the shifted Plummer potential (6) with a/b = 0.5.

Shifted Plummer potential
Orbit R/b z/b pR/

√
GM/b pz/

√
GM/b E/(GM/b) Lz/

√
GMb

Regular 0.4 0 0 1.413 −0.05 10−3

Chaotic 0.35 0 0 1.428 69 −0.05 10−3

Trapped 0.28 0 0.18 1.437 01 −0.05 10−3

the SoS is one-dimensional), but trapped by resonance: the trace is
a combination of circuits enclosing the points that represent, in the
SoS, the parent resonant orbit.

The bottom panel of Fig. 4 shows in a single SoS the traces of
the three orbits in the top panels. The trace of the resonantly trapped
orbit is located within the resonant islands of the chaotic orbit (see
insets in the bottom panel), while the trace of the regular orbit lies
outside the region of the SoS occupied by the chaotic orbit. The
boundary of resonant islands, representing the separation between
resonantly trapped and chaotic orbits, are believed to correspond to
the transition between a region of phase space influenced by only one
resonance (within the island) and another region in which more than
one resonance is important (outside the island). In the latter case,
the star is scattered with no regularity, jumping from a resonance
to another (a phenomenon known as resonance overlap; Chirikov
1979), which makes the orbit chaotic.

Having found chaotic orbits, we have demonstrated that, at least
for a/b = 0.5, the shifted Plummer potential is non-integrable.
More generally, this is also a proof that the complexification of
a spherically symmetric model does not necessarily produce an
integrable axisymmetric potential.

4.2 Orbits in a Miyamoto–Nagai potential

Let us consider the MN potential

�(R, z) = − GM√
R2 +

[
a + √

b2 + z2
]2

, (10)

where a and b are, respectively, the model’s scale radius and scale
height, and M is the total mass of the system. The potential (10)
is typically used to describe the disc components of spiral galaxies
since it produces the disc-like density distribution

ρ(R, z) = b2M

4π

aR2 +
[
a + 3

√
z2 + b2

] [
a + √

z2 + b2
]2

[
R2 +

(
a + √

z2 + b2
)2

] 5
2 (

z2 + b2
) 3

2

. (11)

As shown by An & Evans (2019), given a spherical potential �(r),
the MN substitution that maps

r →
√

R2 +
[
a +

√
b2 + z2

]2
(12)

produces oblate models with analytic density–potential pairs (see
also Nagai & Miyamoto 1976; Satoh 1980). In this sense, the
potential (10) is the generalization of the point mass potential. The
MN potential (10) is of particular interest since its limiting cases for
b = 0 and a = 0 are both integrable. When b = 0, equation (10)
reduces to the Kuzmin disc (Kuzmin 1956; Toomre 1963), known to
be of the Stäckel form. When a = 0, the MN potential becomes the
classical Plummer sphere.

As in Hunter (2005), we study the orbits in a MN model with
a = b, whose potential and density maps in the meridional plane
are shown in Fig. 5. The case considered is a significantly, but not
highly flattened oblate model. While Hunter (2005) in his exploration
did not find chaotic orbits in the a = b MN potential, we did
find chaotic orbits in the very same potential. A selection of three
of these orbits, whose initial conditions are given in Table 2, is
shown in Fig. 6. The orbit in the left-hand panel has |Lz|/Lcirc(E) =
4.57 × 10−3, and the orbits in the middle and right-hand panels have
|Lz|/Lcirc(E) = 4.26 × 10−3, where E is the orbit’s energy and Lcirc(E)
is the magnitude of the angular momentum of a circular orbit in the
equatorial plane with R = 3(a + b) having energy E. Given that
our orbits have approximately the same energy as the ones explored
by Hunter (2005), we speculate that the reason why he did not find
chaotic orbits is that his orbits have relatively high Lz (|Lz|/Lcirc =
0.1), while ours have |Lz|/Lcirc ∼ 10−3 (see also Section 5.2).

5 MA S S C O N T R I BU T I O N S O F C H AOT I C A N D
REGULAR O RBI TS TO STELLAR SYSTEMS

The results presented in Section 4 confirm and strengthen the
general finding that, as a rule, non-Stäckel axisymmetric galactic
gravitational potentials are non-integrable. Once ascertained the
presence of chaotic orbits, the next step is to estimate how much they
contribute to a given stellar system. In Section 5.1, we define the
fractional mass contributions of chaotic and regular orbits to a stellar
system of given DF, and we describe a statistical method to infer the
expectation values of these quantities and the related uncertainties
from a sample of orbits. Among regular orbits, we estimate separately
the contributions of resonantly trapped and untrapped orbits. In
Section 5.2, we present the results of a case study.

5.1 Definitions and estimates of the fractional mass
contributions of orbit families

Let us consider a gravitational potential �(x) and a DF f(x, v) of a
tracer population confined by �, with finite total mass

M =
∫

f (x, v)d3xd3v, (13)

where the integral is extended to the entire phase space. Called Vc

the volume of phase space filled by chaotic orbits, the fractional
contribution of chaotic orbits to the total mass is

ξc ≡ Mc

M
, (14)

where

Mc =
∫
Vc

f (x, v)d3xd3v (15)

is the mass contributed by chaotic orbits. Clearly, the fraction ξ c

depends both on the gravitational potential and on the tracers’ DF. A
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Regular and chaotic orbits in stellar systems 1471

Figure 5. Left-hand panel: iso-potential contours in the meridional plane of a MN model with a = b, labelled by the values of �/�0, where �0 is the central
potential. Right-hand panel: iso-density contours in the meridional plane of the same MN model as in the left-hand panel, labelled by the values of ρ/ρ0, where
ρ0 is the central density.

Table 2. Same as Table 1, but for the chaotic orbits shown in Fig. 6, integrated in the MN potential (equation 10) with a = b.

orbit R/(a + b) z/(a + b) pR/
√

GM/(a + b) pz/
√

GM/(a + b) E/[GM/(a + b)] Lz/
√

GM(a + b)

MN1 0.05 0 0 −1.3629 −0.05 0.01
MN2 47.5482 −85.3202 −0.011 949 0.015 5498 −0.01 0.01
MN3 12.2099 −31.158 −0.076 7776 0.181 772 −0.01 0.01

Figure 6. Traces in the SoS of three chaotic orbits in a MN potential with a = b. The initial conditions of these orbits (MN1, MN2 and MN3, from left to right)
are given in Table 2. The insets show zoomed-in views of the red boxes in the corresponding main panels.

special case is the one in which the system is self gravitating, so that
∇2� = 4πGρ, where

ρ(x) =
∫

f d3v. (16)

In the latter case, ξ c is unique for given f, but not for given ρ. Two
self-gravitating systems can have the same ρ (and thus the same �),
but different DFs: ξ c is in general different for each of these DFs.
ξ c can be estimated by extracting N orbits from f and counting how
many of these N orbits turn out to be chaotic based on any orbit
classification method.

Similarly to ξ c, we define the fractional mass contribution of
resonantly trapped orbits ξ t ≡ Mt/M with Mt = ∫

Vt
f d3xd3v, where

Vt is the phase-space volume occupied by resonantly trapped orbits,
and the fractional mass contribution of untrapped orbits ξ u = 1 −
ξ c − ξ t. The fractional mass contribution of regular orbits (including
both resonantly trapped and untrapped orbits) is ξ r = ξ t + ξ u.

In practice, to measure ξ c, ξ t, and ξ u (and thus ξ r), we pro-
ceed as follows. For given f and �, we extract N orbits from
f, i.e. N sextuplets of phase-space coordinates (x, v) drawn from
f. We integrate in time in the potential � the N orbits and
classify them, finding Nc chaotic orbits, Nt regular resonantly
trapped orbits and Nu = N − Nc − Nt regular untrapped orbits.
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1472 R. Pascale, C. Nipoti and L. Ciotti

Figure 7. Left-hand panel: iso-density contours in the meridional plane of the density distribution (24) for p = 4 and q = 0.75, labelled by the values of ρ/ρ0,
where ρ0 is the central density. Right-hand panel: same as the left-hand panel but for q = 0.9. The inset in the right-hand panel shows the density of the models
as a function of the elliptical radius m ≡

√
R2 + z2/q2.

Figure 8. Traces in the SoS of a selection of six of the chaotic orbits found for the stellar system with gravitational potential (23) with q = 0.75. The inset in
each panel shows a zoomed-in view of the region marked with a red box in the corresponding SoS.

Straightforward estimates of ξ c, ξ t, and ξ u would be ξ c = Nc/N,
ξ t = Nt/N, and ξ u = Nu/N, but these numbers, though giving
a rough measure of the fractional contributions of the differ-
ent families of orbits, are not enough to describe in a statisti-
cally meaningful way the results of the numerical experiments,
if we do not have a measure of the associated uncertainties.

For instance, when Nc = 0, one would like to estimate an
upper limit on ξ c, which is expected to be more stringent for
larger N.

We thus estimate ξ c, ξ t, and ξ u, and the corresponding uncertainties
δξ c, δξ t, and δξ u using a Bayesian approach. The joint distribution of
(Nc, Nt, Nu) is multinomial with parameters (N, ξ c, ξ t, ξ u). We model
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Regular and chaotic orbits in stellar systems 1473

Table 3. Number of orbits, out of N = 10 000, classified as chaotic (Nc),
regular (Nr = Nu + Nt), untrapped (Nu), and resonantly trapped (Nt), and
corresponding fractional mass contribution of each class of orbits (ξ c, ξ r, ξu,
ξ t) for a more flattened (q = 0.75) and a less flattened (q = 0.9) axisymmetric
stellar system with ergodic Evans DF (21) with p = 4 and potential (23). The
value of ξ i, for i = c, r, u, and t, is given in the form ξ̂i ± δξi , where ξ̂i and
δξ i are, respectively, the mean and the standard deviation of the posterior
distribution of ξ i.

q = 0.75 q = 0.9

Nc 20 5
Nr = Nu + Nt 9980 9995
Nu 9419 9859
Nt 561 136
ξ c (2.03 ± 0.45) × 10−3 (5.33 ± 2.31) × 10−4

ξ r = ξ t + ξu 0.9980 ± 0.0012 0.999 47 ± 0.000 23
ξu 0.9418 ± 0.0023 0.9858 ± 0.0012
ξ t (5.61 ± 0.23) × 10−2 (1.36 ± 0.12) × 10−2

the parameters (ξ c, ξ t, ξ u) with a symmetric Dirichlet distribution
with parameters (α, α, α), which implies that the marginal prior
distribution of each component of (ξ c, ξ t, ξ u) is a beta with parameters
(α, 2α), corresponding to prior expected values ξ c = 1/3, ξ t =
1/3, and ξ u = 1/3, which reflects our prior ignorance. Thanks to
the conjugacy of the Dirichlet prior to the multinomial model, the
posterior distribution of (ξ c, ξ t, ξ u) is again Dirichlet with updated
parameters (α + Nc, α + Nt, α + Nu; see e.g. Robert 2007). A
point estimator of (ξ c, ξ t, ξ u) is given by the mean of the posterior
distribution, that is(

ξ̂c, ξ̂t, ξ̂u

)
=

(
α + Nc

3α + N
,

α + Nt

3α + N
,

α + Nu

3α + N

)
. (17)

The uncertainty associated to posterior estimates is quantified by con-
sidering the standard deviation of the marginal posterior distribution,
given for ξ c by

δξc =
√

(α + Nc)(2α + N − Nc)

(3α + N )2(3α + N + 1)
, (18)

and similarly for ξ t and ξ u.
Given that the fractional mass contribution of regular orbits is

ξ r = 1 − ξ c and that the marginal posterior distribution of ξ c is a
beta distribution B(α + Nc, 2α + Nr), where Nr = Nu + Nt is the
number of regular orbits, the marginal posterior distribution of ξ r is
a beta distribution B(2α + Nr, α + Nc). We take as point estimator
of ξ r the mean of the marginal posterior distribution

ξ̂r = 2α + Nr

3α + N
, (19)

and as uncertainty on ξ r the standard deviation of the marginal
posterior distribution,

δξr =
√

(2α + Nr)(α + Nc)

(3α + N )2(3α + N + 1)
. (20)

In what follows, we set α = 1/3 which, if N 
 1, corresponds to
assigning little weight to the prior component when computing the
posterior distribution.

To summarize, in order to quantify the fractional mass contribu-
tions of chaotic (ξ c) and resonantly trapped (ξ t) orbits to a non-
spherical stellar system, either self-gravitating or immersed in an
external gravitational potential, one should:

(i) know (analytically or numerically) the DF of the stellar system,
because ξ c and ξ t depend on the DF, and not only on the total
gravitational potential and the stellar density distribution;

(ii) extract from the DF a sample of N phase-space coordinates to
be used as initial conditions for N orbits of the stellar system;

(iii) integrate the orbits in the total gravitational potential and
classify them as untrapped regular, trapped regular, or chaotic, by
means of any suitable classification method (for instance, inspection
of the SoS or spectral analysis);

(iv) use Bayesian estimators, such as the ones provided by equa-
tions (17 and 18) to infer the expectation values of ξ c and ξ t and the
associated confidence intervals.

5.2 A case study: a stellar system with ergodic DF confined by
the flattened logarithmic potential

We now present examples of measurements of the fractional mass
contributions defined in Section 5.1 for specific axisymmetric stellar
systems. A natural choice could be to consider self-gravitating stellar
systems with either the shifted Plummer or the MN gravitational
potentials studied in Section 4. However, such systems, though
having analytic density distributions (equations 9 and 11), as far
as we know do not have easily tractable analytic DFs.1 Though it
is in principle possible to compute and use numerical DFs (e.g.
Lynden-Bell 1962; Hunter & Qian 1993; Petač & Ullio 2019), here
we prefer to avoid such a complication and focus on an exceptionally
fortunate case in which density, potential, and DF have simple
analytic expressions.

The stellar system here considered consists of a tracer population
with DF f in an external potential �. As f, we take the ergodic DF of
Evans (1993)

f (x, v) = f0 exp

[
−

(
pE(x, v)

σ 2

)]
, (21)

where E ≡ � + K is the specific (i.e. per mass unit) energy, K is the
specific kinetic energy, and

f0 =
(

p

2π2R2
c σ

2

) 3
2 M

q

�
(

p

2

)
�

(
p

2 − 3
2

) (22)

normalizes the DF to the total mass M. The external potential is the
flattened logarithmic potential (Binney 1981)

�(R, z) = σ 2

2
ln

(
1 + R̃2 + z̃2

q2

)
, (23)

where R̃ ≡ R/Rc, z̃ ≡ z/Rc, q ≤ 1 is the minor-to-major axial ratio
of the iso-potential surfaces, σ is the maximum circular speed, and
Rc is the core radius (i.e. the distance from the centre within which
the potential is roughly constant). We note that �(0, 0) = 0, so E ≥ 0
for all (x, v). The density distribution that generates the gravitational
potential is everywhere positive when q > 1/

√
2. Since the DF (21)

is ergodic, the density of the tracers stratifies on the iso-potential
surfaces of (23).

Integrating the DF (21) over velocities, one finds that the tracers’
spatial distribution is

ρ(R, z) = ρ0(
1 + R̃2 + z̃2/q2

)p/2 , (24)

1See Dejonghe (1986) for the analytic expression of the two-integral DF of
the self-gravitating MN model.
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1474 R. Pascale, C. Nipoti and L. Ciotti

Figure 9. Estimates of the fractional mass contributions of chaotic (ξ c; black squares with errorbars), trapped (ξ t; orange circles with errorbars), and untrapped
(ξu; blue diamonds with errorbars) orbits obtained by selecting random subsamples of N orbits among our samples of 10 000 orbits for the q = 0.75 (left-hand
panel) and q = 0.9 (right-hand panel) Evans models.
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Figure 10. Distributions in the space of the orbital parameters E and Lz for
our sample of orbits integrated in the flattened logarithmic potential (23) with
q = 0.75. Lower-left panel: number density distribution of the explored orbits
in the (E, |Lz|) plane, for all orbits (grey), resonantly trapped orbits (blue), and
chaotic orbits (orange): the darker the pixel’s colour the higher the number
density. The red curve indicates |Lcirc(E)| for circular orbits in the equatorial
plane. Upper panel: differential energy distribution N(E) for all orbits (grey),
resonantly trapped orbits (blue), and chaotic orbits (orange), for the same
sample of orbits as in the lower-left panel. The red curve indicates N(E) as
computed from the DF from which the sample of orbits is extracted (see
Appendix B). Right-hand panel. Differential Lz distribution N(|Lz|) for all
orbits (grey), resonantly trapped orbits (blue), and chaotic orbits (orange), for
the same sample of orbits as in the lower-left panel. The red curve indicates
N(|Lz|) as computed from the DF from which the sample of orbits is extracted
(see Appendix B).

with

ρ0 = M

π
3
2 R3

c

�( p

2 )

q�
(

p

2 − 3
2

) (25)

(Evans 1993). The tracers’ density distribution (24) is a power law
of slope p at large radii, while in the central regions a core of
approximately constant density extends out of Rc. Since the DF is

Figure 11. Same as Fig. 10, but for the sample of orbits integrated in the
flattened logarithmic potential with q = 0.9.

ergodic, the tracers’ velocity distribution is isotropic and the second
velocity moments are

v2
R = v2

φ = v2
z = σ 2

p
. (26)

We focus on two specific models with p = 4, which differ only
in the value of the potential’s axial ratio q: a highly flattened model
with q = 0.75, close to the minimum q allowed for consistency, and
an almost spherical model with q = 0.9. Fig. 7 shows the isodensity
contours of the q = 0.75 (left-hand panel) and q = 0.9 (right-hand
panel) models. The small inset in the right-hand panel shows the
density as a function of the elliptical radius m ≡

√
R2 + z2/q2,

which is the same for both models (equation 24), with ρ ∝ m−4

when m 
 Rc. Rc and σ set the physical scales of the model.
For each model, we sample a set of N = 10 000 orbit initial

conditions from the DF (21), following the procedure2 described

2This procedure does not exploit the fact that the DF is ergodic and can be
used with any DF f(x, v).
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Regular and chaotic orbits in stellar systems 1475

in Appendix A. Each orbit is integrated in the potential (23) for
≈104t0, with t0 ≡ Rc/σ , and the SoS trace of each orbit is computed.
For p = 4, the model’s circularized half-mass radius is rh 
 2.2Rc, so
t0 
 rh/(2.2σ ). When the system is scaled to represent a typical
massive elliptical galaxy with effective radius Reff ≈ 10 kpc and
central stellar velocity dispersion σ0 ≈ 250 km s−1 (e.g. section 5.4
of Cimatti, Fraternali & Nipoti 2019), assuming rh ≈ Reff and σ ≈
σ 0, we get t0 ≈ 18 Myr. In all cases, the traces in the SoS are sampled
with at least 1000 points.

For both q = 0.75 and q = 0.9, we find, among the explored orbits,
a few chaotic orbits, which demonstrates that logarithmic potentials
with these flattening parameters are non-integrable. Fig. 8 shows the
SoS of a selection of six of the orbits classified as chaotic in the q =
0.75 model. To highlight the 2D structure of the manifold on which
the consequents lie, the small insets in each panel show a zoom-in of
a portion of the corresponding SoS. While we do find chaotic orbits,
Richstone (1982) and Barnes (2001) did not find any chaotic orbit in
the same logarithmic potential with q = 0.75, probably due to the low
statistics of their sample of orbits. Richstone (1982) explored only
400 orbits, when, for instance, our results show that on average only
one out of about 500 orbits is chaotic if the phase-space is populated
with the DF (21) with p = 4. Barnes (2001) did explore even fewer
orbits than Richstone (1982).

The number of chaotic (Nc), regular (Nr = Nt + Nu), resonantly
trapped (Nt), and untrapped (Nu) orbits found for both q = 0.75
and q = 0.9 are reported in Table 3, together with estimates of
the corresponding fractional mass contributions ξ c, ξ r = ξ t + ξ u,
ξ t, and ξ u, obtained from equations (17–20) with α = 1/3. While
in both cases the regular orbits are by far the dominant family
(ξr � 99.8 per cent), the much rarer chaotic orbits contribute more to
the more flattened system (ξ c 
 0.002 for q = 0.75 and ξ c 
 0.0005
for q = 0.9). The considered systems thus appear largely regular, with
small contributions from chaotic orbits. For these chaotic orbits, our
analysis (based on SoS traces obtained with long-time integration)
does not provide information on the characteristic chaotic time-
scale, that is the time over which the orbits starts showing a chaotic
behaviour. It is then possible that a fraction of the found chaotic orbits
are sticky (e.g. Maffione et al. 2015), i.e. that they behave similarly
to regular orbits for relatively long time, before manifesting their
chaotic nature. If this is the case, we would have found even smaller
values of ξ c if we had integrated the orbits for shorter times, more
realistic for astrophysical applications. However, the adopted SoS
orbit classification method forces us to consider long integration
times, because a reliable classification requires that the orbit’s trace
in the SoS has a large number of consequents.

The mass contribution of resonantly trapped orbits is almost a
factor of 30 higher than that of the chaotic orbits for both q = 0.75 and
q = 0.9: in particular, the overall contribution is non-negligible in the
case of the more flattened model (q = 0.75), in which about 6 per cent
of the stellar mass is in resonantly trapped orbit. This is qualitatively3

consistent with the results of Richstone (1982) who found that, in the
same q = 0.75 logarithmic potential, ≈ 5 per cent of the orbits of his
sample are resonantly trapped (note that Richstone adopts a different
nomenclature in which the resonantly trapped orbits are called pipe
orbits).

We note that we are able to provide estimates of ξ c, ξ t, ξ u, and
ξ r with relatively small associated uncertainties (see Table 3), which
means that the number of explored orbits (N = 10 000 for each

3Richstone’s sample of orbits is not extracted from a DF, so the comparison
is not quantitative.

stellar system) is sufficient for our purposes. The estimates of the
fractional mass contributions deteriorate with decreasing N. This is
illustrated quantitatively by Fig. 9, showing, for both q = 0.75 and
q = 0.9, the estimates of ξ c, ξ t, and ξ u as functions of N, which
we obtained by selecting random subsamples of N orbits among our
samples of 10 000 orbits. As expected, the estimates for different N
are statistically consistent, but the error bars on the fractional mass
contributions shrink monotonically for increasing N.

In Figs 10 and 11, we show the 2D, joint distributions n(E, |Lz|)
for q = 0.75 and q = 0.9, respectively. n(E, |Lz|) is such that n(E,
|Lz|)dEd|Lz| is the fraction of orbits with energy between E and
E + dE and absolute value of Lz between |Lz| and |Lz| + d|Lz|. In
each figure, the top panel shows the differential energy distribution
N(E), while the left-hand panel the differential Lz distribution N(|Lz|).
N(E)dE gives the fraction of orbits with energy between E and E +
dE. Similarly, N(|Lz|)d|Lz| is the fraction of orbits with absolute value
of Lz between |Lz| and |Lz| + d|Lz| (for details, see Appendix B).
We have marked with different colours the contributions to the 1-
and 2D distributions of the chaotic and resonantly trapped orbits.
We note that as the energy increases, the relative contributions of the
resonantly trapped and of the chaotic orbits increase while, especially
for small values of |Lz|, their fractional contribution tends to remain
approximately constant with |Lz|.

As an example of specific application, for instance within the
framework of the study of the stellar streams generated by globular
clusters (see Section 1), the Evans density distribution (24) can be
interpreted as a simple model of the globular cluster system of
a galaxy, whose gravitational potential is given by equation (23).
Our analysis provides the fraction of these globular clusters that are
expected to be on chaotic or trapped orbits, under the assumption that
the velocity distribution of the globular cluster system is isotropic.
Figs 10 and 11 suggest that these fractions should be similar for
anisotropic velocity distribution, corresponding to DFs that either
favour or disfavour high-|Lz| orbits. The very small values found for
ξ c in the two explored models indicate that the fraction of GC streams
dispersed by chaos would be negligible. The fraction of GC streams
dispersed by separatrix divergence is not directly measured by our
calculations, but ξ t can be taken as an upper limit on this fraction,
under the plausible assumption that there are more orbits belonging
to resonantly trapped families than close to their boundaries.

6 C O N C L U S I O N S

We have addressed the problem of the integrability of a few families
of axisymmetric potentials. Using numerical orbit integration, it is
possible to show that a given potential is non-integrable, but of course
it is not possible to demonstrate that it is integrable. We have added
to the literature a few new cases of axisymmetric potentials that turn
out to be non-integrable. These potentials belong to the families of
shifted Plummer, MN, and flattened logarithmic potentials.

Given that chaotic orbits have been found for all (non-Stäckel)
axisymmetric potentials in which they have been deeply looked for,
an interesting question is how much these chaotic orbits contribute to
stellar systems that are confined by these potentials. We have defined
the fractional mass contribution ξ c of chaotic orbits in stellar systems
of given DF and proposed a simple but robust statistical method to
estimate it from a sample of orbits. With the same approach, one can
estimate also the fractional mass contributions of resonantly trapped
regular orbits (ξ t), of untrapped regular orbits (ξ u) and of all regular
orbits (ξ r = ξ t + ξ u).

As a case study, we analysed two axisymmetric stellar systems
with Evans DF confined by flattened logarithmic gravitational
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1476 R. Pascale, C. Nipoti and L. Ciotti

potentials with different values of the axial ratio q. The contribution
of chaotic orbits is extremely small in both cases, but significantly
higher in the more flattened (q = 0.75) system (ξ c = 0.0020 ± 0.0005)
than in the almost spherical (q = 0.9) system (ξ c = 0.0005 ± 0.0002).
In both cases, the mass contribution of resonantly trapped orbits
is almost a factor of 30 higher than that of the chaotic orbits
(ξ t = 0.056 ± 0.002 for q = 0.75 and ξ t = 0.014 ± 0.001 for
q = 0.9). Most (� 94 per cent) of the mass of these axisymmetric
system is contributed by the standard untrapped regular orbits. The
presented case study is particularly simple, because the considered
axisymmetric stellar systems have analytic gravitational potential
�, analytic ergodic DF f, and analytic spatial density ρ of the
tracer population. However, we stress that the same analysis can
be performed when the DF is not ergodic and/or one or more among
�, f and ρ are not known analytically.

A fundamental step of our analysis is classifying orbits as chaotic
and regular, and, among regular orbits, distinguishing resonantly
trapped and untrapped orbits. In this paper, we have used as orbit
classification technique the visual inspection of the SoS, but we stress
that any technique for orbit classification can be used. Of course,
visual inspection is impractical if one wants to systematically classify
very large samples of orbits, which requires automatic classification
algorithms (e.g. Carpintero, Maffione & Darriba 2014). We have seen
that, from a geometrical point of view, orbits can be considered lower
dimensional manifolds embedded in a higher dimensional space (the
full phase space). To distinguish, at low computational cost, chaotic,
and regular orbits one could estimate the intrinsic dimension of
these manifolds (Mordohai & Medioni 2005) and build probabilistic
models of a few selected prototypes (i.e. using generative topographic
mapping; Bishop, Svensén & Williams 1998). Alternative methods
based on the correlation integrals are also a viable way to estimate the
dimensionality of the orbit in phase space (Carnevali & Santangelo
1984; Barnes 2001; Carpintero 2008) or of the trace in the SoS.
However, determining the dimensionality of the orbit manifold is not
enough to discriminate between untrapped and resonantly trapped
orbits. Such a task requires either spectral methods (Binney & Spergel
1982; Carpintero & Aguilar 1998) or an algorithm able to classify
topologically the traces in the SoS.
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Bienaymé O., Robin A. C., Famaey B., 2015, A&A, 581, A123
Binney J., 1981, MNRAS, 196, 455
Binney J., 2016, MNRAS, 462, 2792
Binney J., 2020, in Valluri M., Sellwood J. A., eds, Galactic Dynamics in

the Era of Large Surveys, Vol. 353, Cambridge Univ. Press, Cambridge,
p. 101

Binney J., Spergel D., 1982, ApJ, 252, 308
Binney J., Tremaine S., 2008, Galactic Dynamics: Second Edition. Princeton

Univ. Press, Princeton, NJ
Bishop C. M., Svensén M., Williams C. K. I., 1998, Neural Comput., 10, 215
Bonaca A. et al., 2020, ApJ, 889, 70
Bovy J., 2014, ApJ, 795, 95
Butcher J. C., 1996, Appl. Numer. Math., 20, 247
Candy J., Rozmus W., 1991, J. Comput. Phys., 92, 230
Carnevali P., Santangelo P., 1984, ApJ, 281, 473
Carpintero D. D., 2008, MNRAS, 388, 1293
Carpintero D. D., Aguilar L. A., 1998, MNRAS, 298, 1
Carpintero D. D., Maffione N., Darriba L., 2014, Astron. Comput., 5, 19
Carter R., 1968, Commun. Math. Phys., 10, 280
Chirikov B. V., 1979, Phys. Rep., 52, 263
Cimatti A., Fraternali F., Nipoti C., 2019, Introduction to Galaxy Formation

and Evolution: From Primordial Gas to Present-Day Galaxies. Cambridge
Univ. Press, Cambridge

Ciotti L., Giampieri G., 2007, MNRAS, 376, 1162
Ciotti L., Marinacci F., 2008, MNRAS, 387, 1117
de Zeeuw T., 1985, MNRAS, 216, 273
de Zeeuw P. T., Lynden-Bell D., 1985, MNRAS, 215, 713
Dejonghe H., 1986, Phys. Rep., 133, 217
Evans N. W., 1993, MNRAS, 260, 191
Fardal M. A., Huang S., Weinberg M. D., 2015, MNRAS, 452, 301
Forest E., Ruth R. D., 1990, Physica D Nonlinear Phenom., 43, 105
Gaia Collaboration, 2018a, A&A, 616, A1
Gaia Collaboration, 2018b, A&A, 616, A12
Gaia Collaboration, 2020, A&A, 649, A1
Greiner J., 1987, Celest. Mech., 40, 171
Greiner J., 1990, Celest. Mech. Dyn. Astron., 50, 387
Hagen J. H. J., Helmi A., Breddels M. A., 2019, A&A, 632, A99
Hastings W. K., 1970, Biometrika, 57, 97
Helmi A., 2004a, MNRAS, 351, 643
Helmi A., 2004b, ApJ, 610, L97
Helmi A., White S. D. M., 1999, MNRAS, 307, 495
Henon M., Heiles C., 1964, AJ, 69, 73
Hunter C., 2003, Disk-Crossing Orbits, Vol. 626, Springer, Berlin, p. 137
Hunter C., 2005, Ann. New York Acad. Sci., 1045, 120
Hunter C., Qian E., 1993, MNRAS, 262, 401
Kordopatis G. et al., 2013, AJ, 146, 134
Kuzmin G., 1956, Astron. Zh., 33, 27
Lynden-Bell D., 1962, MNRAS, 123, 447
Lynden-Bell D., 2000, MNRAS, 312, 301
Lynden-Bell D., 2003, in Thompson M. J., Christensen-Dalsgaard J., eds,

Stellar Astrophysical Fluid Dynamics. Cambridge Univ. Press, Cam-
bridge, p. 369
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APPEN D IX A : EXTRACTING O RBITS FRO M A
DISTR IBU TION FUNCTION

We extract N orbits with phase-space coordinates wk ≡ {xk, yk,
zk, vx, k, vy, k, vz, k}, with k = 1, ..., N, from a DF f(x, v) using
a Metropolis-Hastings (Metropolis et al. 1953; Hastings 1970)
sampler. Here, we briefly describe the procedure.

(i) From a given point in the phase space wl, a new location wl + 1

is sampled using as proposal distribution a multivariate Gaussian
distribution M centered in wl. The covariance matrix C2 of M is
given by (e.g. Roberts, Gelman & Gilks 1997; Rosenthal 2010)

C2 =
(

2.38

d

)2

(σ 2 + εI), (A1)

where d = 6 is the dimension of the phase space, I is the identity
matrix, ε = 10−8, and σ 2 is the chain’s empirical covariance matrix,
whose (i, j)-element is

σ 2
i,j = 1

Mmin

M∑
m=M−Mmin

(wi,m − wi)(wj,m − wj ), (A2)

with M the current chain size. The empirical covariance matrix and
wh (i.e. the mean over the h-th parameter of w) are constructed using
only the chain’s latest Mmin = 10000 steps, allowing the sampler to
adapt to the local structure of the probability distribution, and a new
covariance matrix is built every 1000 steps. The term εI avoids C2 to
collapse to zero, especially during the first chain’s steps, where the
empirical covariance matrix cannot be recovered.

(ii) At each draw, the quantity P ≡ min [1, f(wl + 1)/f(wl)] is
computed. The proposal wl + 1 is accepted if P = 1 and, in this case,
the next chain step starts from wl + 1. Otherwise, the new proposal is

accepted only if P > U, with U drawn from a uniform distribution in
the interval ]0,1[.

(iii) To build a sample of N elements, we use a chain with Nchain

steps, where Nchain = Nburn-in + Nδn, because we eliminate the first
Nburn-in burn-in steps, and, of the remaining chain, we take one draw
every δn iterations. In particular, we adopt Nburn-in = 50 000 and
δn = 200, which guarantees that the final sample does not contain
duplicate elements and that the sample’s auto correlation is sensibly
lowered.

APPENDI X B: U SEFUL FORMULAE

Here, we report the expressions of the differential energy distribution
and of the differential Lz distribution computed from the DF (21),
which are shown in Figs 10 and 11.

The differential energy distribution is (Binney & Tremaine 2008)

N (E) = f0,E exp

[
−pE

σ 2

]
g(E; σ ), (B1)

where g is the non-normalized density of states, defined as

g(E; σ ) =
∫ mmax

0
m2

√[
2E

σ 2
− ln(m2 + 1)

]
dm, (B2)

with

mmax =
√

exp

(
2E

σ 2

)
− 1, (B3)

i.e. the root of the radical in equation (B2), and

f0,E = 25/2p3/2

σ 2π

�
(

p

2

)
�

(
p

2 − 3
2

) (B4)

is such that
∫ +∞

0 N (E)dE = 1.
In analogy with equation (B1), we define the differential Lz

distribution (i.e. the number of orbits with |Lz| in the interval [|Lz|,
|Lz| + d|Lz|]) as

N (|Lz|)

= f0,Lz

[∫ ∞

0

1

(1 + t2)
p−1

2

exp

(
− pL2

z

2σ 2R2
c t

2

)
dt

]
d|Lz|, (B5)

and

f0,Lz
=

(
2p

π

) 1
2 p − 3

Rcσ
(B6)

is such that
∫ ∞

0 N (|Lz|)d|Lz| = 1.
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