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ABSTRACT
We present the theoretical framework to efficiently solve the Jeans equations for multicomponent axisymmetric stellar systems,
focusing on the scaling of all quantities entering them. The models may include an arbitrary number of stellar distributions,
a dark matter halo, and a central supermassive black hole; each stellar distribution is implicitly described by a two- or three-
integral distribution function, and the stellar components can have different structural (density profile, flattening, mass, scale
length), dynamical (rotation, velocity dispersion anisotropy), and population (age, metallicity, initial mass function, mass-to-
light ratio) properties. In order to determine the ordered rotational velocity and the azimuthal velocity dispersion fields of
each component, we introduce a decomposition that can be used when the commonly adopted Satoh decomposition cannot
be applied. The scheme developed is particularly suitable for a numerical implementation; we describe its realization within
our code JASMINE2, optimized to maximally exploit the scalings allowed by the Poisson and the Jeans equations, also in
the post-processing procedures. As applications, we illustrate the building of three multicomponent galaxy models with two
distinct stellar populations, a central black hole, and a dark matter halo; we also study the solution of the Jeans equations for an
exponential thick disc, and for its multicomponent representation as the superposition of three Miyamoto–Nagai discs. A useful
general formula for the numerical evaluation of the gravitational potential of factorized thick discs is finally given.
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1 IN T RO D U C T I O N

Axisymmetric galaxy models often represent an acceptable descrip-
tion of real galaxies, beyond the zeroth-order approximation of
spherical symmetry. Analytical models of one and multicomponent
axisymmetric galaxies are available (e.g. see Binney & Tremaine
2008, hereafter BT08, and references therein; see also Ciotti et al.
2021, hereafter CMPZ21), but these models, while important to
highlight fundamental properties of the dynamics of axisymmetric
systems, and to guide the construction of realistic galaxy models
to be carried out numerically, suffer from the restrictions imposed
by the request of analytical tractability. From this point of view,
analytical and numerical modelling should be seen as complementary
approaches, each of them with their own merits and limitations.

On the numerical side, the most common models are based
on the solution of the Jeans equations (e.g. BT08; Ciotti 2021).
This approach allows to model axisymmetric stellar systems, in
the simplest assumption of a two-integral phase-space distribution
function (DF; e.g. Posacki, Pellegrini & Ciotti 2013), or a three-
integral DF (e.g. Cappellari 2008), starting from the assignment of
the density components. As well known, the proper description of a
stellar system should start from the assignment of the phase-space DF
of each separate mass component, and the solution of the associated
Poisson equation (BT08; Bertin 2014; Ciotti 2021); however, in
several applications, the Jeans approach is highly preferred, for its
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direct control on the density distributions (even if it leaves open
fundamental issues such as the phase-space consistency).

In this paper, we present a procedure especially designed to build
(and project) multicomponent systems. For an arbitrary number of
mass components, we start with maximally exploiting the scalings
allowed by the Poisson and the Jeans equations, and then we
show how to combine the solutions for all components to obtain a
particular multicomponent model. When implemented numerically,
this scheme allows for a fast and flexible building of realistic
models. To provide an example, we describe how the various
steps of the procedure were inserted in our code JASMINE (Jeans
AxiSymmetric Models of galaxies IN Equilibrium; Posacki et al.
2013) for the axisymmetric modelling of galaxies based on the
Jeans equations; the resulting much extended code version was
named JASMINE2. This new code allows for the choice, in input,
of different stellar components and dark matter (DM) components
(from a continuously updated library), and a central black hole (BH).
It computes numerically the gravitational potential of each density
component by using the well-known formula based on complete
elliptic integrals of the first kind. This numerical method is highly
accurate, but it easily becomes quite time expensive, depending on
the grid resolution and on the number of density components; if
one wants to explore the parameter space (that can be very large,
especially for multicomponent models), the possibility of a scheme
to allow for a full scaling of the Poisson and the Jeans equations is
crucial. The building of a model is then organized in two distinct
parts: in the first one, whose numerical realization we call Potential
and Jeans Solver, one computes the potential and then solves the
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Jeans equations for each scaled stellar density component; this
produces a set of solutions that represents a ‘progenitor’ of a family
of models. In the second part, that in our numerical realization is seen
as a post-processing (PP) phase, the mass and luminosity weights are
assigned, and the kinematical decompositions imposed; with these,
the scaled solutions of the progenitor are finally combined, and the
resulting kinematical fields projected.

This procedure allows to drastically reduce the computational time
needed for the construction of a multicomponent model: with a single
run of the Potential and Jeans Solver, one can build a family of
galaxy models, all characterized by the same set of scaled density
components; each specific model in the family is defined by choosing
suitable weights and kinematical decompositions in PP. In this way,
the exploration of the parameter space is extremely fast and complete.
Summarizing, each stellar density component in a multicomponent
model is characterized by different structural (density profile, flatten-
ing, total mass, scale length), dynamical (rotational support, velocity
dispersion anisotropy), and stellar population (age, metallicity, initial
mass function, mass-to-light ratio) properties. The addition of a
central BH and a DM halo is immediate.

The paper is organized as follows. Section 2 presents the ana-
lytical framework of the procedure, together with a new velocity
decomposition for the azimuthal velocity field, to be used when the
commonly adopted Satoh (1980) k-decomposition cannot be applied
(a not uncommon case in multicomponent systems). In Section 3, we
detail how the scaling is carried out. In Section 4, some illustrative
galaxy models are built, and a few tests are mentioned; we also
present an application to the case of the exponential disc and its
decomposition as sum of Miyamoto–Nagai discs. In Section 5, the
main conclusions are summarized. Finally, Appendices A and B
contain some relevant analytical details.

2 MU LT I C O M P O N E N T G A L A X Y M O D E L S

In this section, we introduce the general notation used, and we
illustrate the main theoretical foundations on which our modelling
procedure is based; in particular, we focus on the multicomponent
Jeans equations, on a generalization of the Satoh k-decomposition
for azimuthal motions, and on the projections on the plane of the sky.
In the following Section 3, we will describe the scaling procedure,
and in particular how the scaled solutions of the Jeans equations are
obtained (with the Potential and Jeans Solver), and then combined
by adopting suitable weights (in the PP phase).

2.1 Structure of the galaxy models

We adopt cylindrical coordinates (R, ϕ, z), with the symmetry axis
of the models aligned with the z-axis. In full generality, we consider
models composed of N different stellar density distributions ρ∗i(R,
z), of total mass M∗i, so that the total stellar density ρ∗ and the total
stellar mass M∗ of the system are given respectively by

ρ∗(R, z) =
∑

i

ρ∗i , M∗ =
∑

i

M∗i , i = 1, . . . , N. (1)

From now on, sums over i indicate sums over the N stellar compo-
nents. We assume that each ρ∗i is made of a simple stellar population
(see e.g. Renzini & Buzzoni 1986; Maraston 2005), i.e. by stars
of the same age, chemical composition, initial mass function, and in
particular the same mass-to-light ratio ϒ∗i. Therefore, the total stellar
distribution ρ∗ can be considered a composite stellar population; the
luminosity density and the total luminosity of each stellar component

can be written respectively as

ν∗i(R, z) = ρ∗i

ϒ∗i

, Li = M∗i

ϒ∗i

, (2)

so that

ν∗(R, z) =
∑

i

ν∗i , L =
∑

i

Li . (3)

The local and average stellar mass-to-light ratios of the galaxy are
given by

ϒ∗(R, z) ≡ ρ∗
ν∗

=
∑

i ρ∗i∑
i ρ∗i/ϒ∗i

, 〈ϒ∗〉 ≡ M∗
L

=
∑

i M∗i∑
i M∗i/ϒ∗i

,

(4)

where it is apparent how in general the local stellar mass-to-light
ratio in a multicomponent model depends on position.

From equation (1) the gravitational potential associated with the
total stellar density is

φ∗(R, z) =
∑

i

φ∗i , (5)

where φ∗i(R, z) is the potential originated by the density component
ρ∗i. The presence of a central BH, of mass MBH, produces the
potential

φBH(r) = −GMBH

r
, r =

√
R2 + z2, (6)

and an axisymmetric DM halo, of density ρh(R, z) and total mass Mh

(when finite), produces the potential φh(R, z). Therefore, in general,
the total gravitational potential of the model is

�(R, z) = φ∗ + φh + φBH =
∑

j

φj , j = 1, . . . , N + 2. (7)

From now on, sums over j indicate sums over all the N + 2 galaxy
components, i.e. the N stellar components, the central BH, and the
DM halo. In principle, also the DM distribution can be made of
different components, with a trivial generalization of the current
discussion, that is not necessary for the goal of this paper. Our scheme
fully exploits the linearity of the Jeans equations with respect to
the stellar density (Section 2.2) and to the gravitational potential
(Section 3).

2.2 The Jeans equations

The procedure, in its basic version, assumes that each stellar
component is implicitly described by a two-integral phase-space DF
fi(E, Jz) (in general different for each component), where E and Jz

are respectively the energy and the axial component of the angular
momentum of each star (per unit mass) in the total potential �.
Therefore, the DF of the total stellar distribution is the two-integral
function

f =
∑

i

fi . (8)

As usual, we indicate with (vR, vϕ, vz ) the velocity components
in the phase space, and with a bar over a quantity the operation of
average over the velocity space. By construction, for each stellar
component vRi = vzi = 0, the only non-zero ordered velocity can
occur in the azimuthal direction υϕi ≡ vϕ i

, and finally for the velocity
dispersion tensor σ Ri = σ zi ≡ σ i. Of course, from equation (8) similar
relations hold for the kinematical fields of the total ρ∗.

The Jeans equations for each stellar component are obtained as
velocity averages of the collisionless Boltzmann Equation over the
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corresponding fi (e.g. BT08), so that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ∗iσ
2
i

∂z
= −ρ∗i

∂�

∂z
,

∂ρ∗iσ
2
i

∂R
= ρ∗i

�i

R
− ρ∗i

∂�

∂R
,

(9)

where � is the total potential in equation (7), and

�i ≡ v2
ϕ i

− σ 2
i , σ 2

ϕi = v2
ϕ i

− υ2
ϕi = �i + σ 2

i − υ2
ϕi ; (10)

therefore, in the isotropic case, �i = υ2
ϕi . Imposing the natural

boundary condition ρ∗iσ
2
i → 0 for z → ∞, the solution of equations

(9) is

ρ∗iσ
2
i =

∫ ∞

z

ρ∗i

∂�

∂z′ dz′, ρ∗i�i = R

(
∂ρ∗iσ

2
i

∂R
+ ρ∗i

∂�

∂R

)
. (11)

We notice that �i can be also recast as a commutator-like integral (e.g.
see equation 35 in CMPZ21), with some advantage for analytical and
numerical investigations; however, we found by several numerical
tests that �i can also be accurately computed by (centred) numerical
differentiation as in equation (11), and so in our code JASMINE2 we
maintained this more direct way of evaluation.

A central point of the procedure is the sum rule in the phase
space imposed by the identity (8). In fact, with equation (8), we are
assuming that the N stellar components ρ∗i are physically distinct,
each of them described by its own fi, and so necessarily the N pairs of
equations (9) are the moment equations of each fi in the total potential
�. As usual, if F (x, v) is a generic dynamical property defined over
the phase space, then

F i =
∫

Ffi d3v

ρ∗i

, F =
∑

i ρ∗iF i

ρ∗
, F L =

∑
i ν∗iF i

ν∗
, (12)

where the properties F and F L of the galaxy can be interpreted as
the mass-weighted and the luminosity-weighted averages of the F i ,
respectively. Notice that we are not reconstructing here the phase-
space DFs of the models; we just determine the general rules of
combination of the velocity moments in multicomponent systems.
The previous considerations show how to combine the solution for
the single ρ∗i to obtain the dynamical fields associated with the total
ρ∗. Clearly, the Jeans equations for ρ∗ in equation (1) are obtained as
the sum of equations (9) over the N components, and their solution
can be written as⎧⎪⎪⎨
⎪⎪⎩

σ 2 =
∑

i ρ∗iσ
2
i

ρ∗
, � =

∑
i ρ∗i�i

ρ∗
,

v2
ϕ =

∑
i ρ∗iv2

ϕ i

ρ∗
, υϕ =

∑
i ρ∗iυϕi

ρ∗
,

(13)

where the previous identities are of straightforward proof from
equations (12) and (10). Note that σ 2

ϕ is not given by the simple
sum of the σ 2

ϕi of the single components, as σ 2 in equation (13)
above, because from equations (13) and (10) one has

σ 2
ϕ = v2

ϕ − υ2
ϕ = � + σ 2 − υ2

ϕ =
∑

i ρ∗i(σ 2
ϕi + υ2

ϕi)

ρ∗
− υ2

ϕ. (14)

Similarly, from equation (12), we derive all the corresponding
luminosity-weighted quantities; we do not give here their expres-
sions, since they are just obtained by using as weights the luminosity
densities ν∗i of the components instead of the mass densities ρ∗i, in
equations (13) and (14).

Finally, the rotation curve in the equatorial plane is given in terms
of the circular velocity υcj of each mass component as

υ2
c =

∑
j

υ2
cj . (15)

2.3 Azimuthal velocity decomposition

As well known, equations (9) are degenerate in the azimuthal
direction, i.e. they only provide v2

ϕ i
= σ 2

ϕi + υ2
ϕi . The most common

phenomenological approach to break this degeneracy is the Satoh
(1980) k-decomposition. If �i ≥ 0 over the whole space, then one
assumes

υϕi = ki

√
�i, σ 2

ϕi = σ 2
i + (

1 − k2
i

)
�i, (16)

with negative values of ki describing clockwise rotation. The special
case k2

i = 1 corresponds to the isotropic rotator (σϕi = σ i), with
flattening totally supported by rotation; while, if ki = 0, there is
no net rotation (υϕi = 0), and the flattening is totally supported by
tangential velocity anisotropy. More general velocity decompositions
can be obtained by assuming a position-dependent parameter ki(R,
z), also allowing for values greater than unity, up to a position-
dependent maximum determined by the request σϕi = 0 (e.g. Satoh
1980; Ciotti & Pellegrini 1996; Negri, Ciotti & Pellegrini 2014a).
In principle each stellar component of a multicomponent model is
characterized by a different ki, so that from equations (16) and (13)
the total ρ∗ will have an effective Satoh parameter ke given by

ke ≡ υϕ√
�

=
∑

i kiρ∗i

√
�i

ρ∗
√

�
, σ 2

ϕ = σ 2 + (
1 − k2

e

)
�, (17)

where ke in general depends on position, even if the ki do not.
Clearly, in case of �i < 0 for some ρ∗i, the Satoh decomposition in

equation (16) cannot be applied. The case of a negative �i over some
regions of space (or everywhere) is not frequently encountered in
applications, but it is not impossible; for example, it necessarily
occurs for density components in multicomponent systems with
spherically symmetric total density, or in density distributions elon-
gated along the symmetry axis (see e.g. chapter 13 in Ciotti 2021).
Indeed, � = 0 everywhere for a spherical system supported by a
two-integral DF, and thus, from equation (13), at least one �i must
be negative (excluding the trivial case of all the subcomponents
spherically symmetric, so that �i = 0). Notice that �i < 0 is not
necessarily a manifestation of an inconsistent DF (fi < 0), while if
v2

ϕ i
= �i + σ 2

i < 0 certainly the whole model must be discarded as
unphysical, even if the solution for the total stellar distribution are
well behaved. Therefore, if for some component �i < 0, then in case
of positivity of the sum �i + σ 2

i ≥ 0, the Satoh decomposition is
generalized to

υϕi = ki

√
�i + σ 2

i , σ 2
ϕi = (

1 − k2
i

)(
�i + σ 2

i

)
, k2

i ≤ 1, (18)

where again ki can depend on position. We refer to this alternative
decomposition as to the generalized k-decomposition. The case ki =
0 implies no net rotation (υϕi = 0), while now k2

i = 1 corresponds to
σϕi = 0; notice that no isotropic rotators can be realized from equation
(18) when �i < 0, because isotropy (σϕi = σ i) would correspond to
k2

i < 0. Moreover, while with the Satoh decomposition a spherical
system cannot rotate and is isotropic independently of the value of ki,
with the generalized k-decomposition one can model rotating (and
anisotropic) spherical systems. An application of this last case can be
found, for example, in exploratory numerical simulations of rotating
gas flows in galaxies of Yoon et al. (2019). Notice that the generalized
decomposition applied to systems with �i 
 σ 2

i (as for instance the

MNRAS 506, 1480–1497 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/1/1480/6308836 by Sistem
a Bibliotecario d'Ateneo - U

niversità degli Studi di Bologna user on 11 August 2021



Multicomponent Jeans modelling 1483

case of highly flattened discs) reduces to the standard Satoh formula.
A more interesting (and delicate) case, requiring particular care in the
choice of the parameter ki, is represented by systems with |�i | � σ 2

i ,
when we have υϕi ∼ kiσ i, and σ 2

ϕi ∼ (1 − k2
i )σ 2

i . This means that, in
order to avoid substantial rotation, for example in almost spherical
systems (oblate or prolate), ki must be kept small.

We finally remark that, for a given multicomponent system, it is
also possible to assume a Satoh decomposition for some components,
and the generalized decomposition for the others; in analogy with
equation (17) it is possible to define a total effective decomposition
parameter ke as

ke ≡ υϕ√
� + σ 2

, σ 2
ϕ = (

1 − k2
e

)(
� + σ 2

)
. (19)

2.4 Projections

We recast here the projection formulae presented in Posacki et al.
(2013) for the case of a multicomponent system, focusing in
particular on how the solutions for the components must be summed
to obtain the projected fields of the total stellar distribution. We
indicate with 〈 , 〉 the scalar product, with n the line-of-sight direction
(hereafter los) directed from the observer to the galaxy,1 and with
l the integration path along the los. For the ease of notation in this
Section we drop the subscript i, so that all the following formulae
must be intended to hold separately for each stellar component ρ∗i

(and of course also for the total ρ∗). We will resume the use of the
subscript i at the end of the section, when we give the expressions for
the projected fields of ρ∗ as functions of the projected fields of the
components. The projection of a stellar density, and of the ordered
velocity υ = υϕ eϕ , are


∗ =
∫ ∞

−∞
ρ∗ dl, 
∗υlos =

∫ ∞

−∞
ρ∗υϕ〈eϕ, n〉 dl, (20)

where eϕ = (− sin ϕ, cos ϕ, 0) is the unitary vector in the tangential
direction. From the adopted orientation of n, a positive/negative
υ los indicates a motion receding from/approaching to the observer,
respectively. The los velocity dispersion can be written as

σ 2
los = σ 2

P + V 2
P − υ2

los = V 2
rms − υ2

los (21)

(e.g. Ciotti & Pellegrini 1996; Posacki et al. 2013; CMPZ21), where
following Cappellari (2008) we also define V 2

rms ≡ σ 2
P + V 2

P , and


∗σ 2
P =

∫ ∞

−∞
ρ∗〈σ 2n, n〉 dl, (22)


∗V 2
P =

∫ ∞

−∞
ρ∗υ2

ϕ〈eϕ, n〉2 dl, (23)

where in equation (22) σ is the 3 × 3 velocity dispersion tensor. The
fields Vrms and υ los in general depend on the specific direction n,
and υ los, σ P, and VP on the specific velocity decomposition adopted,
but Vrms is independent of the velocity decomposition. The previous
identities are fully general and hold for a generic inclination of the
los with respect to the galaxy. For our axisymmetric models, it is
assumed without loss of generality that the los is parallel to the x−z

plane, and the projection plane rotates around the y-axis.
In particular, in the face-on projection (hereafter FO), the los is

parallel to the z axis with n = −ez, the projection plane is the x−y

1At variance with the convention adopted in CMPZ21, where n points from
the galaxy to the observer.

plane, and


∗ = 2
∫ ∞

0
ρ∗ dz, 
∗σ 2

los = 2
∫ ∞

0
ρ∗σ 2 dz, (24)

because υ los = VP = 0, and so σ los = σ P. In the edge-on projection
(hereafter EO), the los is aligned with the x-axis with n = −ex , the
projection plane coincides with the y−z plane, and (cos ϕ, sin ϕ) =
(x/R, y/R) where R =

√
x2 + y2. Then, from equation (20),


∗ = 2
∫ ∞

y

ρ∗R√
R2 − y2

dR, 
∗υlos = 2y

∫ ∞

y

ρ∗υϕ√
R2 − y2

dR.

(25)

Moreover, with some algebra, from equations (22) and (23), we have


∗σ 2
P = 2

∫ ∞

y

(R2 − y2)σ 2 + y2σ 2
ϕ

R
√

R2 − y2
ρ∗ dR, (26)


∗V 2
P = 2y2

∫ ∞

y

ρ∗υ2
ϕ

R
√

R2 − y2
dR, (27)

so that, from equation (10), equation (21) can be recast in compact
form as


∗σ 2
los = 2

∫ ∞

y

R2σ 2 + y2�

R
√

R2 − y2
ρ∗ dR − 
∗υ2

los, (28)

where the independence of Vrms from the specific azimuthal velocity
decomposition is apparent.

The projection formulae for a multicomponent stellar system can
now be easily obtained, for a generic los, just by considering how
the intrinsic quantities add. From equations (1) and (13), and from
equations (20)–(23), it is immediate to see that


∗ =
∑

i


∗i , υlos =
∑

i 
∗i υlosi


∗
, V 2

rms =
∑

i 
∗iV
2

rmsi


∗
, (29)

and σ 2
los is given again by equation (21).

No difficulty is encountered in the construction of the luminosity-
weighted fields analogous to equations (29), by using the surface
brightness distributions I∗i = 
∗i/ϒ∗i, and I∗ = ∑

iI∗i, so the
projected stellar mass-to-light ratio ϒ∗los ≡ 
∗/I∗, defined in analogy
with the local ϒ∗ in equation (4).

Summarizing, we now have the framework needed to determine
the solution of the Jeans equations once the solutions for the single
components in the total potential are known. In the following section,
we detail how the solution of each stellar component is obtained,
thanks to the adopted scaling procedure.

3 SC A L I N G O F MU LT I C O M P O N E N T M O D E L S

We show here how, thanks to the full use of the scalings allowed by
the Poisson and the Jeans equations, once a set of solutions is obtained
for them, one can build an arbitrarily large family of models, just by
combining the scaled solutions in this set with different weights; the
scheme thus provides several galaxy models with almost no effort.
The basic idea is elementary. We recognize that equations (9), at
fixed total potential �, are invariant for a mass scaling of the density
ρ∗i, i.e. at fixed � the derived velocity fields would be independent
of the value of M∗i. However, as � contains also φ∗i, equations (9)
obviously are not invariant to such scaling; none the less, the N + 2
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equations for ρ∗i in the potentials φj⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ρ∗iσ
2
ij

∂z
= −ρ∗i

∂φj

∂z
,

∂ρ∗iσ
2
ij

∂R
= ρ∗i

�ij

R
− ρ∗i

∂φj

∂R
,

(30)

and their solutions

ρ∗iσ
2
ij =

∫ ∞

z

ρ∗i

∂φj

∂z′ dz′, ρ∗i�ij = R

(
∂ρ∗iσ

2
ij

∂R
+ ρ∗i

∂φj

∂R

)
,

(31)

with ρ∗iσ
2
ij → 0 for z → ∞, do have important scaling properties

that will be exploited in Section 3.1. We note that here and in the
following the double subscript in σ 2

ij does not refer to the tensorial
nature of the velocity dispersion, but just identifies the solution of
the i-th stellar component in the j-th potential component.

Leaving aside for the moment the scaling properties of equations
(30) and (31), it is obvious that the sums

σ 2
i =

∑
j

σ 2
ij , �i =

∑
j

�ij , (32)

are the solution of equations (9), as can be demonstrated, first by
summing over j the N + 2 equations (30) and their solutions (31),
and comparing the resulting expressions with equations (9) and (11),
and then by proving that the solution of equation (9) is unique from
the imposed boundaries.

An important point is in order here. Despite the apparent similarity
of the decomposition of σ 2

i and �i performed in equations (30) over
the N + 2 potential components φj, with the decomposition of σ 2

and � performed in equations (9) over the N stellar components ρ∗i,
there is a fundamental conceptual difference between the two decom-
positions. In fact, equations (9) are true moments of the collisionless
Boltzmann equation obeyed by the distribution functions fi in the total
potential, and so they have a sort of autonomous physical meaning;
equations (30), instead, are just a mathematical decomposition over
the different φj of the Jeans equations for ρ∗i. As a consequence,
phase-space consistency arguments apply to the solution of equations
(9), but not to σ 2

ij and �ij separately: as far as the fields σ 2
i and �i are

physically acceptable, the model is also acceptable, independently
of the specific properties2 of its components σ 2

ij and �ij.
Finally, we recall the decomposition rule for the Virial Theorem

(in its scalar form; the formulae can be easily extended to its tensorial
form) of each stellar component:

2K∗i = −Wi = −
∑

j

Wij , (33)

where K∗i is the kinetic energy of the i-th stellar component, and

Wij = −4πG

∫ ∞

0

∫ ∞

0
ρ∗i

(
R

∂φj

∂R
+ z

∂φj

∂z

)
R dR dz. (34)

3.1 The scaling scheme

We describe below how the scaling scheme works in general, with
particular reference to its numerical implementation in JASMINE2,
and to its logically distinct parts of the Potential and Jeans Solver

2The situation is somewhat similar to that faced when decomposing a positive
density distribution over some prescribed set of functions (e.g. spherical
harmonics), when the basis functions can present regions of negative densities.

Table 1. The three main steps involved in the construction of a multicom-
ponent model, listed from top to bottom in the order in which they are
considered in a numerical implementation of the scaling scheme (as described
in Section 3.1).

Parameters of the scaling scheme

Potential and Jeans Solver
Structural parameters
Scaled stellar and DM densities ρ̃∗i , ρ̃h

Scale-length ratios ξi = r∗i

r∗
, ξh = rh

r∗
, . . .

Shape parameters qi, qh, . . .

Post-processing
Weights

Mass ratios Ri = M∗i

M∗
, Rh=Mh

M∗
, RBH=MBH

M∗
Mass-to-light ratios ϒ∗i = M∗i

Li

Kinematical decompositions ki, λi, δi

Post-processing
Physical scales
Total stellar mass M∗
Total stellar density scale length r∗

and of the PP. We distinguish three groups of model parameters
for the construction of a multicomponent model, summarized in
Table 1. In the first group there are the physical scales M∗ and r∗,
i.e. the total stellar mass and its scale length. All the density and
potential components are made dimensionless by scaling them to the
quantities

ρn ≡ M∗
4πr3∗

, φn ≡ GM∗
r∗

. (35)

We note that it is convenient to normalize the 2D numerical grid to
r∗, with R̃ ≡ R/r∗ and z̃ ≡ z/r∗. A scaled grid guarantees the same
resolution, independently of the actual physical size of the model,
measured by r∗. Incidentally, JASMINE2 has a bilogarithmic grid,
with a few hundreds of points in R̃ and z̃, ranging from ≈10−5 or
less at the origin, up to ≈102 or more at the outer edge. Even though
the physical scales are logically introduced first, the values of M∗
and r∗ (and so of ρn and φn) are fixed in the last step of the model
construction, at the end of the PP (see Table 1). In this way, different
physical realizations (in size and total mass) can be obtained for the
same multicomponent galaxy model.

In the second group of parameters, there are the relative mass
weights Ri ≡ M∗i/M∗, Rh ≡ Mh/M∗, RBH ≡ MBH/M∗ of the dif-
ferent components, the mass-to-light ratios ϒ∗i, and the parameters
ki appearing in equations (16) and (18) for the kinematical decom-
position of the azimuthal motions. By definition∑

i

Ri = 1, (36)

and in full generality we write

ρ∗i = ρnRi ρ̃∗i , ρh = ρnRhρ̃h, ρ̃∗ =
∑

i

Ri ρ̃∗i . (37)

where ρ̃∗i and ρ̃h are the scaled density distributions, and ρ̃∗ = ρ∗/ρn

is the dimensionless total stellar density. Notice that from equation
(35) the volume integrals of ρ̃∗i over the whole dimensionless
numerical grid evaluate to 4π by construction. Similarly,

φ∗i = φnRi φ̃∗i , φh = φnRhφ̃h, φBH = φnRBHφ̃BH, (38)
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and so

� = φn

∑
j

Rj φ̃j , Wi = M∗φnRi

∑
j

Rj W̃ij , (39)

and

σ 2
i = φnσ̃

2
i = φn

∑
j

Rj σ̃
2
ij , �i = φn�̃i = φn

∑
j

Rj �̃ij . (40)

Finally, from the assumption of a constant mass-to-light ratio ϒ∗i

for each stellar component,

ν∗i = ρn
Ri

ϒ∗i

ρ̃∗i , Li = Ri

ϒ∗i

M∗. (41)

The values of the weights are chosen in PP (see Table 1), because a
change in their values, and in the kinematical decompositions, does
not require to recompute the potentials and solve again the Jeans
equations. This possibility allows for a fast construction of different
models belonging to the same family.

One family indeed is characterized by the choice of the third
group of parameters, to be performed at the beginning of the
model construction: the structural parameters of the scaled density
components ρ̃∗i and ρ̃h, that in full generality we indicate with the
symbols ξ i ≡ r∗i/r∗ and ξ h ≡ rh/r∗ for the different scale lengths,
and with qi and qh for other parameters that determine the shape of
the scaled densities (for example the flattenings in case of ellipsoidal
density distributions). The values of the structural parameters must
be assigned in order to run the Potential and Jeans Solver (see
Table 1), and in general a change in some of their values requires a
new computation of the potentials and of the Jeans solutions.

3.1.1 The Potential and Jeans Solver

For a chosen set of values for the structural parameters, the scaled
Jeans equations are obtained from equations (30) and equations (37)
and (38). In practice, for N assigned scaled stellar components ρ̃∗i

and a scaled dark matter halo ρ̃h, the Potential and Jeans Solver
first computes the scaled potentials φ̃∗i and φ̃h, and then solves the
N × (N + 2) pairs of scaled equations (30), one for each ρ̃∗i in
the potential φ̃j (including φ̃BH), over the dimensionless grid (R̃, z̃);
thus, the scaled fields σ̃ 2

ij and �̃ij are obtained. The possibility to
solve equations (30) without choosing Ri and Rj is due to the fact
that, on one hand, the weights Ri appear linearly in both sides of
equations (30); on the other hand, σ̃ 2

ij and �̃ij scale linearly with Rj ,
once the boundary condition is fixed to zero at infinity.

The details of the numerical implementation of the computation of
the potentials and of the solution of the Jeans equations are described
in Posacki et al. (2013). Here, we recall that the standard choice for
the numerical computation of the potential in JASMINE2 is the
integral formula

φ = −4G

∫ ∞

0
R′ dR′

∫ ∞

−∞

ρ(R′, z′) dz′√
(R + R′)2 + �z2

K

[√
4RR′

(R + R′)2 + �z2

]
,

(42)

where �z = z − z
′
, and K is the complete elliptic integral of the first

kind (see e.g. BT08; Ciotti 2021), evaluated as a two-dimensional
integration over a staggered grid. However, for genuinely ellipsoidal
models, the code can the use the faster Chandrasekhar formula (e.g.
equation 2.140 in BT08; equation 2.21 in Ciotti 2021), and, for disc
distributions, the integral formula based on Bessel functions (see
Section 4.3 and Appendix B). As already remarked, the numerical
evaluation of the potential is the most time consuming part of the
construction of a model. For this reason, JASMINE2 also contains

a continuously updated library of analytical density-potential pairs
available in the literature (and in some cases also based on ho-
moeoidal expansion, see e.g. Ciotti & Bertin 2005), so that one
can choose between the numerical computation of the potential and
(when available) the use of the analytical potential.

3.1.2 The post-processing

As described in the previous section, for a given multicomponent
model of assigned ρ̃∗i , ρ̃h, and with a central BH, the Potential and
Jeans Solver gives the solution σ̃ 2

ij and �̃ij of the scaled form of
equations (30). These solutions are then combined in PP, with the
assignment of the mass ratios Rj , so that the solution σ 2

i and �i

of equations (9) for ρ∗i is obtained, according to equations (32) and
(40). At this stage, as discussed in Section 2.3, the PP performs a
positivity check of �̃i and �̃i + σ̃ 2

i : in case of negativity of the last
quantity, a new choice of the weights Rj is made, until positivity is
reached. If positivity cannot be obtained for acceptable choices of
Rj , then the multicomponent model is discarded as unphysical.

Once the mass weights are assigned and the positivity check
is passed, the PP requires the parameter ki for the kinematical
decomposition, that gives the scaled azimuthal velocity fields υϕi

and σϕi. In full generality, we define each decomposition parameter
as

ki(R, z) = λiδi(R, z), (43)

where λi is a constant weight, and δi(R, z) is a position-dependent
function; the standard Satoh parameter is obtained with δi = 1 and
λi = ki. The benefit of this factorization is due to the fact that the
projection formula of υϕi in equation (20) for a given δi(R, z) scales
with λi, so that we can set the value of λi after having computed
the projection integral. As projections represent the second most
time-consuming step, the possibility to choose (and change) λi after
projections is a significant advantage. Note that, at variance with
what happens for the fields σ̃ 2

i , �̃i , υ̃2
ϕi , and σ̃ 2

ϕi , the mass weights
Rj enter the expression of υ̃ϕi under a square root (see equations 16
and 18). This implies that the Rj must be chosen before calculating
the projections that use υϕi.3 In other words, the possibility to modify
the values of Rj in PP, allowed by the ‘ij-decomposition’, ends with
the computation of the scaled fields in equations (40).

Once we have obtained the intrinsic and projected fields of
each ρ∗i, the last steps are to combine them to calculate the total
(mass- and luminosity-weighted) intrinsic and projected fields of ρ∗
(respectively from equations 13 and 14, and equations 20, 21, and
29), and finally to choose the physical scales M∗ and r∗.

3.2 Summary

Summarizing, a family of multicomponent galaxy models is defined
by the choice of N scaled stellar density components ρ̃∗i , a scaled DM
halo ρ̃h, and a central BH. The Potential and Jeans Solver computes
the associated scaled potentials φ̃j , and then solves the N × (N
+ 2) Jeans equations (30) in their scaled form. In the subsequent
PP, specific values of the mass ratios Ri , Rh, RBH, of the mass-
to-light ratios ϒ∗i, and of the kinematical decompositions with the
parameters ki, are fixed, thus defining a specific model in the same

3The effective radius Re of the total stellar distribution is obviously another
important quantity that cannot be obtained as a linear combination of the
effective radii of the stellar components, and it can only be computed after
the choice of the weights Ri and ϒ∗i.
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1486 C. Caravita, L. Ciotti and S. Pellegrini

family. The solution of the Jeans equations for the total density
distribution is recovered as (mass- or luminosity-) weighted sums of
the scaled solutions, and the projections along a given line-of-sight
are performed. The values of the total stellar mass M∗, and of its
scale length r∗, complete the construction of the model.

There are at least two significant advantages in this procedure,
when compared with a straightforward integration of the Jeans
equations for a multicomponent galaxy model. First, the gravitational
potentials of each stellar component and of the DM halo need not
to be recalculated every time the weights are changed in PP; thus,
the run of the most time expensive part of is required just once
for all the models in the same family. Secondly, the possibility to
choose the weight parameters in PP allows for a fast exploration of
the parameter space (that, for multicomponent models, can be very
large). Qualitatively, the N × (N + 2) set of the ij-th scaled solutions
of the Jeans equations for each i-th density component in each j-
th potential component, can be interpreted as basis vectors that are
successively linearly combined with different weights, to obtain a
specific solution belonging to a family of multicomponent models.

As a final remark, note that the procedure described so far can be
extended to more general velocity decompositions. For example, it is
straightforward to insert in it the Cappellari (2008) orbital anisotropy,
where σRi = bi σzi , with bi a constant parameter that can be different
for each stellar component, and the underlying i-th DF depends on
three integrals of motion.

4 FO U R I L L U S T R AT I V E MU LT I C O M P O N E N T
M O D E L S

In order to illustrate the new features and potentialities of our
procedure, as implemented in JASMINE2, we first describe in some
detail the building of three multicomponent galaxy models. All three
models are made of two stellar distributions, to which a DM halo
with a spherical Navarro–Frenk–White profile (Navarro, Frenk &
White 1996, hereafter NFW) and a central supermassive BH are
added. In the first model (hereafter JJE), the total spherical stellar
profile and an ellipsoidal stellar component, both with a Jaffe (1983)
profile, are assigned; if the dark mass is set to zero, this model
reduces to the JJe models of CMPZ21. The second model (hereafter
JHD) consists of an ellipsoidal Jaffe stellar density distribution, that
represents a light stellar halo, coupled with a heavy Miyamoto–
Nagai stellar disc (hereafter MN, Miyamoto & Nagai 1975). In
the third model (hereafter JLD), the ellipsoidal Jaffe component
dominates, while a small MN inner disc is counter-rotating. These
three models are intended to represent features observed in real
galaxies, but they are not designed to reproduce specific objects.
Finally, we illustrate the comparison between an exponential disc
and its representation via the sum of three MN discs, as proposed by
Smith et al. (2015).

4.1 The JJE models

JJE models are a natural generalization of JJe models presented in
CMPZ21: as these latter describe quite well real elliptical galaxies,
and several of their dynamical properties can be expressed in
analytical form, they also represent an obvious test for JASMINE2.

To better appreciate the properties of JJE models, we recall the
main properties (and limitations) of JJe models. These are con-
structed by assigning a total density ρ∗ following the axisymmetric
ellipsoidal generalization of the Jaffe model, and another axisym-
metric ellipsoidal Jaffe distribution ρ∗1, with different flattening,
scale length, and total mass; in CMPZ21 the density distribution

ρ∗ − ρ∗1 (=ρ∗2 in the current notation), is interpreted as a DM
halo; finally, a central BH is added to the system. The analytical
conditions on ρ∗1 to guarantee the positivity of ρ∗2 are given, and
then the Jeans equations for ρ∗1 are solved in analytical closed form,
by using homoeoidal expansion, truncated at the linear order in the
flattenings of ρ∗ and ρ∗1. Albeit several properties of JJe models
can be expressed in analytical form (making these models quite
useful in numerical simulations of gas flows in galaxies, see e.g.
Gan et al. 2019a, b), a few important shortcomings still affect them:
(i) the Jeans equations for ρ∗1 are integrated in the homoeoidal
expansion limit, retaining only linear terms in the flattenings, and
they have not been studied for the difference component ρ∗2; (ii)
projected kinematical fields of ρ∗1 can be obtained in analytical
form only as asymptotic formulae at the centre and at large radii.
JASMINE2 is then the obvious tool to address the two points
above.

Here, we generalize the JJe models to JJE models, by considering
for the total ρ∗ an ellipsoidal Jaffe profile, of total mass M∗, scale
length4 ξ , and flattening q:

ρ∗(R, z) = ρnξ

q m2(ξ + m)2
, m2 = R̃2 + z̃2

q2
. (44)

Therefore, at variance with JJe models, in JJE models the total
Jaffe mass distribution is purely stellar. We then consider another
ellipsoidal Jaffe density profile, of total mass M∗1 = R1M∗, scale-
length r∗1 = ξ 1r∗, and flattening q1:

ρ∗1(R, z) = ρnR1ξ1

q1m
2
1(ξ1 + m1)2

, m2
1 = R̃2 + z̃2

q2
1

. (45)

The second stellar component is then defined as

ρ∗2(R, z) = ρ∗(R, z) − ρ∗1(R, z), (46)

with M∗2 = M∗ − M∗1 = (1 − R1) M∗ = R2 M∗, in agreement
with equation (36). Notice that ρ∗2 is not an ellipsoid, unless q1 = q,
and even in this case ρ∗2 is not a Jaffe ellipsoid, unless ξ 1 = ξ . As
extensively discussed in CMPZ21, ρ∗2 could be negative somewhere
(and so unphysical) for some choices of R1, ξ 1, and q1. Remarkably,
the conditions required to assure ρ∗2 ≥ 0 can be expressed as
analytical (and simple) inequalities, as shown in Appendix A.

The stellar distribution ρ∗ is embedded in an NFW DM halo
(spherically symmetric for simplicity), of mass Mh(rt) = RhM∗
enclosed within a truncation radius rt, scale length rh = ξ hr∗, and
concentration c ≡ rt/rh:

ρh(r) = ρnRh

f (c)s(ξh + s)2
, φh(r) = −φnRh

ln(1 + s/ξh)

f (c)s
, (47)

where s ≡ r/r∗ and f(c) = ln (1 + c) − c/(1 + c). We complete the
model with a central BH of mass MBH = RBHM∗.

Summarizing, JJE models are determined, besides the total stellar
mass and scale length, M∗ and r∗, by the two parameters ξ and q
for ρ∗, the five parameters q1, ξ 1, R1, ϒ∗1, k1, for ρ∗1, the two
parameters ϒ∗2, k2 for ρ∗2, the three DM parameters ξ h, c, Rh, and
the BH mass weight RBH (see Table 2 for a specific JJE model).
JASMINE2 further generalizes JJE models, with the addition of a
second DM component given by a shallow and very extended quasi-
isothermal halo, as useful in simulations of gas flows in galaxies
residing in groups or clusters (Ciotti et al. in preparation).

4In the spherical limit, and in the assumption of constant mass-to-light ratio,
the Jaffe scale radius r∗ is related to the effective radius by Re � 0.75 r∗.
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Table 2. The parameters for the stellar components of the illustrative JJE,
JHD and JLD models (Sections 4.1 and 4.2). In the JJE model, the component
ρ∗2 is obtained as difference between a total spherical (q = 1) Jaffe profile ρ∗,
with scale length ξ = 1, and a small and light Jaffe ellipsoidal component ρ∗1

(as done for JJe models in CMPZ21). The standard Satoh k-decomposition
in equation (16) for ρ∗1, and the generalized k-decomposition in equation
(18) for ρ∗2, are adopted. In the JHD model, an ellipsoidal Jaffe distribution
is coupled to a massive and quite flat (q2 = a/b = 10) MN disc; in both
components a generalized k-decomposition is adopted. In the JLD model, the
ellipsoidal Jaffe component has the same flattening and size as in the JHD
model, but the disc is significantly smaller, and counter-rotates in the inner
regions, with the position-dependent Satoh parameter in equation (50), while
a constant Satoh parameter is applied to the Jaffe component. In all models,
the DM halo has a spherical NFW profile with ξh = 2.6, c = 10, Rh = 20,
and the BH is defined by RBH = 0.002.

Model ρ∗1 ρ∗2

JJE Jaffe ρ∗(ξ = 1, q = 1) − ρ∗1

ξ1 = 0.1 –
q1 = 0.8 –
R1 = 0.04 R2 = 0.96
ϒ∗1 = 2 ϒ∗2 = 6
k1 = 0.5 k2 = 0.2

JHD Jaffe MN
ξ1 = 1 b̃ = 0.1

q1 = 0.8 q2 = 10
R1 = 0.3 R2 = 0.7
ϒ∗1 = 6 ϒ∗2 = 2
k1 = 0.5 k2 = 0.8

JLD Jaffe MN
ξ1 = 1 b̃ = 0.01

q1 = 0.8 q2 = 10
R1 = 0.96 R2 = 0.04
ϒ∗1 = 6 ϒ∗2 = 2
k1 = 0.5 k2(R, z)

4.1.1 Tests

We can use JASMINE2 in two different tests: we can give in input
the homoeoidal expansion of the density-potential pairs, truncated
at the linear order, and compare the numerical solution with that of
CMPZ21, to check the importance of quadratic flattening terms in
the solution of the Jeans equations for JJe models; and we can give in
input the true ellipsoidal model, to check how well the homoeoidal
expansion reproduces its internal dynamics. At the same time, the
previous tests allow for an accuracy check of JASMINE2.

In the first test, we feed JASMINE2 with the homoeoidal ex-
pansion for ρ∗ and ρ∗1, and we compare the numerical results of
integration of the Jeans equations with the analytical results: we
obtain excellent agreement for all the kinematical fields, better than
a fraction of per cent over the whole numerical grid, ranging from
≈10−5 to ≈70 (in units of r∗). The results tend to be slightly
more discrepant at increasing flattenings, as expected, since the
analytical results in CMPZ21 are limited to the linear order in
the flattenings, while JASMINE2 takes automatically into account
also the second-order terms when integrating the Jeans equations
(due to the product between the density and the gradient of the
potential). By increasing the numerical resolution in the central
regions, and moving to smaller and smaller distances from the
centre, we also verify that the asymptotic formulae for the projected
kinematical fields are also perfectly recovered numerically. This
first test adds confidence that JASMINE2 is working properly and

with high accuracy, but also provides a further support that the
(quite cumbersome) analytical formulae in CMPZ21 are actually
correct.5

In a second test, we compare the numerical results of JASMINE2
for the true ellipsoidal JJe models with the analytical results in
CMPZ21 obtained from homoeoidal expansion, therefore moving
beyond the effect of second order approximation in the flattenings
explored in the first test. We find that for relatively small flatten-
ings (corresponding to E2–E3 galaxies) the homoeoidal expansion
truncated at the linear order provides quite good results, even when
compared with true ellipsoidal models, with the most significant
discrepancy in the intermediate regions.

4.1.2 Results for a JJE model

We move now to illustrate the main properties of a specific JJE
model (see Table 2). The total stellar distribution ρ∗ has a spherical
Jaffe profile obtained from equation (44) with ξ = 1 and q = 1;
this quite artificial case allows us to discuss some subtleties that can
occur to the kinematical decomposition in multicomponent systems.
The stellar component ρ∗1 is obtained from equation (45) with ξ 1 =
0.1, q1 = 0.8, R1 is 0.04, and ϒ∗1 = 2, i.e. it is a quite small
ellipsoidal distribution at the centre of the galaxy; note that, from
equation (A15), the maximum possible value of R1 is 0.08. The
component ρ∗2 accounts for the remaining 96 per cent of the total
stellar mass of the galaxy, and ϒ∗2 = 6, so that ρ∗ could represent an
elliptical galaxy with a central and younger stellar system. We add
the spherical NFW DM halo, given by equation (47), with ξ h = 2.6,
c = 10, and Rh = 20, so that the DM mass inside Re (see Footnote
3) is ≈0.45 of the total mass. Finally, in agreement with BH–galaxy
scaling relations (see e.g. Kormendy & Ho 2013), the mass of the
central BH is fixed to RBH = 0.002.

In the three top panels of Fig. 1, we show the density distribution
of the scaled components ρ̃∗1 and ρ̃∗2, and of the total stellar density
ρ̃∗ = ρ∗/ρn. Being this last spherical, and ρ̃∗1 oblate, ρ̃∗2 in its central
regions is slightly prolate, and this will affect its kinematical fields,
as anticipated in Section 2.3. Additional information on the model
structure is provided in the first column of Fig. 2: the top panel
shows the radial profiles in the equatorial plane of R1ρ̃∗1, R2ρ̃∗2,
ρ̃∗, and Rhρ̃h. The total ρ∗ is almost coincident with ρ∗2, except
for the central regions, where ρ∗1 and ρ∗2 are comparable. The DM
density ρh overcomes ρ∗ outside ≈ 0.5 Re. The bottom panel shows
the radial profiles in the equatorial plane of the contributions to
the circular velocity due to the various mass components: the BH
contribution is dominant in the inner regions, the DM in the outer
regions, while at intermediate distances from the centre the resulting
circular velocity is quite flat.

Similar trends can be seen in the radial profiles of the velocity
fields in the equatorial plane of Fig. 3, where, in the first column
from top to bottom, we show the rotational velocity, the vertical
velocity dispersion, and the azimuthal velocity dispersion, of ρ∗1

and ρ∗2, and the total mass-weighted and luminosity-weighted fields.
Note that in the three panels the vertical scale is the same, and the
resulting system is clearly a slow rotator. This JJE model offers the
opportunity to apply the generalized k-decomposition in equation
(18); because the field �2, associated with the slightly prolate ρ∗2,

5These tests are similar in the approach to those already performed with
JASMINE by using the analytical results of Smet, Posacki & Ciotti (2015):
we recall that the numerical integration of the potential in JASMINE2 uses
the same routines of JASMINE.
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Figure 1. The scaled stellar distributions ρ̃∗1, ρ̃∗2, and the dimensionless total stellar distribution ρ̃∗ = ρ∗/ρn, of the three models of Table 2. The dotted
contours show the isodensities, with values spaced by 1 dex.

is negative in the central regions. As discussed in Section 2.3, we
verified that v2

ϕ2
is nowhere negative, and then we adopted the

generalized decomposition, with a quite small k2 = 0.2. The field
�1 instead is everywhere positive, as expected, and so we adopted
the standard Satoh formula with k1 = 0.5. In the velocity profiles,
the effect of the central BH is clearly visible; for example, the
velocity dispersion profile of a Jaffe model with RBH = 0 would be
constant in the central regions. Notice also how the velocity profiles,

outside ≈Re, are almost coincident with the profiles of the more
massive component ρ∗2, in both the mass-weighted and luminosity-
weighted cases; this is not surprising, because in these regions ρ∗
coincides with ρ∗2 (see Figs 1 and 2). The situation is different in
the inner regions, where ρ∗1 and ρ∗2 are comparable: here the total
velocities have intermediate values, with the luminosity-weighted
profiles closer to the profiles of ρ∗1 with the smaller mass-to-light
ratio.
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Figure 2. Radial profiles in the equatorial plane (z̃ = 0) of the mass densities R1ρ̃∗1 (dashed blue), R2ρ̃∗2 (dot–dashed magenta), ρ̃∗ (heavy solid), and Rhρ̃h

(dotted), normalized to ρn (top row), for the three models of Table 2. In the bottom row, we show the corresponding contributions to the total circular velocity
(heavy solid) in the equatorial plane of the mass components, with the additional contribution of the central BH (solid), all normalized to

√
φn.

As an illustration of the projection procedure, in the first row
of Fig. 4, we show the EO projected luminosity-weighted fields
υlosL and σlosL, with the superimposed dotted contours representing
the galaxy isophotes of the surface brightness I∗. The slow rotation
of the model is apparent from the colourbar values, indeed υlosL

is everywhere lower than σlosL. A curious feature is the slightly
vertically elongated shape of σlosL: this is not due to the prolate
shape of ρ∗2 in the central regions, but it is an effect of the generalized
k-decomposition, coupled with the fact that �2 is almost null in the
external regions, and so here υϕ2 ∼ k2σ 2, as introduced in Section 2.3.
For example, an increase in k2 would lead to an increase of the rotation
in the external regions, with correspondent decrease of σlosL, and
with the net result of a more elongation of σlosL in the central regions.

4.2 Ellipsoidal models with an embedded stellar disc

JHD and JLD models consist of a stellar profile ρ∗1 given again by
the ellipsoidal Jaffe model in equation (45), coupled with a stellar
MN disc ρ∗2, of total mass M∗2 = R2M∗, and scale lengths a = ãr∗,
b = b̃r∗:

ρ∗2(R, z) = ρnR2b̃
2 ãR̃2 + (ζ + 2

√
z̃2 + b̃2)ζ 2

(R̃2 + ζ 2)5/2(z̃2 + b̃2)3/2
, (48)

φ∗2(R, z) = − φnR2√
R̃2 + ζ 2

, ζ = ã +
√

z̃2 + b̃2, (49)

where R2 = 1 − R1 from equation (36). For a = 0, the MN disc
reduces to the Plummer (1911) sphere, and for b = 0 to the razor-
thin Kuzmin (1956) disc; in the following, we indicate with q2 =

a/b the disc flattening parameter. As in JJE models, we add the
spherical NFW halo in equation (47), and a central BH, so that the
resulting multicomponent models are completely determined once
the values of ξ 1, q1, R1, ϒ∗1, k1 for ρ∗1, b̃, q2, ϒ∗2, k2 for ρ∗2,
ξ h, c, Rh for ρh, and RBH for the BH, are assigned, in addition to
the total stellar mass M∗ and the scale length r∗ (see Table 2). In
Section 4.2.1, we consider the case of a dominant MN disc, when
the ellipsoidal Jaffe component can be interpreted as the stellar halo
of a disc galaxy, and in Section 4.2.2 the case of a small and counter-
rotating stellar disc at the centre of a dominant stellar spheroid, as
sometimes observed in real early-type galaxies (e.g. Morelli et al.
2004; Krajnović et al. 2015; Mitzkus, Cappellari & Walcher 2017;
see also Cappellari 2016). The parameters of the DM halo and of the
central BH are the same as in the JJE model.

4.2.1 Results for the JHD model

In the ‘Jaffe–Heavy disc’ JHD model (see Table 2), the ellipsoidal
Jaffe stellar halo ρ∗1 is characterized by a scale length ξ 1 = 1,
a flattening q1 = 0.8, a stellar mass fraction of 30 per cent (i.e.
R1 = 0.3), and a mass-to-light ratio ϒ∗1 = 6. The dominant MN
disc ρ∗2 (R2 = 0.7) is quite flat (q2 = 10), with b̃ = 0.1, and a lower
ϒ∗2 = 2.

In the central row of Fig. 1, the scaled density distributions ρ̃∗1,
ρ̃∗2, and ρ̃∗ are shown. The resulting isodensity contours of ρ∗ would
be classified as ‘discy’ near the equatorial plane, and as ‘boxy’ at
large distance from the plane. The radial profiles of the density
distributions (including the DM), in the equatorial plane, are shown
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Figure 3. Radial profiles in the equatorial plane (z̃ = 0) of the rotational velocities (top row), vertical velocity dispersions (middle row), and azimuthal velocity
dispersions (bottom row), normalized to

√
φn, for the three models of Table 2. Each panel shows the total mass-weighted (heavy solid) and luminosity-weighted

(heavy dotted) fields, together with the corresponding fields of ρ∗1 (dashed blue) and ρ∗2 (dot–dashed magenta). Notice the different values on the vertical
scales of the first column (JJE model) and of the top right panel showing the counter-rotation (JLD model).

in Fig. 2. It is apparent how, inside ≈ 0.1 r∗ the Jaffe halo dominates,
around r∗ the MN disc dominates, and ρh overcomes the total ρ∗
outside ≈ 10 r∗. Note that, even if R1 < R2, ρ∗1 dominates the
total density in the central regions, due to the cuspy profile of the
Jaffe density compared with the flat core of the MN density. The
density decomposition reflects on the circular velocity profiles in
the bottom panel of the same figure: the total υc at small radii is
totally dominated by the BH, and at large radii by the DM halo;
while the ‘bump’ around 3 r∗ is due to the MN and the DM
potentials.

The radial profiles in the equatorial plane of the velocity fields,
obtained from the Jeans equations, are shown in the middle column
of Fig. 3, where from top to bottom the total mass- and luminosity-

weighted rotational velocity, vertical velocity dispersion, and az-
imuthal velocity dispersion are plotted together with the correspond-
ing quantities for each stellar component separately. For the adopted
values of the parameters in Table 2, �1 turns out to be negative in
a quite central region, while �1 + σ 2

1 is everywhere positive; we
decided to apply the generalized k-decomposition in equation (18)
to both stellar components, with k1 = 0.5 and k2 = 0.8. The total
velocity profiles, in the central regions, are completely determined
by the Jaffe profile, because here ρ∗1 > ρ∗2, compensating also for
the higher ϒ∗1; in the external regions, instead, the total profiles
are dominated by the MN disc. Furthermore, υϕ stays well below
υc both in the inner and outer regions (see υc in Fig. 2), as a clear
manifestation of asymmetric drift in the equatorial plane (e.g. BT08).
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Figure 4. Edge-on projected luminosity-weighted rotational velocity υlosL (left), and velocity dispersion σlosL (right), normalized to
√

φn, for the three models
of Table 2. Notice the different ranges of values on the colourbars. For the JLD model, the region shown is limited to r∗ to appreciate the central features, in
particular the inner counter-rotating disc. The dotted contours show the galaxy isophotes with values spaced by 1 dex.

Note that σ 2, associated with a flat density profile at the centre, is
much higher than σ 1, associated with ρ∗1 ∼ R−2 in the inner regions,
as can be expected from the integration of the vertical Jeans equation
for a power law density distribution in the gravitational field of a
point-mass (i.e. the BH). In addition, �2 of the MN model with the
central BH vanishes at the centre (see e.g. chapter 13 in Ciotti 2021),
thus in the generalized k-decomposition, υϕ2 ∼ k2σ 2 (at variance
with what would happen in the standard Satoh decomposition, i.e.
υϕ2 = k2

√
�2).

In the second row of Fig. 4, the luminosity-weighted projected
fields υlosL and σlosL are shown, and the high rotation of the disc
is clearly visible. The drop of υlosL inside r∗ is due to a drop of the
intrinsic rotational velocity (Fig. 3). Also σlosL shows the highest

values near the equatorial plane, with a toroidal distribution around
the centre, and a drop inside r∗.

4.2.2 Results for the JLD model

At variance with the JHD model, in the ‘Jaffe-light disc’ JLD model
(see Table 2), the ellipsoidal Jaffe distribution ρ∗1 accounts for almost
the whole stellar mass of the galaxy (R1 = 0.96), while its scale
length (ξ 1 = 1), flattening (q1 = 0.8), and mass-to-light ratio (ϒ∗1 =
6) are unchanged. The component ρ∗2 is a small MN disc, with
b̃ = 0.01 and R2 = 0.04, while q2 = 10 and ϒ∗2 = 2 are the same
of the JHD model.
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Table 3. The parameters of the double-exponential disc and its 3MN fit
from Smith et al. (2015). For the meaning of the parameters of the double-
exponential disc, see Section 4.3.1 and Appendix B. For the 3MN model,
we adopt the same notation of Section 4.2, with the same b̃ for all the three
components, qi = ãi /b̃, and Ri = M∗i /M∗. The Jeans equations are solved
in the isotropic case, with constant Satoh parameter k = 1.

Model

Double-exponential disc α = Rd/r∗ = 1
β = h/r∗ = 0.1

Rd = 1
k = 1

3MN fit (Smith et al. 2015) b̃ = 0.12
q1 = 4.64, q2 = 21.42, q3 = 18.67

R1 = 0.16, R2 = −5.77, R3 = 6.72
k = 1

The scaled density distributions, and the resulting total stellar
density, are shown in the three bottom panels of Fig. 1: ρ̃∗1 is
(structurally) identical to that of the JHD model, while ρ̃∗2 is much
more concentrated, so that the total stellar density is distributed in
an extended halo with a very small disc. Indeed, the disc is almost
invisible in the last panel, and it would be apparent only with a
zoom in, as in Fig. 4. The last column of Fig. 2 shows the radial
profiles in the equatorial plane of the density components, with their
mass weights, and the resulting decomposition of the galaxy circular
velocity profile. Notice that the central values of ρ∗2 are higher than
those in the JHD model, due to its smaller size, compensating for
the reduced mass. In the circular velocity plot, this reflects into a
larger contribution from the Jaffe component, and a smaller and
inner ‘bump’ of the MN component. As a result, υc is almost flat
between 10−2 r∗ and 10 r∗.

In the last column of Fig. 3, the radial profiles of the velocity fields
in the equatorial plane are shown. As in the previous models, of
course, the total luminosity-weighted profiles, when distinguishable
from the mass-weighted ones, are always closer to the profiles of the
component with the smaller mass-to-light ratio. For the JLD model,
both �1 and �2 are everywhere positive, so we apply the standard
Satoh decomposition. The stellar halo is modelled as a slow rotator
with k1 = 0.5, while the circumnuclear stellar disc as a faster and
counter-rotating light disc. In order to have counter-rotation limited
to a central region, we adopt a position-dependent Satoh parameter,
defined as follows:

k2(R, z) = k0 + (k∞ − k0)
r

r + 0.1r∗
, r =

√
R2 + z2 (50)

(e.g. Ciotti et al. in preparation; see also Negri et al. 2014a for an
alternative parametrization), with k0 = −0.8, k∞ = 0.1, where the
negative sign of k0 assures the counter-rotation of the disc, as can
be seen in the top right panel of Fig. 3. At very small radii (inside
10−2 r∗), the total rotational velocity is positive because the density
is dominated by the Jaffe component. We stress that the module of
υϕ2 decreases towards the centre, at variance with the JHD model,
because now υϕ2 = k2�2, and �2 → 0, as explained in the previous
Section. The central total vertical velocity dispersion is higher than
that of the JHD model, even if the Jaffe component is structurally
identical, because of the higher R1 and of the more concentrated MN
disc.

In the last row of Fig. 4, the los luminosity-weighted velocities
show clearly the effect of the inner thin disc; the region shown is
limited to r∗ to appreciate the central features. In particular, in the
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Figure 5. Circular velocity (top) and face-on surface density (bottom)
profiles of the two models of Table 3; these plots can be compared with
figs 3 and 7 in Smith et al. (2015).

υlosL distribution we have counter-rotation at small radii (but not in
the very centre). The disc is also responsible for the highest values
of the σlosL in the equatorial plane, and the extended surrounding
toroidal distribution is also present, in analogy with the JHD
model.

4.3 Exponential discs and multi-MN decompositions

Exponential discs are the common choice for modelling disc galaxies.
Their gravitational potential can be constructed numerically by using
the general formula based on complete elliptic integrals, or by using
Bessel functions. The latter approach is particularly useful in case of
factorized densities, such as

ρ∗(R, z) = ρ0e−R/RdV (|z|/h), (51)

where the function V describes the vertical structure of the disc, and
Rd and h are respectively its scale length and scale height; the razor-
thin exponential disc of central surface density 
0 is obtained for V =
δ(z/h) and ρ0 = 
0/h. Two natural generalizations of the infinitely
thin exponential disc are obtained when V is also an exponential
function (double-exponential disc) or some negative power of the
cosh function (‘pseudo-isothermal’ exponential disc).

Unfortunately, the gravitational potential of these discs cannot
be obtained analytically; however, due to their relevance in the
construction of galaxy models, alternative models with analytical
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potential have been proposed. In particular, the possibility to use
multicomponent MN models to reproduce exponential discs, over
some finite radial range, has been explored for example by Smith
et al. (2015) and Rojas-Niño et al. (2016) (see also Ciotti &
Pellegrini 1996; Flynn, Sommer-Larsen & Christensen 1996). Such
alternatives optimize the fit of the density profile, and produce a good
agreement with the circular velocity profile of the exponential disc.
Obviously, the superposition of MN discs with their power-law radial
decay at large radii (equation 48) cannot reproduce the exponential
decay of equation (51). This forces to include at least one MN
density component with negative mass (or negative scale length),
that can lead to a disc density distribution somewhere negative.
The use of a multicomponent MN representation of an exponential
disc is motivated by the advantage of avoiding a time-consuming
numerical computation of its gravitational potential. However, as
we show in Appendix B, it is possible to obtain the potential of
factorized exponential discs in equation (51) also with a very fast
one-dimensional integration in terms of Bessel functions (a method
we implemented in JASMINE2).

As a last and natural application of our procedure, we extend the
work carried out by Smith et al. (2015) by constructing the solutions
of the Jeans equations for the double-exponential disc and for its
everywhere positive density representation in terms of three MN discs
(hereafter 3MN). This 3MN decomposition is an ideal application of
our modelling procedure, in particular because one MN component
has negative mass, which gives the opportunity to illustrate how the
scaling scheme in Section 3 works also with negative values of the
mass ratios Ri .

4.3.1 Results for a double-exponential disc and its 3MN fit

We consider the single-component double-exponential model in
equation (B3), with mass Rd = Md/M∗ = 1, scale length α =
Rd/r∗ = 1, and scale height β = h/r∗ = 0.1. For this density, we build
the everywhere positive 3MN fit, following section 2.2 in Smith et al.
(2015). Accordingly, the three MN components (in our notation of
equation 48) have the same scale height b̃, but different Ri and scale
length ãi (i = 1, 2, 3); in particular, from their fig. 5, we obtain
b̃ = 0.12, and from their equation (7) the values of Ri and ãi . The
parameters for the double-exponential disc and for its 3MN fit are
summarized in Table 3.

We compute the potential for the double-exponential disc both
with the standard method in equation (42) and with the much
faster integration of equation (B1), finding perfect agreement. As
a safety check of the reconstructed 3MN model, we compare the
circular velocity in the equatorial plane of the double-exponential
disc and of its 3MN fit (Fig. 5, top panel), that can be compared
with fig. 3 of Smith et al. (2015), and the FO surface density
profiles of the two models (Fig. 5, bottom panel) that in turn
can be compared with their fig. 7. The circular velocity of the
exponential disc is almost perfectly reproduced over the explored
radial range, while the reproduction of the FO surface density is less
satisfactory, an unavoidable consequence of the everywhere positive
decomposition adopted. For completeness, in Fig. 6, we present the
EO surface density distributions of the two models. As expected, the
two distributions are quite different in the outer regions, especially
for increasing distance from the equatorial plane, where the 3MN
model produces higher surface density values. Consequently, also the
kinematical fields obtained from the solution of the Jeans equations
are expected to show significant differences, especially at high |z|.

We use our procedure in JASMINE2 to evaluate these differences,
a problem left open by the studies of Smith et al. (2015) and Rojas-
Niño et al. (2016); we adopt for simplicity the case of the isotropic
rotator, without a DM halo and a central BH. In Fig. 7, the EO
projected rotational velocity and velocity dispersion are shown. The
fields υ los of the two models look remarkably similar, also outside
the equatorial plane. In particular, the per cent error of the 3MN
model with respect to the double-exponential model, in the equatorial
plane, is < 9 per cent out to 4 Rd, and < 14 per cent out to 10 Rd.
This quite satisfactory result is not obvious a priori, since υϕ , at
variance with υc, is not a function of the potential only, but it
also depends on the velocity dispersion via the asymmetric drift.
Therefore, the excellent agreement of υc in Fig. 5 is not a guarantee
that also υϕ , and its projection υ los, are well reproduced by the 3MN
density fit. The reproduction of υ los outside the equatorial plane
is still quite good, with a slightly higher discrepancy at increasing
|z|, as expected, but improving for larger galactocentric distances;
for example, at z = Rd, the per cent error is < 23 per cent out
to 4 Rd, reducing to < 18 per cent out to 10 Rd. The situation is
different for σ los: the two fields are significantly different, even in
the equatorial plane, with the 3MN model showing values up to
a factor of 2 larger than those of the double-exponential model.
Moreover, the velocity dispersion of the 3MN model near the
rotation axis presents a characteristic hourglass-shaped distribution
(see also Negri et al. 2014a), only barely detectable at the very
centre for the double-exponential model. Notice that this feature is
not observed in the maps of Fig. 4 for the JHD and JLD models,
even if they also contain a MN component, due to the addition
of a stellar halo and a DM halo, and to the different kinematical
decompositions adopted (see also the discussion in Smet et al.
2015). These experiments suggest caution when adopting the 3MN
representation to interpret the observed velocity dispersion of disc
galaxies.

5 C O N C L U S I O N S

We presented the theoretical framework for an efficient Jeans mod-
elling of multicomponent axisymmetric galaxies, and its numerical
implementation in the code JASMINE2, significantly upgraded
from its original version JASMINE (Posacki et al. 2013). In this
framework, the models can include an arbitrary number of stellar
components, with different structural, dynamical and stellar popu-
lation properties, a DM halo, and a central BH. The structural and
dynamical properties of each stellar component can be mass- or
luminosity-weighted, and projected on the plane of the sky. The
internal dynamics of each stellar component is implicitly described
by a two-integral DF (in general different for each component), so
that a phenomenological decomposition of the azimuthal velocity
field must be chosen. For each component, we can adopt the Satoh
(1980) k-decomposition, where υϕi = ki

√
�i , or a generalized k-

decomposition, where υϕi = ki

√
�i + σ 2

i ; furthermore, the param-
eter ki can be constant or position dependent. The generalized
decomposition allows for the modelling of systems with �i < 0 (as
may happen for density distributions elongated along the symmetry
axis). The presented scheme can be easily extended to more general
velocity decompositions, such as that introduced by Cappellari
(2008), where the underlying DF depends on three integrals of
motion.

In the numerical implementation, the gravitational potential of the
density components is computed by default in terms of complete
elliptic integrals (equation 42), a very accurate but quite time-
expensive approach, that can become impractical especially when
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Figure 6. Edge-on surface density distributions 
∗ of the two models of Table 3. The dotted contours are spaced by 1 dex.

dealing with the exploration of the parameter space of multicompo-
nent models. To reduce the computational time, we fully exploited
the scalings allowed by the Poisson and the Jeans equations, and by
the projection formulae. The resulting scheme led to an organization
of JASMINE2 in two logically distinct parts: the Potential and Jeans
Solver and the post-processing (PP). In practice, once the structural
properties of the scaled stellar and DM distributions are assigned, the
code computes, with a single run of the Potential and Jeans Solver,
the scaled solutions of the Jeans equations, defining a family of
models. The scaled Jeans solutions are then combined in PP, with the
desired mass and luminosity weights, and the choice of appropriate
kinematical decompositions, and then projected. The PP procedure
can be performed several times, obtaining different specific models in
the same family. Finally, for each model, the two physical scales M∗
and r∗ can be assigned. A further benefit of the presented approach
is the possibility to gain a full understanding of the role of each
density component in determining the resulting kinematical fields
of the galaxy. For special density distributions, a further reduction
of computational time is obtained by evaluating the potential with
specific integral formulae, such as the Chandrasekhar formula for
ellipsoidal distributions, and integrals involving Bessel functions for
factorized disc distributions (see Appendix B).

In order to illustrate the features of our modelling procedure, we
presented three galaxy models, composed of two stellar components,
a spherical NFW DM halo and a central supermassive BH. In the
JJE model, the total spherical stellar profile and one ellipsoidal
stellar component, both Jaffe models, are assigned; the second stellar
component is given by their difference. This model, when the DM
halo is absent, has several properties available in analytical form (in
particular in CMPZ21), and thus has been used to test the procedure
and the code. The JHD model consists of a large and massive MN
stellar disc, coupled with an ellipsoidal Jaffe stellar model, that can
be seen as the stellar halo of a disc galaxy. In the JLD model, an

ellipsoidal Jaffe component dominates in mass, and an MN stellar
disc is small, inner and counter-rotating, as sometimes found in
early-type galaxies.

As a fourth application, we explored the accuracy of one of the
3MN decompositions proposed by Smith et al. (2015) to reproduce
the kinematical fields of double-exponential discs. We confirmed
the excellent agreement of the rotation curves of the two models
in the equatorial plane, at least out to ∼10Rd. We also found that
υ los tends to be larger for the double-exponential disc than for its
3MN representation, but overall the agreement is rather good, even
outside the equatorial plane. A different situation is found for σ los: the
values are significantly larger in the 3MN model, which also presents
a characteristic hourglass-shaped vertical distribution. Some care is
thus recommended when using a 3MN decomposition to infer the
properties of observed disc galaxies.

Ongoing applications of the presented modelling procedure, and
in particular of JASMINE2, include the building of multicomponent
galaxy models for numerical simulations of gas flows in galaxies (e.g.
Negri et al. 2014b; Gan et al. 2019a, b; Ciotti et al. in preparation);
the study of circumnuclear stellar discs (also with counter-rotation,
see e.g. Morelli et al. 2004; Krajnović et al. 2015; Mitzkus et al.
2017; Sormani et al. 2020; see also Cappellari 2016); a systematic
exploration of galaxy models constrained to lie on the major
observed Scaling Laws, extending the statistical approach pioneered
in Bertin, Ciotti & Del Principe (2002) and Lanzoni & Ciotti
(2003).
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Figure 7. Edge-on projected rotational velocity υ los, and velocity dispersion σ los, normalized to
√

φn, for the two models of Table 3. The dotted contours are
the same as in Fig. 6.
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APPENDIX A : POSITIVITY CONDITION FOR
J J E M O D E L S

The stellar component ρ∗2, for the two-component ellipsoidal models
described in Section 4.1, is given by the difference of an assigned
total ρ∗ and an assigned ρ∗1. This approach naturally leads to discuss
the positivity of ρ∗2, with a treatment similar to that followed in
the appendix of CMPZ21, and references therein. We generalize
equation (46) as

ρ∗2(R, z)

(3 − γ )ρn
= ξ

qmγ (ξ + m)4−γ
− R1ξ1

q1m
γ

1 (ξ1 + m1)4−γ
, (A1)

recovering the case of JJE models for γ = 2. In order to discuss the
positivity condition for ρ∗2, we use spherical coordinates, so that (R,
z) = r(sin θ , cos θ ) and

m = s�, m1 = s�1, s ≡ r

r∗
, (A2)

where

�2 ≡ sin2 θ + cos2 θ

q2
, �2

1 ≡ sin2 θ + cos2 θ

q2
1

. (A3)

The positivity of ρ∗2 reduces to a condition on R1, given by

R1 ≤ RM ≡ inf
I

[
ξq1

ξ1q

(
�1

�

)γ (
ξ1 + s�1

ξ + s�

)4−γ
]

, (A4)

over the rectangular region I ≡ {s ≥ 0, 0 ≤ θ ≤ π/2} in the (s, θ )
plane. Following the discussion in CMPZ21, we determine

RM = min
(
Rc,R∞,R0,Rπ/2,Rint

)
, (A5)

where the first four quantities refer to the minimum value of the r.h.s.
of equation (A4) over the boundaries of I, and Rint is the value of a
minimum (if it exists) in the interior of I. When q1 �= q, it is simple
to show that no critical points can exist in the interior of I, and so the
discussion reduces to the boundaries of I: geometrically, RM can
be reached only at the centre (s = 0, Rc), at infinity (s → ∞, R∞),
along the symmetry axis (θ = 0, R0), or on the equatorial plane (θ =
π /2, Rπ/2).

We begin with Rc and R∞, obtaining

Rc = ξ
3−γ

1 q1

ξ 3−γ q
min

0≤θ≤π/2

(
�1

�

)γ

, (A6)

R∞ = ξq1

ξ1q
min

0≤θ≤π/2

(
�1

�

)4

. (A7)

Now, from equation (A3), it is easy to show that for a generic α ≥ 0,
the function (�1/�)α reaches its minimum at θ = π /2 if q1 ≤ q, and
at θ = 0 if q ≤ q1, so that

min
0≤θ≤π/2

(
�1

�

)α

=

⎧⎪⎪⎨
⎪⎪⎩

1, q1 ≤ q,

(
q

q1

)α

, q ≤ q1,

(A8)

and the conditions in equations (A6) and (A7) can be finally
summarized as

Rc = ξ
3−γ

1 q1

ξ 3−γ q
min

(
1,

qγ

q
γ

1

)
, (A9)

R∞ = ξq1

ξ1q
min

(
1,

q4

q4
1

)
. (A10)

Along the symmetry axis, and in the equatorial plane, condition (A4)
becomes

R0 = ξq3

ξ1q
3
1

inf
0≤s<∞

(
ξ1q1 + s

ξq + s

)4−γ

, (A11)

Rπ/2 = ξq1

ξ1q
inf

0≤s<∞

(
ξ1 + s

ξ + s

)4−γ

, (A12)

and simple algebra finally shows that the results can be summarized
as

R0 = ξq3

ξ1q
3
1

min

[
1,

(
ξ1q1

ξq

)4−γ
]

, (A13)

Rπ/2 = ξq1

ξ1q
min

(
1,

ξ
4−γ

1

ξ 4−γ

)
. (A14)

For the JJE models in Section 4.1, with ξ 1 < ξ , q1 < q, and γ =
2, the positivity condition (A5) becomes

R1 ≤ RM = ξ1q1

ξq
. (A15)

APPENDI X B: POTENTI AL O F FAC TO RI Z ED
EXPONENTI AL D I SCS

Due to the importance in applications, here we summarize the main
results about the numerical evaluation of the potential produced
by factorized exponential discs as in equation (51), by using the
technique of Bessel functions. From equations (2.103) and (2.114)
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in Ciotti (2021), the potential can be easily written in full generality
as

φ(R, z) = −2πGρ0r
2
∗α2β

∫ ∞

0

J0(λR̃)V̂ (λβ, z̃/β)

(1 + α2λ2)3/2
dλ, (B1)

where J0 is a Bessel function of the first kind, α = Rd/r∗, β = h/r∗,
R̃ = R/r∗, z̃ = z/r∗, and finally

V̂ (γ, x) ≡
∫ ∞

−∞
e−γ ||x|−t |V (|t |) dt . (B2)

Therefore, once the function V̂ is known analytically, the integra-
tion for each grid point (R̃, z̃) reduces to a fast one-dimensional
integration, instead of the more time-consuming two-dimensional
integration that would be required when using the standard formula
based on complete elliptic integrals (equation 42), or the alternative
equation based on modified Bessel functions (equation 2.170 in
BT08; equation 4 in Smith et al. 2015).

For the three discs considered in Smith et al. (2015), we define
Rd = Md/M∗, where Md is the total mass of the disc, so that for the
double-exponential disc considered in Section 4.3.1, we have

ρ∗(R, z) = ρnRd

α2β
e−R̃/α−|z̃|/β , V̂ (γ, x) = 2(γ e−|x| − e−γ |x|)

γ 2 − 1
, (B3)

for γ �= 1, and V̂ (1, x) = (1 + |x|)e−|x|. For completeness, we also
report the formulae for the razor-thin exponential disc,

ρ∗(R, z) = 2ρnRd

α2β
e−R̃/αδ(z̃/β), V̂ (γ, x) = e−γ |x|, (B4)

where δ is the Dirac-δ function, and for the ‘pseudo-isothermal’
exponential disc,

ρ∗(R, z) = 22−aρnRd

α2β B(a/2, a/2)

e−R̃/α

cosh(z̃/β)a
, a > 0, (B5)

where B(x, y) is the Euler complete Beta function, and

V̂ (γ, x) = 2a−1e−γ |x|B
(

a + γ

2
,
a − γ

2
,

e2|x|

1 + e2|x|

)
+

2a−1eγ |x|B
(

a + γ

2
,
a − γ

2
,

1

1 + e2|x|

)
. (B6)

For computational reasons, it can be convenient to express the
incomplete Beta functions above by using their hypergeometric
expression

B(a, b; z) = za

a
2F1(a, 1 − b, 1 + a; z). (B7)

We verified the numerical accuracy of the one-dimensional inte-
gration of equations (B1)–(B3) by comparison with the potential
obtained from equation (42).

We conclude by noticing that equation (B1) can be immediately
extended to other families of factorized thick discs, with a radial
density factor allowing for an explicit Hankel transform. Examples
of these thick discs (implemented in JASMINE2), are the Kuzmin
disc, the truncated, untruncated and finite Mestel discs, the truncated
constant density disc, and the Maclaurin disc (for the relative Hankel
transform, see respectively equations 13.148, 2.119, 5.46, 5.55, 5.53,
5.54 in Ciotti 2021; see also Caravita 2022).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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