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A B S T R A C T 

In many in vestigations in volving accretion on a central point mass, ranging from observational studies to cosmological 
simulations, including semi-analytical modelling, the classical Bondi accretion theory is the standard tool widely adopted. 
Previous works generalized the theory to include the effects of the gravitational field of the galaxy hosting a central black hole 
and of electron scattering in the optically thin limit. Here, we apply this extended Bondi problem, in the general polytropic case, 
to a class of new two-component galaxy models recently presented. In these models, a Jaffe stellar density profile is embedded in 

a dark matter halo such that the total density distribution follows a r −3 profile at large radii; the stellar dynamical quantities can 

be expressed in a fully analytical way. The hydrodynamical properties of the flow are set by imposing that the gas temperature at 
infinity is proportional to the virial temperature of the stellar component. The isothermal and adiabatic (monoatomic) cases can be 
solved analytically; in the other cases, we explore the accretion solution numerically. As non-adiabatic accretion inevitably leads 
to an exchange of heat with the ambient, we also discuss some important thermodynamical properties of the polytropic Bondi 
accretion and provide the expressions needed to compute the amount of heat exchanged with the environment as a function of 
radius. The results can be useful for the subgrid treatment of accretion in numerical simulations, as well as for the interpretation 

of observational data. 

Key words: hydrodynamics – galaxies: elliptical and lenticular, cD – galaxies: ISM – galaxies: nuclei – X-rays: galaxies – X- 
rays: ISM. 
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 I N T RO D U C T I O N  

heoretical and observational studies indicate that galaxies host
t their centre a massive black hole (MBH) that has grown its
ass predominantly through gas accretion (see e.g. Kormendy &
ichstone 1995 ). A generic accretion flow may be broadly classified
s quasi-spherical or axisymmetric, and what mainly determines the
eviation from spherical symmetry is the angular momentum of the
ow itself. A perfect spherical flow is evidently possible only when

he angular momentum is exactly zero. Spherical models are a useful
tarting point for a more advanced modelling, and thus gas accretion
owards a central MBH in galaxies is often modelled with the classical
ondi ( 1952 ) solution. For example, in semi-analytical models and
osmological simulations of the co-evolution of galaxies and their
entral MBHs, the mass supply to the accretion discs is linked to the
emperature and density of their environment by making use of the
ondi accretion rate (see e.g. Fabian & Rees 1995 ; Volonteri & Rees
005 ; Booth & Schaye 2009 ; Wyithe & Loeb 2012 ; Curtis & Sijacki
015 ; Inayoshi, Haiman & Ostriker 2016 ). In fact, in most cases,
he resolution of simulations cannot describe in detail the whole
omplexity of accretion, and so Bondi accretion does represent an
mportant approximation to more realistic treatments (see e.g. Barai,
rog a & Nag amine 2012 ; Ciotti & Ostriker 2012 ; Ram ́ırez-Velasquez
 E-mail: antonio.mancino6@unibo.it 

a  

o  

T

Pub
t al. 2018 ; Gan et al. 2019 and references therein). Recently, Bondi
ccretion has been generalized to include the effects on the flow of
he gravitational field of the host galaxy and of electron scattering
t the same time preserving the (relative) mathematical tractability
f the problem. Such a generalized Bondi problem has been applied
o elliptical galaxies by Korol, Ciotti & Pellegrini ( 2016 , hereafter
CP16 ), who discussed the case of a Hernquist ( 1990 ) galaxy model

or generic values of the polytropic index. Restricting to isothermal
ccretion, also taking into account the effects of radiation pressure
ue to electron scattering, Ciotti & Pellegrini ( 2017 , hereafter CP17 )
howed that the whole accretion solution can be found analytically
or the Jaffe ( 1983 ) and Hernquist galaxy models with a central

BH; quite remarkably, not only can the critical accretion parameter
e explicitly obtained, but it is also possible to write the radial
rofile of the Mach number via the Lambert–Euler W -function
see e.g. Corless et al. 1996 ). Then, Ciotti & Pellegrini ( 2018 ,
ereafter CP18 ) further extended the isothermal accretion solution
o the case of Jaffe’s two-component (stars plus dark matter) galaxy
odels (Ciotti & Ziaee Lorzad 2018 , hereafter CZ18 ). In these

JJ’ models, a Jaffe stellar profile is embedded in a dark matter
DM) halo such that the total density distribution is also a Jaffe
rofile, and all the rele v ant dynamical properties can be written
ith analytical expressions. CP18 derived all accretion properties

nalytically, linking them to the dynamical and structural properties
f the host galaxies. These previous results are summarized in
able 1 . 
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Table 1. Main properties of accretion solutions in one- and two-component galaxy models with central MBH. 

KCP16 CP17 CP18 MCP21 (this paper) 

Galaxy models Hernquist ( 1990 ) Hernquist ( 1990 ), Jaffe ( 1983 ) JJ models ( CZ18 ) J3 models (CMP19) 
Type of accretion Polytropic Isothermal Isothermal Polytropic 
Number of sonic points One or two One or two (Hernquist), One (Jaffe) One One or two b 

Sonic radius Analytic a Analytic Analytic Analytic/numerical c 

λt Analytic a Analytic Analytic Analytic/numerical c 

Mach number profile Numerical Analytic Analytic Analytic/numerical c 

a The general expression can be written as a function of the polytropic index, but only special cases were given explicitly. 
b Function of the polytropic index γ . 
c In the isothermal ( γ = 1) and monoatomic adiabatic ( γ = 5/3) cases, it is analytic; in the 1 < γ < 5/3 case, only a numerical exploration is possible. 
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In this paper, we extend the study of CP18 to a different family
f two-component galaxy models with a central MBH in the general 
ase of a polytropic gas. In this family (J3 models; Ciotti, Mancino &
ellegrini 2019 , hereafter CMP19 ), the stellar density follows a Jaffe
rofile, while the total follows a r −3 law at large radii; thus, the
M halo (resulting from the difference between the total and the 

tellar distributions) can reproduce the Navarro–Frenk–White profile 
Navarro, Frenk & White 1997 , hereafter NFW ) at all radii. As
e are concerned with polytropic accretion, we also clarify some 

hermodynamical aspect of the problem, not al w ays stressed. In fact,
t is obvious that for a polytropic index γ �= γ ad (the adiabatic index
f the gas, with γad = C p / C V ), the flow is not adiabatic and heat
xchanges with the environment are una v oidable. We investigate in 
etail this point, obtaining the expression of the radial profile of the
eat e xchange (i.e. radiativ e losses) of the fluid elements as they move 
owards the galaxy centre. Qualitatively, an implicit cooling/heating 
unction is contained in the polytropic accretion when γ �= γ ad . 

The paper is organized as follows. In Section 2 , we recall the
ain properties of the polytropic Bondi solution, and in Section 3, 
e list the main properties of the J3 models. In Section 4 , we set
p and discuss the polytropic Bondi problem in J3 galaxy models, 
hile in Section 5 , we investigate some important thermodynamical 
roperties of accretion. The main results are finally summarized in 
ection 6 , while some technical detail is given in the appendix. 

 B O N D I  AC C R E T I O N  IN  G A L A X I E S  

n order to introduce the adopted notation, and for consistency with 
revious works, in this section, we summarize the main properties of
ondi accretion, both on a point mass (i.e. an MBH) and on an MBH
t the centre of a spherical galaxy. In particular, the flow is spherically
ymmetric, and the gas viscosity and conduction are neglected. 

.1 The classical Bondi accretion 

n the classical Bondi problem, a spatially infinite distribution of 
erfect gas is accreting on to an isolated central point mass (an MBH
n our case) of mass M BH . The pressure p and density ρ are related
y 

 = 

k B ρ T 

〈 μ〉 m p 
= p ∞ 

×
(

ρ

ρ∞ 

)γ

, (1) 

here k B = 1 . 38 × 10 −16 erg K 

−1 is Boltzmann’s constant, 〈 μ〉 is
he mean molecular weight, m p = 1 . 67 × 10 −24 g is the mass of the
roton, and γ ≥ 1 is the polytropic index. 1 Finally, p ∞ 

and ρ∞ 

are 
 In principle, γ ≥ 0; in this paper, we consider 0 ≤ γ < 1 as a purely academic 
nterval. 

2

f

he gas pressure and density at infinity, and c s = 

√ 

γp/ρ is the local
olytropic speed of sound. As some confusion unfortunately occurs 
n the literature, it is important to recall that in general, γ is not the
diabatic index γ ad of the gas 2 (e.g. Clarke & Carswell 2007 ). 

The equation of continuity reads 

 π r 2 ρ � = Ṁ B , (2) 

here � ( r) is the modulus of the gas radial velocity, and Ṁ B is the
ime-independent accretion rate on to the MBH. Bernoulli’s equation, 
y virtue of the boundary conditions at infinity, is 

� 2 

2 
+ 

∫ p 

p ∞ 

dp 

ρ
− GM BH 

r 
= 0 . (3) 

otice that, unless γ = γ ad , the integral at the left-hand side is not
he enthalpy change per unit mass (see Section 5 ). The natural scale
ength of the problem is the Bondi radius 

 B ≡ GM BH 

c 2 ∞ 

, (4) 

nd, by introducing the dimensionless quantities 

 ≡ r 

r B 
, ˜ ρ ≡ ρ

ρ∞ 

, M ≡ � 

c s 
, (5) 

here M is the local Mach number, equations ( 2 ) and ( 3 ) become,
espectively (for γ �= 1), 

 

2 M ˜ ρ
γ+ 1 

2 = λ, 

(M 

2 

2 
+ 

1 

γ − 1 

)
˜ ρ γ−1 = 

1 

x 
+ 

1 

γ − 1 
, (6) 

here 

≡ Ṁ B 

4 πr 2 B ρ∞ 

c ∞ 

, (7) 

s the (dimensionless) accretion parameter. Once M BH , ρ∞ 

, and c ∞ 

re assigned, if λ is known it is possible to determine the accretion
ate Ṁ B and derive the profile M ( x), thus solving the Bondi ( 1952 )
roblem. As well known, λ cannot assume arbitrary values. In fact, 
y elimination of ˜ ρ in between equations ( 6 ), one obtains the identity 

( M ) = � f ( x) , � ≡ λ
− 2( γ−1) 

γ+ 1 , (8) 

here ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

g( M ) ≡ M 

− 2( γ−1) 
γ+ 1 

(M 

2 

2 
+ 

1 

γ − 1 

)
, 

f ( x) ≡ x 
4( γ−1) 
γ+ 1 

(
1 

x 
+ 

1 

γ − 1 

)
. 

(9) 
MNRAS 512, 2474–2488 (2022) 

 γad ≡ C p / C V is the ratio of specific heats at constant pressure and volume; 
or a perfect gas, it al w ays exceeds unity. 
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3 For galaxy models of finite total mass, or with a total density profile 
decreasing at large radii at least as r −3 [as for NFW or King ( 1972 ) profiles] 
ψ can be taken to be zero at infinity (e.g. Ciotti 2021 , Chapter 2). 
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ince both g and f have a minimum, the solutions of equation ( 8 )
xist only when g min ≤ � f min , i.e. � ≥ � cr ≡ g min / f min . For γ < 5/3, ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

g min = 

γ + 1 

2( γ − 1) 
, M min = 1 , 

f min = 

γ + 1 

4( γ − 1) 

(
4 

5 − 3 γ

)5 −3 γ
γ+ 1 

, x min = 

5 −3 γ
4 ; 

(10) 

herefore, from equation ( 8 ), the classical Bondi problem admits
olutions only for 

≤ λcr ≡
(

f min 

g min 

) γ+ 1 
2( γ−1) 

= 

1 

4 

(
2 

5 − 3 γ

) 5 −3 γ
2( γ−1) 

. (11) 

otice that for γ = 5/3, f min → 1, x min → 0, and λ ≤ 1/4. When γ
 5/3, instead, x min → 0 and f min = 0, and so no accretion can take

lace: γ = 5/3 is then a hydrodynamical limit for the classical Bondi
roblem. 
For λ = λcr (the critical solutions), x min indicates the position

f the sonic point, i.e. M ( x min ) = 1. When λ < λcr , instead, two
egular sub-critical solutions exist, one everywhere supersonic and
nother everywhere subsonic; the position x min marks the minimum
nd maximum value of M , respectively, for these two solutions (see
.g. Bondi 1952 ; Frank, King & Raine 1992 ; Krolik 1998 ). 

In the γ = 1 (isothermal) case, p = c 2 ∞ 

ρ, and c s = c ∞ 

, while
quation ( 8 ) becomes 

( M ) = f ( x) − �, � ≡ ln λ, (12) 

here now ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

g( M ) ≡ M 

2 

2 
− ln M , 

f ( x) ≡ 1 

x 
+ 2 ln x . 

(13) 

olutions of equation ( 12 ) exist provided that g min ≤ f min − � ; g min =
/2 occurs for M min = 1, while f min = 2 − ln 2 is reached at x min =
/2. Therefore, in the isothermal case, 

≤ λcr ≡ e f min − g min = 

e 3 / 2 

4 
, (14) 

n agreement with the limit of equation ( 11 ) for γ → 1. 

.2 Bondi accretion with electron scattering in galaxy models 

or future use, we now resume the framework used in the previous
orks ( KCP16 ; CP17 ; CP18 ) to discuss the Bondi accretion on to
BHs at the centre of galaxies, also in presence of radiation pressure

ue to electron scattering (see e.g. Taam, Fu & Fryxell 1991 ; Fukue
001 ; Lusso & Ciotti 2011 ; Raychaudhuri, Ghosh & Joarder 2018 ;
am ́ırez-Velasquez et al. 2019 ; Samadi, Zanganeh & Abbassi 2019 ),
nd including the additional gravitational field of the galaxy. The
adiation feedback, in the optically thin regime, can be implemented
s a reduction of the gravitational force of the MBH by the factor 

≡ 1 − L 

L Edd 
, L Edd = 

4 πc GM BH m p 

σT 
, (15) 

here L is the accretion luminosity, L Edd is Eddington’s luminosity,
 is the speed of light in vacuum, and σ T = 6.65 × 10 −25 cm 

2 is the
homson cross-section. The (relative) gravitational potential of the
alaxy, in general, can be written as 

 g = 

GM g 

r g 
ψ 

(
r 

r g 

)
, (16) 
NRAS 512, 2474–2488 (2022) 
here r g is a characteristic scale length of the galaxy density
istribution (stars plus dark matter), ψ is the dimensionless galaxy
otential, and finally M g is the total mass of the galaxy. For galaxies
f infinite total mass, as the J3 models, M g = R g M ∗ is a mass scale
see equations ( 20 ) and ( 22 )]. By introducing the two parameters 

 ≡ M g 

M BH 
, ξ ≡ r g 

r B 
, (17) 

here r B is again defined as in equation ( 4 ), the total relative potential
ecomes 

 T = 

GM BH 

r B 

[
χ

x 
+ 

R 

ξ
ψ 

(
x 

ξ

)]
. (18) 

f course, when R → 0 (or ξ → ∞ ), the galaxy contribution to the
otal potential vanishes, 3 and the problem reduces to classical case. In
he limit of L = L Edd (i.e. χ = 0), the radiation pressure cancels the
ravitational field of the MBH, then the problem describes accretion
n the potential of the galaxy only, in absence of electron scattering
nd an MBH; when L = 0 (i.e. χ = 1), the radiation pressure has no
ffect on the accretion flow. Therefore, for MBH accretion in galaxies
nd in the presence of electron scattering, the Bondi problem reduces
o the solution of equations ( 12 ) and ( 13 ), or ( 8 ) and ( 9 ), where f is
o w gi ven by 

 ( x) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

χ

x 
+ 

R 

ξ
ψ 

(
x 

ξ

)
+ 2 ln x , γ = 1 , 

x 
4( γ−1) 
γ+ 1 

[
χ

x 
+ 

R 

ξ
ψ 

(
x 

ξ

)
+ 

1 

γ − 1 

]
, 1 < γ ≤ 5 

3 
, 

(19) 

hile the function g (and, in particular, the value of g min ) is unchanged
y the presence of the galaxy. Of course, 	 g affects the values of x min ,
 min , and of the critical λ (which now we call λt ). Two considerations
re in order here. First, 	 g can produce more than one minimum for
he function f (see the case of Hernquist galaxies in CP17 ); in this
ircumstance, the general considerations after equations ( 8 ) and ( 12 )
orce to conclude that λt is determined by the absolute minimum
f f . Secondly, for a generic galaxy model, one cannot expect to be
ble to determine analytically the value of x min ; quite surprisingly,
n a few cases, it has been shown that this is possible (see CP18 and
eferences therein). In the following, we add another analytical case
o this list. 

 T H E  J 3  G A L A X Y  M O D E L S  

he J3 models ( CMP19 ) are an extension of the JJ models ( CZ18 ),
dopted in CP18 to study the isothermal Bondi accretion in two-
omponent galaxies with a central MBH. The J3 models are an
nalytically tractable family of spherical models with a central
BH, with a Jaffe ( 1983 ) stellar density profile, and with a total

ensity distribution such that the DM halo (obtained as the difference
etween the total and stellar density profiles) is described very well
y the NFW profile; in the case of JJ models, instead, the DM profile
t large radii declines as r −4 instead of r −3 . 

The stellar and total (stars plus DM) density profiles of J3 galaxies
re then given by 

∗( r ) = 

ρn 

s 2 (1 + s) 2 
, ρg ( r ) = 

R g ρn 

s 2 ( ξg + s) 
, (20) 
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Figure 1. Left: dark-to-total mass ratio of the J3 models (solid lines) within a sphere of radius r = R e � 0 . 75 r ∗ as a function of ξg = r g / r ∗ for the minimum 

halo case α = 1 (black), α = 2 (blue), and α = 3 (red). For comparison, the analogous curves in the case of JJ models (dashed lines) are shown. Right: the 
galactic virial velocity dispersion σV (solid lines) as a function of ξg , for α = 1 (black), α = 2 (blue), and α = 3 (red). For comparison, the analogous curves in 
the case of JJ models (dashed lines) are shown. 
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ith 

n = 

M ∗
4 πr 3 ∗

, s = 

r 

r ∗
, ξg = 

r g 

r ∗
, (21) 

here r ∗ is the stellar scale length, M ∗ is the total stellar mass, r g is
he galaxy scale length, and R g measures the total-to-stellar density; 
or example, we recall that R g /ξg gives the ratio ρg / ρ∗ for r → 0.
he ef fecti ve radius R e of the Jaf fe profile is R e � 0 . 75 r ∗. The stellar
nd total mass profiles read 

 ∗( r) = M ∗
s 

1 + s 
, M g ( r) = M ∗R g ln 

ξg + s 

ξg 
, (22) 

o that M g ( r ) diverges logarithmically for r → ∞ . 
The DM halo density profile is therefore 

DM 

( r) ≡ ρg ( r) − ρ∗( r) = 

ρn 

s 2 

[ R g 

ξg + s 
− 1 

(1 + s) 2 

]
, (23) 

nd, as shown in CMP19 , the condition for a no where negati ve ρDM 

s 

 g ≥ R m 

≡

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 

4 (1 − ξg ) 
, 0 < ξg ≤ 1 

2 
, 

ξg , ξg ≥ 1 

2 
. 

(24) 

 model with R g = R m 

is called a minimum halo model. For
ssigned ξ g , it is convenient to introduce the parameter α, defined as 

 g = αR m 

, α ≥ 1 , (25) 

nd, as we shall restrict to the natural situation ξ g ≥ 1, in the following
 g = α ξg , with α = 1 corresponding to the minimum halo model.

herefore, from equations ( 22 ), the relative amount of dark-to-total 
ass as a function of radius is 

M DM 

( r) 

M g ( r) 
= 1 − s 

α ξg (1 + s) ln (1 + s/ξg ) 
, (26) 

here M DM 

( r ) = M g ( r ) − M ∗( r ). In Fig. 1 (left-hand panel, solid
ines) we plot equation ( 26 ) as a function of ξ g ≥ 1 for r = R e and
or three values of α : the minimum halo model ( α = 1) and two
ases with α > 1. Fractions of DM with values for the minimum halo
ase in agreement with those required by the dynamical modelling 
f early-type galaxies (see e.g. Cappellari et al. 2015 ) can be easily
btained. These fractions are unsurprisingly slightly larger than those 
btained in the case of JJ models for the same values of ξ g (see dashed
ines in Fig. 1 , left-hand panel). 

Notice that by construction, ρDM 

∝ r −3 at large radii, while, as in
J models, at small radii ρDM 

∝ r −2 (i.e. the DM and stellar densities
re locally proportional), with the exception of the minimum halo 
odels, in which ρDM 

∝ r −1 . We now compare the DM profile of J3
odels with the untruncated NFW profile (Navarro et al. 1997 ) that

n our notation can be written as 

NFW 

( r) = 

ρn R NFW 

q( c) s ( ξNFW 

+ s) 2 
, q( c) ≡ ln (1 + c) − c 

1 + c 
, (27) 

here ξNFW 

≡ r NFW 

/ r ∗ is the NFW scale length in units of r ∗ and, for
 chosen reference radius r t , we define R NFW 

≡ M NFW 

( r t ) /M ∗ and c
r t / r NFW 

. The densities ρDM 

and ρNFW 

can be made asymptotically
dentical both at small and large radii by fixing 

 NFW 

= q( c) ξg , ξNFW 

= 

ξg √ 

2 ξg − 1 
. (28) 

ence, once a specific minimum halo galaxy model is considered, 
quations ( 27 ) and ( 28 ) allow to determine the NFW profile that best
eproduces the DM halo density profile. Cosmological simulations 
uggest for galaxies c � 10 (see e.g. Bullock & Boylan-Kolchin
017 ), and R NFW 

� a few tens. Moreo v er, the value of ξ g cannot be
oo large; otherwise, the DM fraction inside R e would exceed the val-
es derived from observations (see e.g. Napolitano, Romanowsky & 

ortora 2010 ; see also fig. 1 in CMP19 ). For these reasons, we
onclude that the NFW shape and the cosmological expectations are 
eproduced if we consider minimum halo models with ξ g � 10 ÷ 20.
n the following, we choose as ‘reference model’ a minimum halo
MNRAS 512, 2474–2488 (2022) 

g g NFW NFW ∗

art/stac612_f1.eps
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.1 Central and virial properties of J3 models 

ow we recall a few dynamical properties of the J3 models needed
n the following discussion (see CMP19 for more details). An MBH
f mass M BH = μM ∗ is added at the centre of the galaxy, and the
otal (relative) potential is 

 T ( r ) = 

	 n μ

s 
+ 	 g ( r ) , 	 n = 

GM ∗
r ∗

, μ = 

M BH 

M ∗
, (29) 

here 

 g ( r) = 

	 n R g 

ξg 

(
ln 

ξg + s 

s 
+ 

ξg 

s 
ln 

ξg + s 

ξg 

)
; (30) 

n particular, 	 g ∝ (ln s )/ s at large radii, and 	 g ∝ − ln s near the
entre. The stellar orbital structure is limited to the isotropic case.
he radial component of the velocity dispersion is given by 

2 
r ( r) = σ 2 

BH ( r) + σ 2 
g ( r) , (31) 

here σ BH and σ g indicate, respectively, the contribution of the MBH
nd of the galaxy potential. As shown in CMP19 , the Jeans equations
or J3 models can be solved analytically; here, we just recall that in
he isotropic case 

2 
r ( r) ∼ 	 n ×

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

μ

3 s 
+ 

R g 

2 ξg 
− μ

3 
, r → 0 , 

R g 
ln s 

5 s 
, r → ∞ , 

(32) 

here, for mathematical consistency, we retained also the constant
erm −μ/ 3 in the asymptotic expansion of σ r near the centre,
lthough this contribution is fully negligible in realistic galaxy
odels. Notice that, when ξ g ≥ 1, from equation ( 25 ) it follows

hat the constant term due to the galaxy is independent of ξ g ,
ith σ 2 

g (0) = 	 n α/ 2. This latter e xpression pro vides the interesting
ossibility of adopting σ g (0) as a proxy for the observed velocity
ispersion of the galaxy in the central regions, outside the sphere of
nfluence of the central MBH. 

In order to derive an estimate of the sphere of influence of the
BH, it is interesting to consider the projected velocity dispersion

p ( R) = 

√ 

σ 2 
pBH ( R) + σ 2 

pg ( R) , where R is the radius in the projec-

ion plane. At large radii, σ p is dominated by the galaxy contribution:
rom equation ( 32 ) one has, at the leading order, 

2 
p ( R) ∼ 	 n 8 R g ln η

15 πη
, η ≡ R 

r ∗
. (33) 

t small radii, instead [ CMP19 , equations ( 57 ) and ( 58 )], 

pg (0) = σg (0) = 

	 n R g 

2 ξg 
, σ 2 

pBH ( R) ∼ 	 n 2 μ

3 πη
. (34) 

quation ( 34 ) allows to estimate the radius R inf of the sphere of
nfluence, defined as the distance from the centre in the projection
lane, where σ p in presence of the MBH exceeds by a factor (1 + ε)
he galaxy projected velocity dispersion σ pg in absence of the MBH: 

 

σ 2 
pBH ( R inf ) + σ 2 

pg ( R inf ) ≡ (1 + ε) σpg ( R inf ) . (35) 

n practice, for a galaxy model with finite σ pg (0), the formula abo v e
educes to equation ( 36 ) in CP18 , and for ξ g ≥ 1 equation ( 34 ) yields 

R inf 

r ∗
� 

4 μ

3 πα ε (2 + ε) 
. (36) 

otice that equation ( 36 ) is coincident with the same estimate in JJ
odels ( CP18 , equation 37 ), being the two models identical in the

entral regions. 
NRAS 512, 2474–2488 (2022) 
A fundamental ingredient in Bondi accretion is the gas temperature
t infinity T ∞ 

. As in CP18 , in the next section we shall use T V =
 μ〉 m p σ

2 
V / (3 k B ) (see e.g. Pellegrini 2011 ) as the natural scale for

 ∞ 

, where σ V is the (three dimensional) virial velocity dispersion of
tars obtained from the Virial Theorem: 

 ∗σ 2 
V ≡ 2 K ∗ = −W ∗g − W ∗BH . (37) 

n the equation abo v e, K ∗ is the total kinetic energy of the stars, 

 ∗g = − 4 πG 

∫ ∞ 

0 
M g ( r ) ρ∗( r ) r dr (38) 

s the interaction energy of the stars with the gravitational field of the
alaxy (stars plus DM), and the MBH contribution W ∗BH diverges
ear the origin for a Jaffe density distribution. Since we shall use σ V 

s a proxy for the gas temperature at large distance from the centre,
e neglect W ∗BH in equation ( 37 ), so that 

2 
V = − W ∗g 

M ∗
= 	 n R g ̃

 W ∗g , ˜ W ∗g = H( ξg , 0) − ln ξg 

ξg − 1 
, (39) 

here the function H( ξg , s) is given in appendix C of CMP19 . Fig. 1
right-hand panel) shows the trend of σ V as a function of ξ g ≥ 1 for
hree J3 (solid) and JJ (dashed) models. As expected, σ V increases
ith ξ g , and σV � 

√ 

α 	 n when r g � r ∗. For comparison, we show
n Fig. 1 (right-hand panel) σ V for the JJ models of same parameters.

.2 Linking stellar dynamics to fluid dynamics 

e now link the stellar dynamical properties of the galaxy models
ith the defining parameters of Bondi accretion introduced in
ection 2.2 . In fact, the function f in equation ( 19 ) is written in terms
f quantities referring to the central MBH and to the gas temperature
t infinity, while the stellar dynamical properties of the J3 models
re written in terms of the observational properties of the galaxy
tellar component. The two groups of parameters are summarized in
able 2 . 
The first accretion parameter we consider is R in equation ( 17 ). It

s linked to the galaxy structure by the following expression 

 ≡ M g 

M BH 
= 

R g 

μ
= 

αξg 

μ
, (40) 

here the last identity derives from equation ( 25 ) with ξ g ≥ 1; notice
hat R ≈ 10 4 for ξ g of the order of tens and α of order unity, and
= 0.002 (see Kormendy & Ho 2013 for this choice of μ). 
The determination of the accretion parameter ξ is more articulated.

his quantity depends on the Bondi radius r B ; we stress again that in
he present discussion, even in presence of the galaxy gravitational
otential, r B is still defined in the classical sense, i.e. just considering
he mass of the MBH, as in equation ( 4 ). Of course, r B depends on
he gas temperature at infinity. In principle, arbitrary values of T ∞ 

ould be adopted, but in real systems the natural scale for the global
emperature is represented by the virial temperature T V defined via
he virial velocity dispersion in equation ( 37 ). Accordingly, we set 

 ∞ 

= βT V , c 2 ∞ 

= γ
p ∞ 

ρ∞ 

= 

γβ σ 2 
V 

3 
. (41) 

rom equations ( 4 ) and ( 39 ), we then obtain 

r B 

r ∗
= 

3 μ

αβγF g ( ξg ) 
, F g ≡ ξg 

˜ W ∗g ( ξg ) , (42) 

here the function F g monotonically increases with ξ g from F g (1) =
2 / 6 − 1 to F g ( ∞ ) = 1. F or e xample, at fix ed α, β, and γ , one has 

3 μ

αβγ
< 

r B 

r ∗
≤ 18 μ

( π2 − 6) αβγ
. (43) 
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Table 2. Galaxy structure and accretion flow parameters. 

Galaxy structure Accretion flow 

Symbol Quantity Symbol Quantity 

M ∗ Total stellar mass T ∞ 

Gas temperature at infinity 
r ∗ Stellar density scale length ρ∞ 

Gas density at infinity 
M g Total a galaxy mass c ∞ 

Speed of sound at infinity 
r g Total density scale length γ Polytropic index (1 ≤ γ ≤ 5/3) 
M BH Central MBH mass γ ad Adiabatic index ( = C p / C V ) 
μ M BH / M ∗ R M g / M BH ( = R g /μ) 
R g M g / M ∗ ( = αR m 

) β T ∞ 

/ T V 
R m 

Minimum value of R g r B Bondi radius 
ξg r g / r ∗ r min Sonic radius 
s r / r ∗ x r / r B 
σV Stellar virial velocity dispersion ξ r g / r B 
T V Stellar virial temperature λt Critical accretion parameter 
W ∗g Virial energy of stars M Mach number 

a F or e xample, from our definition M g = R g M ∗, and equation ( 20 ), M g is the total mass (stellar plus DM) inside 
a sphere of radius (e − 1) r g . 
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n Fig. 2 (top left), we show the trend of r B / r ∗ as a function of ξ g 

n the minimum halo case ( α = 1) with β = 1 and μ = 0.002, for
hree values of γ ; in general, r B is of the order of a few × 10 −3 r ∗.
ote that, for fixed ξ g , the isothermal profile (black line) is abo v e

hat in the corresponding adiabatic case (red line); in general, for
xed α, β, and ξ g , r B / r ∗ al w ays lies between the isothermal and the
onoatomic adiabatic case, as shown by equation ( 43 ). Finally, by

ombining equations ( 17 ) and ( 42 ), 

≡ r g 

r B 
= 

αβγ ξg F g ( ξg ) 

3 μ
= 

R β γF g ( ξg ) 

3 
, (44) 

nd so R and ξ increase with ξ g . Curiously, from the general 
efinitions in equation ( 17 ), and making use of equation ( 34 ), 

R 

ξ
= 

2 σ 2 
pg (0) 

c 2 ∞ 

, (45) 

hich links directly the parameters of Bondi accretion to the 
bservable σ pg (0) = σ g (0). 
For observational purposes, it is also useful to express the position 

f r B in terms of the radius R inf as given in equation ( 36 ); since the
arameter α = R g / R m 

cancels out, we have 

r B 

R inf 
= 

9 π ε (2 + ε) 

4 βγF g ( ξg ) 
, (46) 

ndependently of the minimum halo assumption. In Fig. 2 (bottom 

eft-hand panel), we show the trend of r B / R inf when ε = 0.5 and β =
, for the same three values of γ as in the upper left-hand panel: r B 

a few times R inf . 
Now we mo v e the discussion to the sonic radius r min , one of the
ost important properties of the accretion solution. The effects of the 

alaxy do indeed manifest themselves in the position of r min . When
easured in terms of the scale length r ∗, it can be written, by making

se of equation ( 42 ), as 

r min 

r ∗
= x min ( χ, R , ξ ) 

r B 

r ∗
, (47) 

here x min ≡ r min / r B gives the (absolute) minimum of f . 
Finally, we must recast the galaxy potential in equation ( 30 ) by

sing the normalization scales in equation ( 18 ) : as s / ξ g = x / ξ , it is
mmediate that in our problem 

 

(
x 
)

= ln 

(
1 + 

ξ
)

+ 

ξ
ln 

(
1 + 

x 
)

. (48) 

ξ x x ξ
 B O N D I  AC C R E T I O N  IN  J 3  M O D E L S  

e can now discuss the full problem, investigating how the standard
ondi accretion is modified by the additional potential of J3 galaxies
nd by electron scattering. We show that in the isothermal case ( γ =
), the solution is fully analytical, as for the monoatomic adiabatic
ase ( γ = 5/3); for 1 < γ < 5/3, instead, it is not possible to obtain
nalytical expressions, and so a numerical investigation is presented. 

.1 The γ = 1 case 

he isothermal case stands out not only because f ( x ) in equation ( 19 )
s not of the general family, for γ = 1, but also because the position
f the sonic radius x min can be obtained explicitly. Indeed, for 0 < χ

1, f ( x ) ∼ χ / x for x → 0, and ∼2ln x for x → ∞ . Therefore, the
ontinuous function f has at least one critical point o v er the range 0

x < ∞ , obtained by solving 

 x min − R ln 
ξ + x min 

ξ
= χ. (49) 

s shown in Appendix A , the positive solution can be obtained for
eneric values of the model parameters in terms of the Lambert–Euler 
 function, 4 and the only minimum of f is reached at 

 min ≡ r min 

r B 
= − ξ − R 

2 
W −1 

(
− 2 ξ

R 

e −
χ+ 2 ξ
R 

)
. (50) 

nce x min is known, all the other quantities in the Bondi solution,
uch as the critical accretion parameter λt = exp ( f min − 1/2) in
quation ( 14 ), the mass accretion rate in equation ( 2 ), and the Mach
umber profile M , can be expressed as a function of x min . Therefore,
3 galaxies belong to the family of models for which a fully analytical
iscussion of the isothermal Bondi accretion problem is possible (see 
able 1 ). In particular, from CP17 and CP18 , the critical accretion
olution reads 

 

2 = −
{ 

W 0 

( − λ2 
t e 

−2 f 
)
, x ≥ x min , 

W −1 

( − λ2 
t e 

−2 f 
)
, 0 < x ≤ x min , 

(51) 

here f is given in equation ( 19 ) with the function ψ( x / ξ ) defined
y equation ( 48 ). Summarizing, W −1 describes supersonic accretion, 
MNRAS 512, 2474–2488 (2022) 
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M

Figure 2. Left: Bondi radius r B in units of r ∗ (top) and R inf (bottom), as a function of the galaxy-to-stellar scale length ratio ξg = r g / r ∗ for three J3 galaxy 
models with β ≡ T V / T ∞ 

= 1, μ = 0.002, and γ = 1, 4/3, 5/3; the solid dots at r B / r ∗ � 0.0066, 0.0049, 0.0039 correspond to the minimum halo case with ξg = 

13; solid dots at r B / R inf � 9.71, 7.28, 5.82 correspond to the case ξg = 13 and ε = 0.5. Right: position of x min ≡ r min / r B (top) and r min / r ∗ (bottom) as a function 
of β = T ∞ 

/ T V , in the case of minimum halo models with ξg = 13, μ = 0.002, and χ = 1, for dif ferent v alues of the polytropic index given close to the curves. 
The black square points at r min / r B � 57.34 and r min / r ∗ � 0.23 correspond to the critical case β = βc � 1.65. 
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hile W 0 subsonic accretion. 5 Although equation ( 51 ) provides an
 xplicit e xpression of M , it can be useful to have its asymptotic
rend at small and large distances from the centre; from equation
 A2 ) and the expansion of f ( x ), one has 

 

2 ∼

⎧ ⎪ ⎨ ⎪ ⎩ 

2 χ

x 
+ 

2(2 ξ − R ) 

ξ
ln 

x 

x min 
, x → 0 , 

λ2 
t x 

− 2 
(

2 + 

R 

x 

)
, x → ∞ . 

(52) 

f course, the same result can be established also by asymptotic
xpansion of equation ( 12 ). Therefore, in the central region, M ∝
NRAS 512, 2474–2488 (2022) 

 As x decreases from ∞ to x min , the argument of W 0 decreases from 0 to 
1 / e (points A and B in Fig. A1 , left-hand panel), and M 

2 increases from 

 to 1. As x further decreases from x min to 0, the argument of W −1 increases 
gain from − 1 / e to 0 (points B and C ), and M 

2 increases from 1 to ∞ . The 
ther critical solution, with M 

2 increasing for increasing x , is obtained by 
witching the functions W 0 and W −1 in equation ( 51 ). 

c  

o  

t  

6

e

 

−1 / 2 for χ > 0, while M ∼ √ 

2(2 − R /ξ ) ln ( x/x min ) when χ = 0
provided that R > 2 ξ ). 

As already found for JJ models in the isothermal case, also for J3
odels, the case χ = 0 [from equation ( 18 ) corresponding to a galaxy
ithout a central MBH] reveals some interesting properties of the gas
o w, also rele v ant for the understanding of the more natural situation
> 0. In fact, near the centre f ( x) ∼ (2 − R /ξ ) ln x, and a solution

s possible only for R ≥ 2 ξ , with x min given by equation ( 50 ).
hen R < 2 ξ , f min = −∞ (reached at the origin), and therefore

o accretion is possible since λt would be zero. In the special case,
= 0 and R = 2 ξ , f min is again reached at the origin, but f now

onverges to f min = 2(1 + ln ξ ), with λt = ξ 2 e 3/2 . Given the similarity
f JJ and J3 models near the centre, the fact that both models share
he same properties at small radii is not surprising. 6 Equation ( 52 )
 For a further discussion of the effect of the central density slope on the 
xistence of isothermal accretion solutions with χ = 0, see CP17 and CP18 . 
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Figure 3. Critical accretion parameter λt as a function of ξg for the minimum halo case α = 1 (black), 2 (blue), and 3 (red), and χ = 1 and β = 1. The dotted 
curves refer to α = 1 and three different values of β. The left-hand panel shows the case γ = 1; the right-hand panel shows the case γ = 4/3. Notice that λt in 
the isothermal case is several order of magnitude larger than the γ = 4/3 case. 
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an still be used with χ = 0 for R > 2 ξ , while for R = 2 ξ , from
quations ( 51 ) and ( A2 ), it can be shown that M 

2 = 1 + O( x). 
We no w sho w ho w the condition R ≥ 2 ξ when χ = 0, in order

o have accretion, imposes an upper limit on T ∞ 

. In fact, from
quation ( 44 ), with γ = 1, the identity R / (2 ξ ) = 3 / (2 βF g ) produces
 condition for β : 

≤ 3 

2 F g ( ξg ) 
≡ βc , (53) 

here the critical parameter βc depends only on ξ g . It follows that 
n absence of a central MBH, isothermal accretion in J3 galaxies is
ossible only for 

 ∞ 

≤ βc T V , i . e . , σpg (0) = σg (0) ≥ c ∞ 

, (54) 

here the last inequality derives from equation ( 45 ). 
As anticipated, the limitation R ≥ 2 ξ when χ = 0 is also rele v ant

or the understanding of the flow behaviour when χ > 0. In fact, it
s possible to show that by defining τ ≡ β/βc = 2 ξ/ R , for R → ∞
nd fixed 7 τ , we have 

 min ∼

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

− τ + W −1 ( − τ e − τ ) 

2 
R , τ < 1 , √ 

χR 

2 
, τ = 1 , 

χ τ

2 ( τ − 1) 
, τ > 1 . 

(55) 

he trend of x min as a function of β is shown by the black solid line
n Fig. 2 (top right-hand panel) for a minimum halo model with ξ g =
3 and μ = 0.002. For example, equation ( 55 ) allows to explain the
rop at increasing β when τ switches from being less than unity 
o being larger than unity, with x min � χ /2 independently of τ ; the
 As for JJ models [ CP18 , equation ( 48 )], from equation ( 50 ) it follows that 
he limit for R → ∞ is not uniform in τ . 

f  

w  

h  

m  
lack square point at r min � 57 . 34 r B corresponds to β = βc � 1.65,
ell approximated by the value 57 . 01 r B obtained with the previous

quation. Equation ( 55 ) allows us to find the behaviour of λt for
arge values of R (at fixed β). For example, in the peculiar case, β =

c (i.e. τ = 1), an asymptotic analysis shows that λt ∼ e 3 / 2 R 

2 / 4;
or simplicity, we do not report the expression of λt for β �= βc ,
hich can, ho we ver, be easily calculated. As shown in Fig. 3 (left-
and panel), the presence of the galaxy makes λt several orders of
agnitude larger than without it. For reference, in Fig. 4 (right panel)
MNRAS 512, 2474–2488 (2022) 
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e show βc as a function of ξ g , for both JJ and J3 models; it is easy
o pro v e that 3 / 2 < βc ≤ 9 / ( π2 − 6) � 2 . 33. 

A summary of the results can be seen by inspection of Fig. 5 (top
anels), where we show the radial profile of the Mach number for
hree dif ferent v alues of the temperature parameter ( β = 1, 2, 3). Solid
ines show the two critical solutions, one in which the gas flow begins
upersonic and approaches the centre with zero velocity, and the other
n which M continuously increases towards the centre. The dotted
ines show two illustrative sub-critical solutions with λ = 0 . 8 λt . It is
pparent that r min decreases very rapidly with increasing temperature
t the transition from β = 1 to β = 2: r min � 19 . 89 r ∗, 0 . 0093 r ∗, and
 . 0024 r ∗, for β = 1, 2, and 3, respectively. 
Finally, once the Mach number profile is known, the gas density

rofile is obtained from the first equation of the system [equation
 6 )] with γ = 1, i.e. 

˜ ( x ) = 

ρ( x ) 

ρ∞ 

= 

λ

x 2 M ( x ) 
. (56) 

long the critical solution, by virtue of equation ( 52 ) it follows
hat ˜ ρ ∼ λt x 

− 3 / 2 / 
√ 

2 χ at the centre when χ > 0, while ˜ ρ ∼ x R /x 

t large radii. Fig. 6 (top panel) shows the radial trend of ˜ ρ for
he critical accretion solution in our reference model, with λt �
.14 × 10 8 . The bottom panel shows the gas velocity profile and,
or comparison, the isotropic velocity dispersion σ r . Notice that near
he centre, σBH ∝ r − 1 / 2 and � = c ∞ 

M ∝ r − 1 / 2 (provided that χ
 0), so that their ratio is constant; it can be easily shown that

 /σBH ∼ 6 χ . The value of σ BH near the centre (i.e. of σ r if a central
BH is present), is then a proxy for the isothermal gas inflow

elocity. 

.2 The 1 < γ < 5/3 case 

hen 1 < γ < 5/3, from the expression for f ( x ) we have that in one
ase the determination of x min and f min is trivial, i.e. for ξ → ∞ (or
 → 0) : in this situation, the galaxy contribution vanishes, and the

osition of the only minimum of f reduces to x min = χ (5 − 3 γ ) / 4.
herefore, following KCP16 , the behaviour of the associated λt could
e found just by carrying out a perturbative analysis (see KCP16 ,
ppendix A); ho we ver, since in our models R falls in the range
0 3 ÷ 10 4 , we shall not further discuss this limit case. In general,
he problem of the determination of x min (and so of λt ) cannot be
olved analytically, as apparent by combining equations ( 19 ) and
 48 ), and setting df / dx = 0 ; a numerical investigation is then needed.
s in the case of isothermal flows, we begin by considering 0 < χ

1. Of course, as f is strictly positi ve, continuous, and di vergent to
nfinity for x → 0 and x → ∞ , the existence of at least a minimum is
uaranteed. A detailed numerical exploration shows that, in analogy
ith the isothermal case in Hernquist galaxies ( CP17 ), it is possible

o have more than one critical point for f as a function of β an γ .
n particular, there can be a single minimum for f , or two minima
nd one maximum. We found that for ξ g = 13 and β ≈ 1 ÷ 2, only
ne minimum is present for γ � 1.01 and γ � 1.1; instead, for
.01 � γ � 1.1, three critical points and two minima are present.
hen β is small (i.e. T ∞ 

is low), the absolute minimum of f is
eached at the outer critical point; as β increases, the value of f at the
nner critical point decreases, and the flow is finally characterized
y two sonic points. Increasing further T ∞ 

, the inner critical point
ecomes the new sonic point, with a jump to a smaller value. Fig. 2
top right-hand panel) shows the position of x min as a function of

for dif ferent v alues of γ and confirms these trends of x min with
 ∞ 

and γ . Notice how the location of x min (shown in the bottom
NRAS 512, 2474–2488 (2022) 
anel) now decreases with an extremely slow decline for γ > 1.
ccording with equation ( 47 ), this means that, for polytropic inde x es

ufficiently greater than 1, the ratio r B / r ∗ decreases faster than what
 min increases. 

In the case χ = 0, the sonic point is reached at the origin. Indeed,
 tends to zero when x → 0 and runs to infinity for x → ∞ , and
o x min → 0 for every choice of the model parameters. Therefore,
rom equation ( 11 ) one has λt → 0, concluding the discussion of the
roblem in absence of the central MBH since no accretion can take
lace. 

Having determined the position x min , we can compute numerically
he corresponding value of λt , given in the polytropic case by
quation ( 11 ) with f min = f ( x min ) obtained from equation ( 19 ). In
ig. 3 (right-hand panel), the critical accretion parameter is shown
s a function of ξ g , for a reference model with γ = 4/3 and different
alues of β. We note that, at variance with the isothermal case
left-hand panel), λt is roughly constant for fixed β independently
f the extension of the DM halo, while, at fixed ξ g , it increases
or decreasing T ∞ 

. Having also determined λt , we finally solve
umerically equation ( 8 ), obtaining the Mach profile M ( x). In Fig. 5
middle panels), we show M ( x) for three different values of the
emperature parameter ( β = 1, 2, 3). The logarithmic scale allows
o appreciate how, according to Fig. 2 , x min suddenly falls down to
alues under unity as γ increases with respect to the isothermal case.
s an illustrative example, we show the case γ = 4/3. Although the

rend is not very strong, the location of the sonic point, at variance
ith the γ = 1 case, mo v es a way from the centre as the temperature

ncreases: r min � 0 . 025 r B , 0 . 046 r B , and 0 . 062 r B , for β = 1, 2, and
, respectiv ely. F or comparison, in the top axis we give the distance
rom the origin in units of r ∗, from which it can be seen that, in
ccordance with Fig. 2 (bottom panel), r min now tends to increase
lightly, while still of the order of 10 −4 r ∗. 

Once the radial profile of the Mach number is known, both the gas
ensity and temperature profiles can be obtained from the following
elations: 

˜ = 

˜ T 
1 

γ−1 = 

(
λ

x 2 M 

) 2 
γ+ 1 

, (57) 

ith ˜ T = T /T ∞ 

. Fig. 6 shows the trends of ρ (top panel) and T
middle panel), as a function of r / r ∗, for the critical accretion solution
n our usual reference model. The parameter β is fixed to unity, and
he curves refer to different polytropic indexes. 

For what concerns the Mach profile for the critical accretion
olution, an asymptotic analysis of equation ( 8 ) shows that, at the
eading order 

 ∼
⎧ ⎨ ⎩ 

λ
− γ−1 

2 
t (2 χ ) 

γ+ 1 
4 x −

5 −3 γ
4 , x → 0 , 

λt x 
− 2 , x → ∞ . 

(58) 

otice that all the information about the specific galaxy model in the
wo regions is contained in the parameter λt . Equation ( 58 ) allows
s to find the asymptotic behaviour at small and large radii of the
ost important quantities concerning the Bondi accretion. Close to

he centre, for example, ˜ ρ ∼ λt x 
− 3 / 2 / 

√ 

2 χ (as for the isothermal
ase), independently on the value of γ , and so for the gas velocity
 = c s M , one finds 

 

2 ( r) ∼ 	 n 2 χ μ

s 
∼ 6 χσ 2 

BH ( r) . (59) 

herefore, the central value of σ BH is a proxy for the gas inflow
elocity also in the range 1 < γ < 5/3. Fig. 6 (bottom panel)
hows the radial trend of � for different values of γ : notice how,
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Figure 5. Radial profile of the Mach number for polytropic Bondi problem in a minimum halo J3 galaxy model with ξg = 13, χ = 1, and μ = 0.002, in case 
of three different values of the gas temperature ( β = 1, 2, 3). Solid lines show the two critical solutions ( λ = λt ), while dotted lines indicate the two sub-critical 
solutions ( λ = 0 . 8 λt ); the distance from the centre is given in units of both r B (bottom axis) and r ∗ [top axis, using equation ( 42 )]. In blue, we plot the subsonic 
regime and in red the supersonic one. The top panels show the isothermal case ( γ = 1): notice how, in accordance with Fig. 2 , the position of r min decreases very 
rapidly passing from β = 1 to β = 2. Middle panels show the case γ = 4/3: in accordance with the dashed black lines in Fig. 2 , r min / r ∗ decreases for increasing 
β, while r min / r ∗ decreases (note that a logarithmic scale for radius axes has been used). Finally, bottom panels show the adiabatic case ( γ = 5/3): the position 
of the sonic point is reached at the centre, the accretion solutions are al w ays subsonic (i.e. M < 1), and the wind solutions are al w ays supersonic (i.e. M > 1). 
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o ving a way from the centre, it decreases progressively faster for
> 1 (see the green dashed line, corresponding to γ = 1.1), while

eviating significantly from the isotropic stellar velocity dispersion 
rofile. 
We conclude by noting that the inclusion of the effects of the
ravitational field of a host galaxy allows to estimate the total mass
rofile, M T ( r ) = M BH + M g ( r ), under the assumption of hydrostatic
quilibrium (see e.g. Ciotti & Pellegrini 2004 ; Pellegrini & Ciotti
MNRAS 512, 2474–2488 (2022) 
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Figure 6. Density (top), temperature (middle), and velocity (bottom) pro- 
files, as a function of r / r ∗, for the critical (i.e. λ = λt ) accretion solution of 
the polytropic Bondi problem in a minimum halo J3 galaxy model with ξg = 

13, χ = 1, and μ = 0.002. The gas temperature at infinity T ∞ 

equals the 
stellar virial temperature T V , i.e. β = 1. For comparison, the dotted line in 
the bottom panel shows the isotropic velocity dispersion profile σ r . 
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006 ). First of all, we note that the estimated mass reads 

 est ( r) = M T ( r) + 

r 2 

2 G 

d � 2 

dr 
, (60) 

hence it is clear that the hypothesis of hydrostatic equilibrium
l w ays leads to underestimate M T in the accretion studies, where the
elocity increases in magnitude towards the centre. Simple algebra
hows that the expression of M est is given by 

 est ( r) = − r 2 

Gρ( r) 

dp 

dr 
= −M BH 

x 2 

˜ ρ2 −γ

d ̃  ρ

dx 
, (61) 

nd, near the MBH (i.e. for x → 0), where ˜ ρ ∼ λt x 
−3 / 2 / 

√ 

2 χ , 

M est ( r) 

M BH 
∼ 3 

2 

(
λt √ 

2 χ

)γ−1 

x 
5 −3 γ

2 ; (62) 

otice that in the isothermal limit case one has M est ( r ) ∝ r . 

.3 The γ = 5/3 case 

he monoatomic case ( γ = 5/3) presents some special behaviour
eserving a short description. By considering equation ( 19 ) with
= 5/3, it follows that f is monotonically increasing and the only
inimum is reached at the centre (KCP17); moreo v er, for galaxy
odels with r 	 g ( r) → 0 when r → 0 (as for J3 models), one finds

 min = χ , whence λt = χ2 /4. Therefore, χ > 0 in order to have
ccretion. 

When λ = χ2 /4, the Bondi problem [equation ( 8 )] reduces to the
ourth-degree equation 

 

2 − 4 f ( x) 

χ

√ 

M + 3 = 0 , (63) 

rovided that the condition on the central potential mentioned abo v e
s satisfied; note that the dependence on the specific galaxy model is
ontained only in the function f ( x ). In the bottom panels of Fig. 5 ,
e show the radial profile of the Mach number. In this situation,
 min = 0, and so the accretion solutions (blue lines) are subsonic
verywhere. 

The asymptotic bahaviour of M ( x) for the critical accretion
olution when x → ∞ is obtained from equation ( 58 ) just by fixing
t = χ2 / 4. When x → 0, instead, the γ = 5/3 case does not coincide
ith the limit of equation ( 58 ) for γ → 5/3 : in fact, now M → 1

nstead of infinity, and its asymptotic trend reads 

 ( x) ∼ 1 −
√ 

− 8 R x ln x 

3 ξ χ
, x → 0 ; (64) 

f course, the same situation at small radii occurs in the case of any
ther quantity deriving from Mach’s profile: for example, 

 

2 ( r ) ∼ 	 n χ μ

2 s 
, M est ( r ) ∼ 3 χ

4 
M BH . (65) 

otice that � decreases by a factor of 2 with respect to the 1 ≤ γ <

/3 case, and M est differs from what would be obtained setting γ =
/3 and λt = χ2 / 4 in equation ( 62 ). 

 ENTROPY  A N D  H E AT  BA L A N C E  A L O N G  T H E  

O N D I  SOLUTI ON  

n this section, we employ the obtained polytropic solutions to
lucidate some important thermodynamical aspects of the Bondi
ccretion, not al w ays sufficiently stressed in the literature. In fact,
t is not uncommon to consider Bondi accretion as an ‘adiabatic’
roblem, where no radiative losses or other forms of heat transfer
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ake place: after all, no heating or cooling functions seem to be
pecified at the outset of the problem. Obviously, this is not true,
eing the Bondi solution a purely hydrodynamical flow where all 
he thermodynamics of heat exchange is implicitly described by the 
olytropic index γ . Therefore, for given γ (and in the absence of
hock waves), one can follow the entropy evolution of each fluid 
lement along the radial streamline, and determine the reversible 
eat exchanges. Let us consider polytropic Bondi accretion with 8 γ
 γ ad . From the expression of the entropy per unit mass S for a

erfect gas (e.g. Chandrasekhar 1939 ), and assuming as reference 
alue for S its value at infinity, we can write the change of entropy of
n element of the accreting flow along its radial streamline, during a
olytropic transformation, as 

DS 

Dt 
= C V ( γ − γad ) 

D ln ˜ ρ

Dt 
, � S ≡ S − S ∞ 

, (66) 

here D /D t = ∂/∂t + � · ∇ is the material deri v ati ve. Of course,
or γ = γ ad no change of entropy occurs along regular solutions, 
eing the process isentropic; instead, for γ �= γ ad , once the solution 
f the Bondi problem is known, equation ( 66 ) allows to compute
he entropy change of a fluid element. From the second law of
hermodynamics, the rate of heat per unit mass exchanged by the 
uid element can be written as 

Dq 

Dt 
= T 

DS 

Dt 
. (67) 

herefore, from equation ( 66 ), it follows that, for γ �= γ ad , a fluid
lement necessarily exchanges heat with the ambient; this fact can 
e restated in terms of the specific heat as 

Dq 

Dt 
= C DT 

Dt 
= C V 

γ − γad 

γ − 1 

DT 

Dt 
, (68) 

here C is the constant specific heat for polytropic transformations 
see e.g. Chandrasekhar 1939 ). A third (equi v alent) expression for
he heat exchange can be finally obtained from the first law of
hermodynamics, i.e. 

Dq 

Dt 
= 

De 

Dt 
− p 

ρ2 

Dρ

Dt 
, (69) 

here e is the internal energy per unit mass, and, apart from an
dditive constant, h = e + p/ρ = C p T is the enthalpy per unit mass.
n the stationary case, from equations ( 67 )–( 69 ), one has 

Q 

ρ
≡ Dq 

Dt 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C V ( γ − γad ) T � · ∇ ρ

ρ
, 

C V 
γ − γad 

γ − 1 
� · ∇ T , 

� · ∇ 

(
� 2 

2 
+ h − 	 T 

)
, 

(70) 

here Q is the rate of heat exchange per unit volume, � = − � e r , ∇ =
 r d /d r , and the last expression can be easily pro v ed (e.g. Ciotti 2021 ,
hapter 10). Summarizing, a fluid element undergoing a generic 
olytropic transformation loses energy as it mo v es inward and heats
hen 1 < γ < γ ad , while for γ > γ ad , it experiences a temperature
ecrease. In the polytropic Bondi accretion both cases are possible, 
xcept for a monoatomic gas, when accretion is possible only for
≤ γ ad = 5/3 (see Section 2 ). We can now use each expression in

quation ( 70 ) to compute the rate of heat exchange just by substituting
n them the solution of the Bondi problem. Defining Q n = c 3 ρ∞ 

/r B ,
∞ 

 Notice that not necessarily γ < γ ad ; for example, one could study a γ = 5/3 
ccretion in a biatomic gas with γ ad = 7/5. 

i  

γ  

c  

c

he first two expressions in equation ( 70 ), and the third one, become,
espectively, 

 = 

Q n λt 

x 2 
×

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

γad − γ

γ ( γad − 1) 
˜ ρ γ−2 d ̃  ρ

dx 
, 

− dE 
dx 

, 

(71) 

here, up to an additive constant, 

 ≡
[M 

2 

2 
+ 

γad 

γ ( γad − 1) 

]
˜ ρ γ−1 −

[
χ

x 
+ 

R 

ξ
ψ 

(
x 

ξ

)]
. (72) 

he situation is illustrated in Fig. 7 : the left-hand panel refers to the
sothermal case and three values of β; the right-hand panel shows the
ase of a monoatomic gas (i.e. γ ad = 5/3) for a fixed β and different
alues of γ < γ ad . The plotted quantity is − 4 π r 2 Q ( r), i.e. the rate
f heat per unit length exchanged by the infalling gas element. In
ractice, by integrating the curves between two radii r 1 and r 2 , one
btains the heat per unit time exchanged with the ambient by the
pherical shell of thickness | r 2 − r 1 | . For comparison, the dashed
ines correspond to the same case, i.e. isothermal accretion with 
 ∞ 

= T V . Notice how in general the profile is almost a power law
 v er a very large radial range, and how the heat exchange decreases
or increasing T ∞ 

and for γ approaching γ ad . 
An important region for observational and theoretical works is the 

alactic centre. The general asymptotic trend of Q , for x → 0 and χ
 0, reads 

Q 

Q n 
∼

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

3 λγ
t (2 χ ) −

γ−1 
2 ( γ − γad ) 

2 γ ( γad − 1) 
x −

3( γ+ 1) 
2 ∼ 3 χ ( γ − γad ) 

λt γ ( γad − 1) 
˜ ρ 2 ˜ T , 

3 χ3 (5 − 3 γad ) 

80( γad − 1) 
x − 4 ∼ 3(5 − 3 γad ) 

5 χ ( γad − 1) 
˜ ρ 2 ˜ T , 

(7

here in the first expression, 1 ≤ γ < 5/3 and ˜ ρ ∼ λt x 
− 3 / 2 / 

√ 

2 χ ,
nd in the second, γ = 5/3 and ˜ ρ ∼ ( χ/ 2) 3 / 2 x − 3 / 2 . In practice, close
o the centre, Q is a pure power law of logarithmic slope decreasing
rom − 3 to − 4 for γ increasing from 1 to 5/3. It follows that
he volume-integrated heat exchanges are al w ays dominated by the
nnermost region. 

We conclude by noticing the interesting fact that the heat per unit
ass exchanged by a fluid element as it mo v es from ∞ down to

he radius r admits a very simple physical interpretation; in fact, by
ntegrating the last expression of equation ( 70 ) along the streamline,
ne obtains for this exchange the remarkable result that 

q = 

� 2 

2 
+ �h − 	 T , �h ≡ h ( r) − h ( ∞ ) ; (74) 

he total heat exchanged by a unit mass of fluid (moving from ∞ to
 ) can then be interpreted as the change of the Bernoulli ‘constant’
hen the enthalpy change in equation ( 75 ) is e v aluated along the
olytropic solution. There is an interesting alternative way to obtain 
he result abo v e. In fact, from the first law of thermodynamics, dq =
h − dp / ρ; thus, in our problem, we also have ∫ p 

p ∞ 

dp 

ρ
= �h − �q = 

(
1 − C 

C p 

)
�h. (75) 

his shows that the integral at the left-hand side, which appears
n Bondi accretion through equation ( 3 ), equals � h only for γ =

ad , while, in general, it is just proportional to � h . Equation ( 74 )
an also be obtained by inserting equation ( 75 ) in equation ( 3 ) and
onsidering the total potential (galaxy plus MBH). 
MNRAS 512, 2474–2488 (2022) 
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M

Figure 7. Absolute value of the rate of heat per unit length exchanged by the fluid element, 4 πr 2 | Q | , in units of r 2 B Q n , as a function r / r ∗, for the critical 
Bondi accretion of a minimum halo J3 model with ξg = 13, χ = 1, and μ = 0.002. Left-hand panel: isothermal case for β = 1, 1.5, and 2. Right-hand panel: 
monoatomic gas ( γ ad = 5/3) with β = 1 for different values of the polytropic index. In both panels, the dashed lines correspond to isothermal accretion with 
T ∞ 

= T V . 
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 DISCUSSION  A N D  C O N C L U S I O N S  

 recent paper ( CP18 ) generalized the Bondi accretion theory to
nclude the effects of the gravitational field of the galaxy hosting
 central MBH and of electron scattering, finding the analytical
sothermal accretion solution for Jaffe’s two-component JJ galaxy

odels ( CZ18 ). The JJ models are interesting because almost all their
ele v ant dynamical properties can be expressed in relatively simple
nalytical form, while reproducing the main structural properties
f real ellipticals. Ho we ver, their DM haloes cannot reproduce the
xpected r −3 profile at large radii, characteristic of the NFW profile;
s Bondi accretion solution is determined by the gas properties at
infinity’, it is important to understand the effect of a more realistic
M potential at large radii. Moreo v er, in CP18, only isothermal

olution was studied. Later, CMP19 presented two-component J3
alaxy models, similar to the JJ ones but with the additional property
hat the DM halo can reproduce the NFW profile at all radii. J3

odels then represent an impro v ement o v er JJ ones, while retaining
he same analytical simplicity, and so a v oiding the need for numerical
nvestigations to study their dynamical properties. In this paper, we
ake advantage of J3 models to study again the generalized Bondi
roblem, further extending the investigation to the general case of
 polytropic gas and elucidating some important thermodynamical
roperties of accretion. The parameters describing the solution are
inked to the galaxy structure by imposing that the gas temperature
t infinity ( T ∞ 

) is proportional to the virial temperature of the
tellar component ( T V ) through a dimensionless parameter ( β) that
an be arbitrarily fixed. The main results can be summarized as
ollows. 

(i) The isothermal case can be solved in a fully analytical way. In
articular, there is only one sonic point for any choice of the galaxy
tructural parameters and of the value of T ∞ 

. It is found, ho we ver,
hat r min , the position of the sonic radius, is strongly dependent on
 ∞ 

, with values of the order of, or larger than, the galaxy ef fecti ve
NRAS 512, 2474–2488 (2022) 
adius ( R e ) for temperatures of the order of T V , and with a sudden
ecrease down to ≈10 −2 R e , or even lower, at increasing T ∞ 

(say
 1 . 5 T V ). In the absence of a central MBH (or χ = 0, i.e. when

he gravitational attraction of the central MBH is perfectly balanced
y the radiation pressure), accretion is possible provided that c ∞ 

≤
pg (0), i.e. when T ∞ 

is lower than a critical value, with σ pg (0) the
entral projected stellar velocity dispersion. 

(ii) When 1 < γ < 5/3, the Bondi accretion problem does not allow
or an analytical solution. A numerical exploration shows that r min 

uddenly drops to values � r ∗ as γ increases at fixed T ∞ 

. Moreover,
epending on the specific values of R , ξ , and γ , the accretion flow can
ave one or three critical points, and in very special circumstances
wo sonic points. For a given γ , quite independently of the extension
f the DM halo, the accretion parameter λt is roughly constant at fixed
, with values several order of magnitudes lower than the isothermal
ase. In absence of a central MBH, no accretion can take place. 

(iii) In the monoatomic adiabatic case ( γ = 5/3), the Mach number
rofile can be obtained for a generic galaxy model by solving a fourth-
egree algebraic equation. Ho we ver, the solution is quite impractical,
nd a numerical e v aluation is preferred. As already shown in KCP16 ,
n this case λt = χ2 / 4, so that, again, the absence of the central MBH
akes accretion impossible. 
(iv) We consider in detail the thermodynamical properties of

ondi accretion when the polytropic index γ differs from the
diabatic index γ ad . Under this circumstance, the entropy of fluid
lements changes along their path lines, and it is possible to compute
he associated heat exchanges ( Q ). We provide the mathematical
xpressions to compute Q as a function of radius, once the Bondi
roblem is solved and, in particular, its asymptotic behaviour near
he MBH. 
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PPEN D IX  A :  T H E  LAMBERT  – EULER  

U N C T I O N  

he Lambert–Euler function is a multi v alued function defined 
mplicitly by 

 ( z) e W ( z) = z , z ∈ C ; (A1) 
he two real-valued branches of the W are denoted as W −1 and W 0 

see Fig. A1 , left-hand panel). The asymptotic expansion of W 0 

eads 

 0 ( z) = 

{ 

z + O 

(
z 2 
)
, z → 0 , 

ln z + O( ln ln z) , z → ∞ , 
(A2) 

see e.g. de Bruijn 1981 ), while for z → 0 it can be shown that
 −1 ( z) ∼ ln ( − z). Moreo v er, it can be pro v ed that { 

W −1 ( z e z ) = z, W 0 ( z e z ) ≥ z, for z ≤ − 1 , 

W −1 ( z e z ) ≤ z, W 0 ( z e z ) = z, for z ≥ − 1 . 
(A3) 

herefore, W −1 ( z e z ) ≤ z, and W 0 ( z e z ) ≥ z for all values of z.
inally, we recall the monotonicity properties W 0 ( z 1 ) ≥ W 0 ( z 2 ) and
 −1 ( z 1 ) ≤ W −1 ( z 2 ) for z 1 ≥ z 2 . For a general discussion of the

roperties of W , see e.g. Corless et al. ( 1996 ). 
In physics, the W - function has been used to solve problems

anging from Quantum Mechanics (see e.g. Valluri et al. 2009 ;
ang & Moniz 2019 ) to General Relativity (see e.g. Mez ̋o & Keady

016 ; see also Barry et al. 2000 for a summary of recent applications),
ncluding Stellar Dynamics ( CZ18 ). Indeed, several transcendental 
quations accruing in applications can be solved in terms of W ;
or example, it is a simple exercise to prove that, for X > 0, the
quation 

X 

b + c ln X = Y , (A4) 

here a , b , c , and Y are quantities independent of X , has the general
olution 

 

b = 

c 

ab 
W 

(
ab 

c 
e 

b 
c Y 

)
. (A5) 

n particular, the solution of equation ( 49 ) can be obtained for 

 = 1 + 

x min 

ξ
, a = b = 1 , c = − R 

2 ξ
, Y = 1 + 

χ

2 ξ
, 

(A6) 

s 

 + 

x min 

ξ
= c W 

(
1 

c 
e 

Y 
c 

)
. (A7) 

e note that equations ( 50 ) and ( A7 ) represent the only solution
or x min in the isothermal accretion for generic values of the model
arameters. This can be pro v ed as follows. The first condition for
he general validity of equation ( A7 ) is that the argument of W must
e ≤0. In fact, c ≤ 0 and x min ≥ 0, so that the right-hand side of
quation ( A7 ) must be ≥0, i.e. necessarily W ≤ 0; from Fig. A1 (left-
and panel), this forces the argument to be ≤0. This first condition
s al w ays true for our models. The second condition, again from the
eft-hand panel of Fig. A1 , is that the argument must be ≥ − 1 / e
or all possible choices of the model parameters. This inequality 
s easily verified by showing, with a standard minimization of a
unction of two variables, that the minimum of the argument o v er
he region Y ≥ 1 and c ≤ 0 is indeed not smaller than − 1 / e. Finally,
e show that only the W −1 function appears in the solution for x min .
his conclusion derives from the physical request that x min ≥ 0, 

.e. that the right-hand side of equation ( A7 ) is ≥1. Let z = 1/ c .
rom the monotonicity properties of W −1 and W 0 mentioned after 
quation ( A3 ), as Y ≥ 1 we have z e Yz ≥ z e z , and so equation ( A3 )
ields W 0 ( z e Yz ) ≥ W 0 ( z e z ) ≥ z, i.e. c W 0 ( e Y/c /c) ≤ 1, being z ≤
. An identical argument shows instead that c W −1 ( e Y/c /c) ≥ 1, as
equired. 
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Figure A1. Left: the two real branches W 0 (solid line) and W −1 (dashed line), where A = (0, 0) and B = ( −1 / e , −1), while C indicates the asymptotic point 
(0 , − ∞ ). Right: the two real branches of the function W ( z e z ). 
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