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Abstract

Recently, it has been suggested that the phenomenology of flat rotation curves observed at large radii in the
equatorial plane of disk galaxies can be explained as a manifestation of general relativity (GR) instead of the effect
of dark matter (DM) halos. In this paper, by using the well-known weak-field, low-velocity gravitomagnetic
formulation of GR, the expected rotation curves in GR are rigorously obtained for purely baryonic disk models
with realistic density profiles and compared with the predictions of Newtonian gravity for the same disks in
absence of DM. As expected, the resulting rotation curves are indistinguishable, with GR corrections at all radii of
the order v* / ¢~ 107°. Next, the gravitomagnetic Jeans equations for two-integral stellar systems are derived, and
then solved for the Miyamoto—Nagai disk model, showing that finite-thickness effects do not change the previous
conclusions. Therefore, the observed phenomenology of galactic rotation curves at large radii requires DM in GR
exactly as in Newtonian gravity, unless the cases here explored are reconsidered in the full GR framework with
substantially different results (with the surprising consequence that the weak-field approximation of GR cannot be
applied to the study of rotating systems in the weak-field regime). In this article, the mathematical framework is
described in detail, so that the present study can be extended to other disk models, or to elliptical galaxies (where
DM is also required in Newtonian gravity, but their rotational support can be much less than in disk galaxies).

Unified Astronomy Thesaurus concepts: Galaxy dark matter halos (1880); Galaxy rotation curves (619); General
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relativity (641)

1. Introduction

Recently, following the original suggestion of Cooperstock
and Tieu (2007; see also Balasin & Grumiller 2008), several
papers have addressed the interesting possibility that the
observed phenomenology of rotation curves in disk galaxies
can be explained by general relativity effects (hereafter, GR)
peculiar to rotating systems, without the need to invoke the
presence of dark matter (hereafter, DM) halos in order to
produce the flat behavior at large galactocentric distances.

Unfortunately, no definite consensus about the importance of
GR effects on the rotation curves of disk galaxies has seemed to
be reached, with widely different conclusions ranging from
support to the hypothesis to the identification of possible
mathematical issues affecting the disk models used to compute
the GR solutions (for a representative, but almost certainly
incomplete list of papers representing the different positions, see,
e.g., Vogt & Letelier 2005a, 2005b; Korzynski 2005; Cross 2006;
Fuchs & Phleps 2006; Carrick & Cooperstock 2012; Rowland
2015; Deledicque 2019; Crosta et al. 2020; Ludwig 2021;
Ruggiero et al. 2021; Toth 2021; Astesiano & Ruggiero 2022;
Ludwig 2022, and references therein).

If confirmed, the suggestion above would be a most
surprsing result, with consequences extending well beyond
the problem of the interpretation of galaxy rotation curves, and
perhaps even beyond the problem of the existence of DM. A
list of some of these consequences (not necessarily in order of
importance) is the following. (1) Usually, it is expected that
lowest-order corrections of GR to Newtonian dynamics are of
the order v* / c2, where v is a characteristic velocity associated
with the Newtonian gravitational potential of the system, and ¢
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is the speed of light. In astronomical systems where the
presence of DM is required by Newtonian gravity, v/c~ 10>
or less; therefore such systems are empirically in the GR weak-
field regime. If the flat region of rotation curves is a GR effect,
then we face the problem of explaining in physical terms how
an expected effect of the order ~10° actually becomes more
important than the zeroth-order Newtonian term: we notice that
mathematically such a behavior characterizes singular pertur-
bation theory. (2) In case the previous point is satisfactorily
answered, we should then explain why other effects of GR in
the weak-field approximation (not directly related to rotation)
remain at the level of small perturbations, for example by
requiring the presence of DM in order to reproduce gravita-
tional lensing, and correctly predicting the small amount of
planetary precession left unexplaied once Newtonian preces-
sion is considered.' (3) DM is clearly required by Newtonian
gravity not only in rotating disk galaxies, but also in velocity
dispersion (pressure) supported astronomical systems with low
ordered rotation, such as elliptical galaxies and clusters of
galaxies (with converging predictions about the structural
properties of the inferred DM halos obtained from different
diagnostics, such as dynamical analysis, the modeling of X-ray-
emitting halos, and gravitational lensing; see, e.g., BTOS,
Bertin 2014).

Different strategies can be imagined to test the possibility of a
general relativistic origin of the flat rotation curve in disk galaxies.

! Unfortunately, in too simplistic descriptions it is said that GR “explains the

precession of Mercury’s perihelion,” conveying the wrong impression of a
major effect, instead of a small (but physically dramatic) correction. In
Newtonian gravity the perihelion of Mercury’s orbit is predicted to precess
~531 arcseconds/century due to planetary perturbations, against the observed
~574 arcseconds/century (e.g., Fitzpatrick 2012), while GR accounts for the
remaining ~43 arcseconds/century. The explanation of the precession of
Mercury’s perihelion is a triumph both of GR and of Newtonian theory, the
latter not least for the bold statement that the small discrepancy of ~43
arcseconds/century cannot be accounted for in its framework.
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In the first, one can just try to reproduce the expected GR rotation
curve of some specific galaxy starting from its observed baryonic
(e.g., stars and gas) density profile. This attempt suffers from some
shortcomings. In fact, the mathematical modeling in GR (also
considering effects such as sparse data points, error bars, and so
on) is more complicated than in Newtonian gravity, and great care
is needed to interprete the results. Moreover, it should be recalled
that the Newtonian rotation curve of a purely baryonic razor-thin
exponential disk (the common stellar density profile observed in
disk galaxies) of total mass My and scale length Ry, is not
Keplerian over a large fraction of the stellar disk (see, e.g., Binney
& Tremaine 2008 and Ciotti 2021, hereafter BTO8 and C21,
respectively), increasing from the center, reaching a quite shallow
maximum at=a2 Ry, and remaining almost flat up to~3 Ry (a
radius already encircling ~0.8 My; see Section 4.1). It follows that
in Newtonian gravity observed stellar rotation curves in disk
galaxies hardly require any DM over a large fraction of the optical
disk, while DM is certainly required by the rotation curves at
larger galactocentric distances measured by radio observations in
H I gas (see, e.g., Kalnajs 1983; van Albada et al. 1985; Kent
1986; van Albada & Sancisi 1986, and, in particular, Chapter
20 in Bertin 2014 for a complete account of the situation), and
theoretically by stability arguments (Ostriker & Peebles 1973).
Therefore, in this first approach the prediction of a GR rotation
curve not declining with R over a large part of the stellar disk
would just be what was expected in case of small GR corrections
to the Newtonian rotation curve.

In a second approach (that we follow in this paper), one avoids
direct comparison with observational data but instead constructs
the Newtonian and the (weak-field) GR rotation curves produced
in the equatorial plane by a rotating stellar disk without DM, with
total baryonic mass, scale length, and density profile similar to
those observed in real disks/elliptical galaxies. The obvious
advantage of this approach is that, whatever the solution is, we
learn something. In fact, let us assume that the obtained rotation
curve in GR and in Newtonian gravity are essentially the same
(the common expectation): after excluding the case of mathema-
tical /physical errors in the modeling, only three conclusions are
possible. Conclusion 1: if we still pretend that GR can explain the
flat profile of the rotation curves of disk galaxies at large radii
without invoking the presence of DM halos, then we must
conclude that the adopted weak-field approximation of GR cannot
be used to describe the dynamics of disk galaxies, even though
these systems are (empirically) in the weak-field regime.
Conclusion 2: the weak-field approximation of GR can be used
to describe the weak-field regime of disk galaxies, but in the
explored cases we fail to reproduce the flat region of rotation
curves at large radii (i.e., well beyond the geometrical outskirts of
the optical stellar disk) because we assumed a too simple/
idealized orbital structure for the stars producing the velocity-
dependent component of the GR force in the equatorial plane.
Conclusion 3: the weak-field approximation can be used to
describe the weak-field regime in disk galaxies, and DM halos are
required in GR as they are in Newtonian gravity.

Conclusion 1 would be quite formidable, and should be
proved convincingly showing that higher-order effects not
considered in the weak-field expansion used are even more
important than those considered or, better, by presenting a case
obtained by numerically solving the full (nonlinear) GR
equations for a realistic baryonic disk in the weak-field regime,
with a predicted rotation curve significantly different with
respect to the Newtonian rotation curve for the same baryonic
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disk, i.e., with GR “corrections” well above 300% and
increasing as the square root of the galactocentric radius at
larger and larger distances from the center. Conclusion 2 would
imply that a universal property of the rotation curves of disk
galaxies is a GR effect produced by peculiar (in actual fact,
never observed) significant streaming motions of the stellar
populations along the vertical and radial directions (see
Section 4 for details). As we will see, even if with the aid of
simple models (however, the most realistic used so far in this
problem), in this paper we present quite strong evidence that a
commonly adopted weak-field approximation of GR predicts
rotation curves indistinguishable from the Newtonian ones in
absence of DM, therefore strongly supporting Conclusion 3
above. In order to illustrate the results in the most transparent
way, the mathematical setting is rigorously presented, and all
the assumptions made explicitely stated, so that an interested
reader is in a position to repeat and extend the study. We use
cylindrical coordinates (R, ¢, z), and vectors are in boldface.

The paper is organized as follows. In Section 2 we recall the
expression for the gravitomagnetic equations in case of low
velocities for the sources, and the equations of motion for a
low-velocity test mass, together with the general integral
expressions of the gravitomagnetic fields in terms of the mass
current for axisymmetric systems, in the two alternative
formulations of elliptic integrals and Bessel functions, also
discussing their convergence properties. In Section 3 we
consider the case of the rotation curve of generic razor-thin
disks supported by circular orbits, and provide a regular series
expansion of the rotational velocity in terms of the small
expansion parameter € = v; / ¢? (the square of the ratio between
a characteristic Newtonian velocity of the disk and the speed of
light ¢). In Section 4 we consider the explicit case of a baryonic
exponential disk, and we obtain essentially identical Newtonian
and GR rotation curves. The result is then confirmed with the
aid of a Kuzmin disk, where the first-order GR correction can
be computed analytically. In Section 5, we relax the
assumption of razor-thin disks, and we derive the gravitomag-
netic Jeans equations for collisionless axisymmetric systems
supported by a two-integral phase-space distribution function.
This allows to investigate finite-thicknes GR effects on the
rotational velocity in the equatorial plane. The case of the
Miyamoto—Nagai disk is studied, again fully confirming
the results for razor-thin disks. Section 6 concludes, while in
the Appendix mathematical details are provided.

2. The Gravitomagnetic Equations

In this paper, following previous works, we adopt the
gravitomagnetic formulation of GR in the weak-field limit, for
low velocities and for steady motions of the sources of the
gravitational field, where the equations, truncated at the first order
(inclusive) of the source velocity in unit of the speed of light c,
reduce to

V - E = —47Gp(x), VANE =0,
1
V-B=0, VAB="Y%), M
c

(see, e.g., Landau & Lifshitz 1971 and Poisson & Will 2014,
for a detailed description of higher-order post-Newtonian
expansions; see also Rindler 1997; Lynden-Bell & Nouri-Zonoz
1998; Mashhoon et al. 1999; Clark & Tucker 2000; Ruggiero
& Tartaglia 2002; Mashhoon 2008; Costa & Natério 2021, and
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Ruggiero 2021). We indicate with A the vector (cross) product,
V is the usual nabla operator, and j = pv is the gravitational
current density, p and v being the mass density and velocity field
of the sources. Notice that at this expansion order the
gravitoelectric field E=— V¢ is just the Newtonian field
produced by p, so that in Equation (1) the GR effects arise only
from the gravitomagnetic Ampere’s law. The equation of motion
of a test star at position x, is given analogously by the low-
velocity limit of the Lorentz force (e.g., see Feynman et al. 1977;
Jackson 1998, hereafter J98),

dZX* dX*
=E(xy) — vy A B(xy), Ve = —,
e (%) % () % I

where B(x,) is the gravitomagnetic field produced at x . by the
total gravitational current density distribution: notice the minus
sign in front of the gravitomagnetic force, instead of the plus
sign appearing in the electromagnetic case. For future use (see
Section 4) it is useful to distinguish between the velocity v, of
the test star, and the velocity v(x,) of the mass current of the
sources at x,, even though we anticipate that in the case of
razor-thin disks made by circular orbits (see Section 3),
necessarily v, =v(x,).

Equations (1) are formally coincident with the (stationary)
Maxwell equations, so the mathematical treatment is the same
as in electrodynamics; however, due to some mathematical
subtlety in the present astronomical problem, it is useful to list
the most important properties of the field B in the general case.
As is well known (e.g., see J98), for a current density j well
behaved at infinity,

@)

B(x) = 4G Md3y =V AA®),

c? e =yl
4G j
Aw) =28 [ ID) gy, 3)
c Jlx =yl
where the first expression is the Biot—Savart law, ||...|| is the

standard Euclidean norm, and A is the gravitomagnetic
potential vector in the Coulomb gauge, particularly appropriate
for the magnetostatic case of steady currents. The Biot—Savart
law can be proved by carrying the V operator acting on x
(hereafter V,) under the integral sign in the second expression
above, and then using the general identity V, A (fg)=
gV ANf+ (Vg Af, where in the present case the meaning
of the functions g(x, y) and f(y) is obvious, and so
Ve A(fg) = (Vyg) Af. A useful (and less known) equivalent
expression of the Biot—Savart law can be obtained from the
last identity by recognizing that V|lx —y|| = — V,|lx — y||, so
that we have V. A (fg) = — (V@) Af=g V, Af=V, A (fg),
where the last expression follows from the identity Vy A (fg) =
gVyANf+(Vyg) Af. As the volume integral of V, A (fg)
vanishes for well-behaved fields at infinity, we finally obtain
the alternative expression

_ 46

vy /\j()’)d3
2 Sl =yl

B(x) Y. “)
which we will use later on. Before addressing our specific
problem, it is important to recall some convergence property of the
fields A and B: notice that the only troublesome points x are those
inside the current distribution, when the denominators in the
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integrands vanish for y =x. The following results can easily be
established.

(1) For well-behaved, genuinely three-dimensional currents, the
integrals in Equation (3) converge absolutely, i.e., the volume
integral of the norm of the integrand converges, as can be seen by
changing variable y=r+x at fixed x, and using spherical
coordinates for r. It follows that each component of the A and B
fields is also absolutely convergent. The Fubini—Tonelli theorem
then assures that the integrals can be evaluated as repeated
integrals, and that the order of integration does not matter, even
though integrable singularities over sets of null measure can
appear: from the physical point of view such singularities have no
consequences, but attention should be paid in numerical studies.

(2) For well-behaved, razor-thin currents in the z =0 plane,

JO) = x(p ¥2)0(y3), X = (s X2» 0), Q)

where ¢ is the Dirac delta function and x is the surface current
density, the A and B integrals in Equation (3) again converge
absolutely for all points x outside the current plane, and A also for
points in the z=0 plane, as can be proved with the change of
variables y = r 4 x, and expressing r in cylindrical coordinates. The
absolute convergence of B in the z=0 plane cannot instead be
established just from boundedness of ||x||, as the corresponding
integral in Equation (3) diverges logarithmically for ||r|| — O.
However, from specialization of Equation (4) to razor-thin currents,

B == [ 225y
c [l —

4G X 3
—e, N | —=—=08(yyd", (6)
c? f e =y 7

where e, = (0, 0, 1), and proceeding as in point (2), it follows that
absolute convergence of B for points in the disk (where the
second integral above vanishes from well-known properties of 6,
and the fact that x is independent of ys) is guaranteed under the
additional request that ||V, A x|| is well behaved, a condition
obeyed by the disks considered in this paper.

(3) Finally, for razor-thin currents, Equations (3)—(4) show
that A; =0 everywhere, and B; =B, =0 for points in the
current plane.

In summary, the general results above assure that not only for
three-dimensional currents but also for points inside razor-thin
disks, the gravitomagnetic field cannot develop nasty singularities
if the surface density of the disk is sufficiently well behaved, and
B and A are given by absolutely converging integrals.

4G f Vy A x ()

2.1. The Axisymmetric Case

We now restrict to the case of axisymmetric systems, the
subject of this paper. In cylindrical coordinates x = Reg + ze,,
where ez = (cos ¢, sin, 0) and e, = (0, 0, 1), so that p = p(R,
z); we will not discuss how to obtain the associated Newtonian
gravitational potential ¢(R, z), a problem fully addressed in the
literature (see, e.g., BTO8; C21). For the moment, purely
circular orbits are considered for the sources, with a velocity
field v = v(R, z)e,, where e, = (—cos p, sinp, 0), so that

J=pR, VR, 2). (N

The condition of circular orbits will be relaxed in Section 4;
however, notice that this is a quite natural idealization when
considering the rotation curve produced by razor-thin disks in

J=JR, 2)e,,
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their equatorial plane (see Section 3). Obviously, in a three-
dimensional system, a purely circular current field outside the
equatorial plane requires a vertical pressure gradient (or a
vertical velocity dispersion field, as is the case in Section 4).
In order to evaluate the integrals in Equation (3), we
introduce the source coordinates y = fexr + z'e,, with
er = (cos ¢/, siny’, 0) and e, = (—cos ¢/, sing’, 0). It is a
simple exercise to show that for axisymmetric currents the
fields B and A are rotationally invariant (i.e., independent of ¢),
so that they can be evaluated without loss of generality at
=0, where x = (R, 0, z). For the potential vector A, it is
trivial to prove that for sufficiently regular currents (also in the
razor-thin case), not only A,=A-e,=0 everywhere, in
accordance with Point (3) above, but also Ag=A-ex=0
everywhere, while the only nonzero component is

A (R, =A - e,

4G J(&, Z')cos ¢’
= — dﬁ’
2 J (R4 £ — 2REcos ¢! + AZH)/?
Az=z7-17,
(8)

where d’y = &dédyp'dz.
An analogous treatment of the B field in Eguation (3) shows
quite easily that B, =B - e, =0 everywhere,” while

4G J(&, z") Az cos ¢

Br(R,2) =B - eg = — il
R (R, 2) B2 R+ & — 2Recosy! + Az2) 2 ?
e e '
B.R 2)=B-e.=2Y JE D€~ Reosg) sy,
: T2 (R? + €% — 2RE cos ¢’ + Az?)3/?
)

therefore, Br(R, 0) =0 for currents with reflection symmetry
about the equatorial plane, j(R, z) = j(R, — z), and in particular
for razor-thin currents, again in accordance with Point (3)
above. Notice that from Equation (Al) it follows that for the
axisymmetric currents in Equation (7):
0A, 1 ORA,

VAA=—"fept—
8ZR R OR

e,. (10)
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In summary, the gravitomagnetic fields in the plane z =0,
produced by the axisymmetric currents in Equation (7) with
reflection symmetry plane z =0 (and in particular in the razor-
thin case), can be written in full generality as A = A (R)e,, and
B = B.(R)e, where the functions A,(R) and B.(R) are obtained
from Equations (8)—(9) setting z = 0.

2.2. The Field in Terms of Complete Elliptic Integrals

In potential theory it is customary to integrate Equations (8)—(9)
first on ¢, as the knowledge of the specific form of j(R, z) is not
required. From the general results mentioned in Points (1) and (2)
after Equation (4), the Fubini—Tonelli theorem assures that this is
legitimate, and, at worst, only integrable singularities over zero-
measure sets occur. In fact, from Equations (8) and (AS5),

AR, 2) = “C—fj;m cde [* e ARG, an

where the function F(R, &, Az) can be expressed in terms of
complete elliptic integrals of first and second kind, K(k) and E
(k), and k is given in Equation (A6). Notice that, according to
Equation (A8), F, presents an integrable singularity for k=1,
i.e.,, over the ring £=R at 7z’ =z, of easy treatment in
numerical applications.

The components of the B field can be obtained from
differentiation of A,(R, z) by using Equations (10), (11), and
(A3); however, when using the fornulation in terms of complete
elliptic integrals, it is convenient to avoid explicit differentiation,
and instead work with the Biot—Savart law in Equation (9),
integrating first over o', and then proceeding as follows. For the
radial component, By, the resulting kernel in the integrand is a
perfect differential of F; with respect to both z or z’: the first
possibility just corresponds to evaluate — 0A,,/0z as required by
Equation (10). In the second option one avoids differentiation of
the elliptic integrals, performing integration by parts with respect
to z’ (provided the current j is well behaved for |z/| — oo, the
usual situation), and noticing that 9.5, /9z = —0F,/07'. For the
vertical component, B,, we also recognize the kernel as an exact
differential with respect to £ of Fy in Equation (A4), and again
we can avoid differentiation of the elliptic integrals integrating by
parts (provided j is well behaved for £ — 0o ). One finally obtains

4 o0 00 4 00 00 ; /
bk =25 [ cas [T e har =2 [ cag [T TED R

07

4 0 00 4 0 00 : /
B = [ [T g nRa=2G [" g D s

As a sanity check, it is possible to verify by direct evaluation
that Equations (8)—(10) are in fact equivalent to Equation (9).
Notice also that Equation (10) can be applied analogously to
the current in Equation (7), to compute the numerator of the
integrand in the alternative formulation of the Biot—Savart law
in Equation (4).

2 The only delicate point is the vanishing of B, over the singular ring { = R
and Az =0 inside the current. This can be proved considering Az =0 and
& — R, or £=R and Az — 0 in the integral over ¢’.

(12)

Notice that the first expression for B, can be also obtained from
Equation (10), by using the nontrivial identity (A7). Of course,
the two second identities above are not unexpected: they are just
how the Biot-Savart law in Equation (4) reduces in axisymmetric
systems. These expressions are particularly useful when working
with regular currents, as the integrable singularity in Fy and F;
can be explicitly taken into account. In particular, the second
expression for B, not only shows again that the field is well
behaved inside a regular razor-thin current, confirming the
conclusion in Point (2) above, but also shows that for a surface
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density current with an abrupt radial truncation, the field diverges
at the edge, in analogy with the well-known feature of the
rotation curve produced by truncated disks (e.g., see Casertano
1983; see also exercises 5.4-5.6 in C21).

2.3. The Field in Terms of Bessel Functions

As is well known, the integrals appearing in potential theory
can also be expressed in alternative formulations, for example
as Fourier—Bessel series, obtained by using the apparatus of
Green functions and Hankel transforms (e.g., Toomre 1963; see
also J98, BTO08, and C21). This approach is very elegant from
the analytical point of view, but the numerical implementation
is not straightforward, due to the oscillatory nature of Bessel
functions and the slow convergence of their integrals. In
practice, we substitute Equation (A9) in the second formula of
Equation (3) and we perform a first integration over ¢’. The
current in Equation (7) is a vector quantity, and so in principle
two integrals should be performed over the components of e, ;
however, it is possible to reduce the computation to a single
integration, observing that the two components of e, are just
the real and imaginary parts of the complex number ie’¢’. We
therefore introduce the complex current j* = ie'?j (£, 7'), we
determine the complex vector potential A~ with a Fourier—
Bessel expansion, and finally we switch back to the vectorial
representation by separating the real and imaginary parts. The
integration of j over ¢’ is elementary, and only the m =1
component survives, producing 27ié,,1j (£, 7). Therefore, the
final expression is in terms of a Hankel transform of index 1 for
the current (see, e.g., J98 for the case of the potential vector of
a circular spire). The last step is the evaluation of the real and
imaginary parts of the resulting expression, and it can
immediately be shown that the result is just proportional to
e, ie., we prove again that the potential vector is just
A =A_e,. In particular,

AARJ)=§§3LwL@mdy[me*mﬁmxzm¢
(13)

where
B = [T En09iE e (14
0

is the Hankel transform of order 1 of the current density:
reassuringly, by inverting the order of integration in the triple
integral in Equation (13), and performing first the integration
over )\, Equation (2.12.38.1) in Prudnikov et al. (1986,
hereafter P86) proves that the resulting expression coincides®
with Equation (11).

From Equation (10) we then obtain the two components of
the B field:

Be(R. 2 = T [ anomia [ sign(aoe NG O, 2,
C 0 —00

_ 811G = Ak N
B.R. )= =03 fo )\Jo(/\R)d)\fﬂOe b O\, 2)dz,

5)

> The equivalence in the special case of Az = 0, i.e., for points in the plane of
razor-thin currents, can also be proved by using Equation (2.12.31.1) in P86,
and Equation (6.576.2) in Gradstheyn et al. (2007, hereafter GR07).
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where the expression for B, derives from the identity d[xJ;(x)]/
dx = xJo(x). The proof of equivalence of Equations (12)—(15) is
important but quite laborious, and requires some comment. For
Bg we move A in front of J;(AR) inside the integral over z/, we
recognize a derivative with respect to z’ of the exponential
factor and integrate by part, we then exchange order of
integration, and finally integrate in A by using Equation
(2.12.38.1) in P86. For B,, the approach is to move the A in
front of Jo(AR) inside the Hankel transform j;, use the identity
M 1A = —dIp(AE)/dE, and integrate by parts over . Finally,
we invert the order of integration and use again Equation
(2.12.38.1) in P86. With this first approach we proved the
equivalence of Equation (15) with the second expressions for
Br and B, in Equation (12).

However, there is a second approach that proves the
equivalence of Equation (15) with the first identities in
Equation (12), and that also helps to clarify an important
convergence issue. In both the triple integrals in Equation (15)
we exchange the order of integration, and we evaluate first
the integrals over )\, which belong to the family
fo > xe 7], (ax)J,(bx)dx, with the aid of Equation (2.12.38.2)
in P86, where in particular p = |Az| and x = \. It can be proved
(for example, by asymptotic expansion of the Bessel functions
for large values of their argument) that for Az=0 the two
integrals over A diverge; however, if the limit for Az — 0 is
evaluated after integration, then the first identities in
Equation (12) are recovered® after expressing 0F,/dz' and
—0Fy/0¢ in explicit form.

3. Series Solution for the Gravitomagnetic Equations: a
Razor-thin Disk with Circular Orbits

Having established the general setting of the problem, we are
now in position to discuss the radial dependence of the circular
velocity of a test mass (a star or a gas cloud) in the plane of a
razor-thin disk made of field stars in circular orbits, so that

PR, 2) = X(R)6(2), v = v(R)e,,
J=xR)6(z)e,, (16)

where >(R) and v(R) are, respectively, the mass surface density
and the circular velocity of the disk, and x(R) = X(R)v(R) is the
radial profile of the two-dimensional current; according to the
orientation of the coordinate system, a positive v means
counterclockwise rotation. From the assumption of circular
velocities, it follows necessarily that the modulus of the circular
velocity of the test stars and of the rotating disk coincide, i.e.,
[[v«(R)|| = [v(R)|, and quite naturally we also assume that
v(R) =Vv(R)e,, i.e., that the test stars rotate as the stars of the
disk. From Equation (2), where the field E is just the
Newtonian gravitational field produced by >(R), and from
the fact proved in Section 2.1 that in the z=0 plane
B =B.(R)e,, we obtain the scalar equation for the circular

4 The delicacy of the exchange of the limit with the integral when using

Bessel functions is best illustrated in electrodynamics by the case of the
magnetic field produced by a circular current loop: if one computes the
magnetic field in the plane of the spire after restricting A to the z = 0 plane,
then B is predicted to diverge everywhere in the z = 0 plane. Instead, if the
field is computed for z = 0, and then the limit for z — O is considered, the
correct expression is obtained (see also Exercise 5.10 in J98).
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velocity v at each radius R:
v2 =5 + RvB.[x], (17)

where vy is the circular velocity of the disk in the Newtonian
case and where, from Equations (12)—(15), the gravitomagnetic
field in the disk plane reduces to the equivalent expressions:

G
C

16 [ 4O K® oo 2RE
% 0 d¢ R+¢

8 fo " AR £, (VA

s

R+¢ (18)

The general discussion in Sections 2.2-2.3 shows that the first
expression contains a logarithmic integrable singularity at
& =R, while in the second the order of integration cannot be
exchanged with the Hankel transform §, given by
Equation (14) applied to x(R). Notice that with B,[x] we
indicate the linear operator acting on the mass current profile
(i.e., on the v(R) profile, if the surface density X(R) profile is
assigned); notice also that Equation (17) is a nonlinear integral
equation for v(R), even if obtained in the framework of
linearized GR, and it is invariant under the inversion of the
rotational field of the disk, v(R) — — v(R). In practice, by
solving Equation (17) for assigned >(R), we obtain (at the
order of the gravitomagnetic equations) the ‘“self-consistent”
circular velocity of the disk produced by the combined effects
of the Newtonian field and of the gravitomagnetic potential
produced by the rotation curve itself.

For a razor-thin disk of total mass My and scale length Ry, it
is natural to normalize lengths to Ry, surface densities to
My /R}, and velocities to \/GMy/Ry; a tilde over a quantity
indicates normalization to its associated scale. Accordingly,
Equation (17) is recast in dimensionless form as

GM4

Rt
d

72 =9 + ¢ Rv B[R], €=
where € is a dimensionless parameter arising naturally from the
normalization of B. In fact, from Equation (18) we obtain

B, = ¢ GMy /Rd3 B, where B is the dimensionless gravito-
magnetic field in the disk. Notice that for a disk the parameter e
is nothing other than the natural proxy for the quantity v / ?
mentioned in Section 1, where v is a characteristic velocity
associated with the Newtonian gravitational field (see the solid
lines in Figure 3). Therefore, in real galaxies € is very small: for
example, e~107° in a disk galaxy with a characteristic
rotational velocity of 300 km s~ '. Accordingly, we represent v
as a regular asymptotic series in powers of e:

v(e, R) = vo(R) + e“vi(R) + O(e**),
a >0, (20)

where the exponent « is to be fixed by order balance, and of
course for ¢ — 0 we reobtain the Newtonian case. Inserting the
expansion above in Equation (17), from the linearity of B,[x]
on velocity, it follows necessarily that o =1, and at points
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where vy = 0,

B[ Xl 2y

where ¥, is the (normalized) surface density current profile
corresponding to the Newtonian rotation curve vy: from
O(B;[%,]) = €, it follows that the term ¥ depends on the
gravitomagnetic field produced by the Newtonian current only.
At the origin, the only point’ at finite R where ¥, can vanish,
perturbation analysis shows that again a = 1, but ¥ = RB[¥,];
however, as R=0, no difference arises with Equation (21),
which therefore can be used uniformly over the whole radial
range. Moreover, Equation (21) shows that the GR corrections
due to a counterclockwise current lead to a decrease of the
rotational speed where B,[xo] is negative, and an increase
where B_[x,] is positive. Of course, it is immediate to verify
that the effects on the circular speed are the same for a global
inversion of the rotational velocity vy — —vy, due to the
associated change of sign of B,[xo]. It is important to remark
that Equation (21) allows for an alternative interpretation: one
could just consider the field B;[¥,] at the right-hand side of
Equation (17), and then solve in closed form the resulting
quadratic equation for v(R). After selecting the sign so that for
€ — 0 the Newtonian profile is reobtained, an expansion of the
solution for e — 0 and truncation at the first order gives again
Equation (21), proving again that the linear gravitomagnetic
formulation of the problem leads to a regular perturbation
problem (e.g., see Bender & Orszag 1978, Chapter 7).

Of course, even if the problem admits a regular perturbation
approach, with a solution reducing to the Newtonian one in the
limit e =0, the function ¥; could attain very large (but finite)
values, compensating the small (but nonzero) value of ¢, and
producing a perturbation of the same order of magnitude® or
even larger than the Newtonian term: this would be a strong
support for the possibility of a GR origin of the flat rotation
curve of disk galaxies. In the next examples, based on realistic
disk density profiles, we show however that this is not the case,
and 7] remains small, with absolute values well below the
unity.

3.1. The Exponential Disk

In our first application we consider the razor-thin exponential
disk of total mass My and scale length Ry, the standard model
used to describe the stellar density distribution of disk galaxies
(e.g., BTO8; Bertin 2014). The surface density is given by

R
%e_ R = 37 (22)

L(R) = ,
Rd2 2 Rd

5 A clear distinction should be made between the mass current and the

rotation curve: in case of truncated disks the former is spatially limited to the
region occupied by the disk, while the latter, and the field B_[x], are defined
also in the empty region beyond the disk edge.

In converging regular expansions higher-order terms can be larger
than lower-order terms: as a simple example consider the first two terms
of the absolutely converging series e* = 1 + ex + O(e2x?), for fixed
e<and x> e
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Figure 1. Top panels: the A, field for the counterclockwise rotating exponential (left) and Kuzmin (right) razor-thin disks, in units of € /GMy /Ry, where ¢ = GMg/
(Ry ). The field is computed for the Newtonian current xj, as required by Equation (21), and it looks similar to the field that would be produced by the current of a
circular spire; the maximum of the Newtonian current is located at Ry >~ 0.574 R, for the exponential disk, and at Ry >~ 0.535 Ry for the Kuzmin disk. The maximum of
A, is located at R4 > 1.12 Ry for the exponential disk and at R4 > 0.85 Ry for the Kuzmin disk. Bottom panels: the corresponding B field, in units of € \/ GMy/ Rd”. At
z =20, B. is positive in the inner regions of the disk and negative outside; the radius Rp at which B, = 0 is determined by the critical point of RA(R), and so does not
coincide with the position of the maximum of A_(R), as apparent from the figures. Numerically, R > 2.2 R4 for the exponential disk, and Rz~ 1.68 for the

Kuzmin disk.

and in Newtonian gravity the gravitational potential in the

equatorial plane is

__GMuR[ (R (R)_ (R), (R)]
=S E() (£

so that the associated circular velocity is

GM, R (R R
w0 = G |ol )l 5) -

where I, and K,,, are the modified Bessel functions of order m
(e.g., BT08; C21). As already remarked in Section 1, the
maximum of v, is reached at R ~2.15 Ry, and in the range
1.5 < R < 3 the curve is almost flat even in absence of DM:

notice that inside 3 Ry the disk already contains ~ 0.8 My. The

Newtonian current surface density x for a disk made by purely

(24)

(440

circular orbits is then obtained from Equations (22)—(24): for a
(23) global counterclockwise rotation, it reaches the maximum at
Ry~ 0.574 Ry.

For the exponential disk it turns out that the most efficient
way to compute the gravitomagnetic field is to use the
formulation in terms of elliptic integrals. In particular, as the
current density is a regular function of R, the general discussion
about convergence leads to use Equation (11) for the evaluation
of A, and the first and second integrals in Equation (12) for the
evaluation of Bg and B,, respectively: of course, in the disk
plane the latter expression reduces to the first case in
Equation (18). Numerically, the integrable divergence at



THE ASTROPHYSICAL JOURNAL, 936:180 (15pp), 2022 September 10

0.1 | T T T T T T

I L
~
= 0.05
mT
m L
™ n

T
= L
S -
w I
\N 0
m L

-0.05 - I R | I L
0 2 4 6 8 10
R/R,

Figure 2. The (dimensionless) gravitomagnetic field B in the disk plane, for the
counterclockwise rotating exponential (solid line), and Kuzmin (dotted line)
disks made by purely circular orbits, computed from the Newtonian surface
current density . B, in the central regions of the disks is positive, i.e., directed
along e_, while in the outer parts B, and e, are antiparallel, as also apparent from
the bottom panels in Figure 1.

& = R is easily treated by splitting the integral from the origin to
(1 —n)R, and from (1 + )R to infinity, and reducing 7 until
acceptable convergence is reached (actually, thanks to absolute
convergence, the two 1’s do not need to be the same). In the
followin§ experiment, convergence was already reached for
n=10"", with stable results at 5 significative digits according
to Mathematica’s Nlntegrate function. Importantly, the num-
erical agreement with the alternative formulation in terms of
Bessel functions has been also verified over all the disk.

In the top-left panel of Figure 1, the only nonvanishing
component, A,, of the potential vector (in units of
€ GMy/Ry), is shown in the meridional plane, where the
overall striking similarity with the field produced by an
“effective” circular current loop of radius Ry~ 1.12 Ry is
apparent, where R4 is the position of the maximum of
A (R); quite obviously, R, does not coincide with the position
R of the maximum of the current. In the bottom-left panel, the
associated (normalized) B field is shown. As expected, the field
is similar to that of a circular (counterclockwise circulating)
current loop, with B, positively directed in the inner regions of
the disk (where the Biot—Savart fields of each current ring
composing Y reinforces), and negatively directed in the outer
regions, due to the cooperative (negative) contribution of the
current in the inner regions of the disk, while the counteracting
positive contributions of the current in the outer regions of the
disk are less and less important, due to vanishing of the current
at large radii. The radial trend of B,[yo] in the disk plane is
represented by the solid line in Figure 2. Notice that the radius
at which B,(R) =0 is R~ 2.2 Ry, not coincident with R,, as
from Equation (10) R is given by the critical point of RA(R),
while R, is the critical point of A (R). Having determined the
field B, for the exponential disk, from Equation (21) we finally
compute v;. In the left panel of Figure 3 the solid line shows
the (normalized) profile of the Newtonian rotation curve v,
while the dotted line gives the perturbative term v,. After
multiplication by e~ 10°, it is clear that the effects of GR on
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the curve of the exponential disk are well below the possibility
of any practical detection, with differences with respect to the
Newtonian rotation curve well below 1 m s™': at the descriptive
level of gravitomagnetism, GR does not produce any effect on
the rotation curve of the disk. In any case, it is interesting to
notice that, for the reasons explained above, the sign of the
gravitomagnetic field in the Lorentz equation actually produces
a decrease of the rotational speed at large galactocentric
distances!

3.2. The Kuzmin—Toomre Disk

Having determined the solution for the exponential disk, in
order to confirm the obtained results we move to explore a
different disk model. We focus on the Kuzmin—Toomre razor-
thin disk (Kuzmin 1956; Toomre 1963; see also BT08; C21),
an idealized model widely used in stellar dynamics for its
mathematical simplicity. The surface density—potential pair of a
disk of total mass My and scale length Ry is given by

M, 1
SR) = S————,
Ri 2w (R” + 1)3/2
GM, 1 - R
p(R) = — =1 R=—, (25)

Ra JR o1 Ra
where the potential is restricted to the disk plane, and the

Newtonian circular velocity and the surface mass density
current are given by

GM, R?

Ry (R* + 1)¥2

GM; R
Xo(R) = — . (26)
0 \ R} 2n(R + 1)/

The maximum of vy is located at R = ~/2 Ry, and that of Xo at
Ry = m R4 = 0.535 Ry, a value curiously similar to that of
the exponential disk. We now show that v; can be obtained in
closed form by using the Fourier—Bessel identity in
Equation (18). In fact, from Equation (6.565.4) of GRO7, or
Equation (2.12.4.28) of P86, we obtain the Hankel transform of
order 1 for the Newtonian mass current as

O e <P210))
X1(>\) = 9/4 )
Ry 2°7%7L(9/4)

where I is the complete gamma function, and we used the fact
that for modified Bessel functions K_, = K,; notice that Nisa
dimensionless quantity. The last integral in Equation (18) can
be expressed analytically thanks to Equation (6.576.3) of GR0O7
or Equation (2.16.21.1) of P86, and finally from Equation (21)
we obtain

(R — [CMa 2EA/HTG/2) (1,3; l;_ﬁz)ﬁ’ %)
\ Rq T9/4) ,\4" 2

where ,F is the standard hypergeometric function. Notice that
the equation above can be recast in terms of elliptic integrals,
resulting in perfect agreement over the whole radial range with
the values of v{(R) obtained from Equation (21) and numerical
integration of the last expression of B, in Equation (12), in a
reassuring validity check. As a mathematical curiosity, we also

Vi (R) =

A = ARy, 27)
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Figure 3. Radial trend of the rotational velocity components in Equation (20) normalized to \/GMy /Ry, for the exponential (left) and Kuzmin-Toomre (right) disks.
The solid line is the Newtonian rotation curve vy, and the dotted line is the v, perturbative term, that should then be added to v after multiplication by € =~ 10~%. Notice
how, in principle, the effect of the GR gravitomagnetic field at large radii is a decrease of the circular velocity with respect to the Newtonian case.

notice that for the Newtonian current Y, of the Kuzmin-
Toomre disk, not only the field B, in the disk plane can be
obtained explicitly but also Equations (15) can be solved
analytically over the whole space by using Fox H functions
after expressing Equation (27) in terms of these functions (e.g.,
Mathai et al. 2010, and in particular Equation (2.25.3.2) in
Prudnikov et al. 1990): the resulting expression is, however, of
no practical use, and so not reported here.

In the right panels of Figure 1 we plot the normalized
potential vector of the disk in the meridional plane and the
associated gravitomagnetic field: the maximum of the grav-
itomagnetic potential vector is reached at Ry ~0.85 R4. The
similarity with the case of the exponential disk, and also the
range of values spanned by the normalized fields, is remarkably
similar, even if the radial density profiles of the two disks are
quite different, especially at large radii; notice also the similar
behavior of B, in Figure 2, with positive values in the inner
regions of the disk (i.e., for R < Rz~ 1.68), and negative
values outside. In Figure 3 we plot the normalized profiles of v,
and v;. It is again apparent how v remains limited over all the
radial range, confirming that the contribution to the rotational
velocity of the first-order perturbative term in the velocity
expansion is fully controlled by the smallness of ¢, and again
the expected GR corrections to the Newtonian rotational
velocity of the galaxy are well below the detection limit, with
differences between the Newtonian and the gravitomagnetic
GR curve well below 1 m s™'. Finally, in accordance with the
change of sign of B, along the equatorial plane, the
gravitomagnetic effects produce a decrease’ of the rotational
speed at large distances from the galaxy center.

Therefore, from the analysis conducted so far, it seems a
quite robust conclusion that GR, at the level of the
gravitomagnetic weak-field approximation, does not affect the

7 The change of sign of B_(R) is not a universal property: for example, it is

quite easy to prove that in razor-thin power-law disks (and so of infinite total
mass), with a uniform sense of rotation, the gravitomagnetic field in the disk
cannot change sign with R.

rotation curve of self-gravitating baryonic disks with realistic
density profiles, and made mostly by circular orbits. In the next
section we relax the assumption of a two-dimensional density
distribution, and we also consider noncircular orbits for the
stars producing the field in the system.

4. The Gravitomagnetic Jeans Equations

After the discussion of razor-thin disks, we address the
problem of the expected effects of GR on the internal dynamics
of genuinely tridimensional (collisionless) astronomical sys-
tems, such as finite-thickness disk galaxies or axisymmetric
elliptical galaxies. We first rigorously derive the gravitomag-
netic modification of the Jeans equations, and then we restrict
to stationary axisymmetric systems. As usual, we indicate with
v the phase-space velocity, so that the density p and the
streaming velocity field v of the system are given by

@) = [y,
—y o L 3
Y =T = ffvd y, (29)

where f(x, v, f) is the phase-space distribution function
(hereafter DF; see BTO0S8; Bertin 2014; C21), and a bar over a
quantity indicates its average over the velocity space. In the
following we will write v = v,e; = vgeg + v e, + vee,, and v =
vie; = Vgeg + v e, +v.e, where sums over repeated indices
hold in Cartesian coordinates.

Suppose the considered stellar system is self-consistent, i.e.,
the motion of each star is determined by the field produced by
the combined effects of all the other stars. As we are in the low-
velocity limit, when the Biot—Savart law can be interpreted as
the sum of the Lorentz fields produced by each moving charge
(an interpretation in general not true for currents produced by
particles of arbitrary large velocities; see, e.g., J98, Chapter 35;
Griffiths 1999, Chapter 5; Feynman et al. 1977, Chapters 13
and 21; Panofsky & Phillips 1962, Chapter 7), it follows that
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the acceleration experienced by a star at x with velocity v can
be written by summing the right-hand side member of
Equation (2) over the DF,

d*x

—=-V¢ —v AB[j],

i ¢ J

@ =pw= [ . (30)
where ¢(x) is the Newtonian gravitational potential of the
system and B[j], by virtue of the linearity of B on the current, is
the gravitomagnetic field produced at x by the total streaming
current of the system. The hierarchy of the Jeans equations of
increasing order is then obtained by taking moments over the
velocity space of the collisionless Boltzmann equation (e.g.,
see BTO08; C21):

of of

=+ v—+
or ' Ox

dviﬁ_f:()

31
dt Ov; S

here written in Cartesian coordinates. After multiplication of
Equation (31) by 1, v;, v;v;, etc., and integration, the three
second-order moments equations (the gravitomagnetic mod-
ification of the usual Jeans equations of stellar dynamics) are
given by

Opvi | OpVivi ¢ .
—— + —— = —p— — &pviBelJl,
ot 8)Ck paxi Eijk PVj k[.]]
i=1,2,3, (32)
where
1
Wix) = —— | fvivdy,
i) p(x) ff !
o5 @) = i = = ) = %V — v (33)

In particular, O'l»zj are the components of the second-order velocity

dispersion tensor. In Appendix B, the general gravitomagnetic
time-dependent Jeans equations are also reported in cylindrical
coordinates.

We now proceed to restrict to the axysimmetric stationary
case. In the usual stellar dynamical case, from the Jeans
theorem one would assume a phase-space DF depending on the
two classical integrals of the motion (per unit mass) E and J_,
i.e., the orbital energy and the z-component of the angular
momentum of stellar orbits. As is well known, under this
assumption (e.g., BT08; C21), important constraints on the
allowed velocity moments follow, namely (1) the only possible
streaming motions are in the azimuthal direction, i.e., v =v4(R,
2)e, and (2) the velocity dispersion tensor is in diagonal form
at each point in the system, with 0% = o = o2, while only

V2 = oi + v,f, remains determined; when o2 = o2

' every-
where, the system is said to be isotropic. Therefore, for
stationary, stellar dynamical, two-integral axisymmetric sys-
tems with f(E, J,), the current would be of the “circular type”
considered in Equation (7), with j = je, = pv e ; notice that,
even if the current associated with the streaming velocity field
is circular, the orbits of the individual stars contributing to the
resulting gravitomagnetic field are in general not circular, and
so we are considering an orbital structure more complicated
than that of the razor-thin disk in Section 3.

However, in the case of stationary collisionless stellar
systems with gravitomagnetic forces, the situation is not so
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simple, because while E is still an integral of motion, J, is not
conserved along orbits and so it cannot be used as an isolating
integral in the DF. Fortunately, the problem is solved as
follows. As is well known, the Lagrangian (per unit mass)
associated with Equation (30) is

E—w—(¢+A~v) (34)
=5 ,

where, at variance with the EM case (e.g., see Landau &
Lifshitz 1971), the + sign in the generalized potential derives
from the — sign in the gravitomagnetic Lorentz force. Suppose
now that v =v (R, 2)e,, so that A = A (R, z)e,, from the results
in Section 2.1. The Euler-Lagrange equations show immedi-
ately that J, is not conserved, but a second integral of motion
exists, I, =J, —RA,. The Jeans theorem then in principle
allows for a two-integral DF, f(E, I), and an interesting
question arises whether such a DF is consistent with the
assumption of streaming motions with v =v (R, z)e_ used to
prove the existence of I,. The answer is in the affirmative, and
it is easy to prove that properties (1) and (2) mentioned above
for systems supported by a f(E, J,) are preserved by the
generalized f(E, L), in particular the fact that vg=v,=0.
Therefore, the vertical and radial Jeans Equations (B2) for a
stationary, axisymmetric two-integral system with gravitomag-
netic forces, supported by a DF of the family f(E, I;), become

Opo? 1o} . . .
o —p—¢ + jBr Ljl, J = PV
0z 0z (35)
dpc?  pA 0o ., .
-~ _ = - _ 5,7 _iB ,
OR R paR JB:L]

where A = V,i — 02, and in the isotropic rotator case A = vj.

Finally, the azimuthal Jeans equation vanishes identically also
in the gravitomagnetic case, as obvious from the last of
Equations (B2). Notice how, at variance with the classical
Newtonian case, now the vertical and radial velocity disper-
sions depend on the ordered rotational field v (R, z), yet to be
determined.

Equations (35) can be formally solved in terms of o and A
as in the usual stellar dynamical case, obtaining

© 9
pozzf pa—jdz’—U:pJ%—U,

UR 2 = [ jBel e, (36)

where 0(2) is the Newtonian solution, and U(R, z) accounts for
the gravitomagnetic effects. Moreover, some algebra shows
that

pPA
2= —cClp, ¢ -V,
R [p, ¢]
x(dp 99 3/)3¢) A
Clp, ] = PE PP Z gy =20 37
L. 9] j; (aRaz’ 07’ OR ¢ R 37)

where the commutator C[p, ¢] is the standard Newtonian
solution (e.g., Hunter 1977; Barnabe et al. 2006; see also C21),
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while the term

~(0jB, OjB,
VR, 2) = R 4 % gy
(®:2) I ( OR o7 ‘

(G

. A,
= —Clj. Al - =*

9j

7' Z] “
R

contains the gravitomagnetic effects. The triple integral in the
second expression above (obtained from the first by exploiting
the solenoidal nature of B) is particularly well suited for
numerical computations when the current is analytically
available (see next section), while the last expression is
obtained from the first taking into account that B=V A A,
Equation (10), and finally integrating by parts with jA,=0
for z—o00.

As noticed, the difficulty in the solution of the gravitomagnetic
Jeans equations is the fact that the force field depends on the
azimuthal streaming velocity distribution, a quantity that it is not
known in advance. In principle, to solve the gravitomagnetic
Jeans equations one should (1) impose a decomposition on the
still-unknown azimuthal velocity field, for example by using the
widely adopted Satoh (1980) ansatz vf = k*A (e.g., see C21),
(2) solve the resulting nonlinear integrodifferential Equation (37)
for v, and obtain Bg[j], (3) integrate Equation (36) and obtain o,
(4) conclude by determining A and the tangential velocity
dispersion 0%, = 02 + (1 — k)A = 02 + (1/k* — 1)v}. Quite
obviously, a considerable simplification is achieved by exploiting
the fact that in Equation (35) the fields Bk and B, are proportional
to the small parameter ¢ = GM,/ (r«c?), where M, is the total
mass of the system, and r, its scale length. As in the razor-thin
disks, it follows immediately that the first-order perturbative terms
in the natural expansions 02 = ¢ + eoi... , A=Ag+ €A, ...,
and v,=v,+€v, ..., are related to the functions U and V
evaluated over the Newtonian current jo = pv. o, Where v (R, z) is
the streaming rotation velocity obtained from the classical Jeans
equations.

We are now in a position to evaluate the effects of GR
corrections on the circular velocity v(e, R)=vy(R)+
evi(R)+...of a test star in the equatorial plane of an
axisymmetric collisionless system described by Equation
(35). The only difference with the razor-thin disks in
Section 3 is that now the current is provided by the azimuthal
streaming velocity field of the system. From Equation (30), the
analogies of Equations (17) and (19) still apply, and

(38)

%= gsﬁol, (39)

B. = ¢\/GMy/r;B is computed in the disk plane, and

finally j, = GM; /r Jor

The expression for the first-order correction term to the
streaming velocity (restricting for simplicity to an isotropic
rotator case for the stellar distribution of the galaxy) is instead
obtained from Equation (37), considering that at the lowest
order V = O(¢), and so from v, =v o+ eV, ..., after order
balance and some simplification, one gets

(40)
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where V = ¢ (GMf / rﬁ)V is computed from Equation (38).

4.1. The Miyamoto—Nagai Disk

We now solve the gravitomagnetic Jeans equations, and
evaluate Equations (39)-(39) for the widely used Miyamoto—
Nagai (Miyamoto & Nagai 1975; Nagai & Miyamoto 1976; see
also BT08; C21) disk of total mass M, and scale lengths a and
b, with the Newtonian density—potential pair:

2 P2 2
p(R,Z):ﬂjS—R +~§1 + 301 + 0 ,
@t dm IR + (1 + (P
(R, Z):_GM* 1

a JR+a+or

where ¢ = \z2+ 52, R = R/a, 7 = z/a, and the Newtonian
circular velocity in the equatorial plane is given by

(41)

GM, R*

2
R) = .
VO( ) a [Iéz + (1 +S)2]3/2

(42)

The dimensionless parameter s = b/a measures the disk
flattening, and for b = 0 the model reduces to a Kuzmin disk of
total mass M, and scale length a, so we are in a condition to
explore the GR effects of a nonzero thickness on the rotation
curve, by comparison with the case in Section 3.2.

We restrict for simplicity to an isotropic rotator, with a
conterclockwise streaming velocity field, so that the Newtonian
azimuthal streaming velocity field and the associated current
density are

GM, R?

a R+ 1 +300+ 0O m
32 RJR 1 1 2
JoR, 2) = JTM*S_ J + 1+ 300+ ¢)

al 4r GIR+ (1 + O

V\',%O(Rv Z) =

(43)

(e.g., Ciotti & Pellegrini 1996; Smet et al. 2015). Notice that in
the equatorial plane the location of the maximum of jy(R, 0) can
be evaluated analytically as a biquadratic equation, and for
s — 0 the position coincides with that of the maximum for the
Kuzmin disk.

In the left panel of Figure 4 we show the results for the
circular velocity, to be compared with the analogous
Figure 3 for the two razor-thin disks made by circular
orbits. The solid line represents the Newtonian circular
velocity ¥ in Equation (42), while the dotted line gives the
correction term in Equation (39), where the gravitomagnetic
field is now produced by stars that in general are not moving
in circular orbits. Again, for realistic mass distributions, the
perturbation term shoud be multiplied by factor e~ 10°
before addition to the Newtonian term: the GR effects appear
again to be completely negligible and, in analogy with the
case of razor-thin disks, positive in the inner regions of the
galaxy and negative at large radii, reducing there the
rotational speed of a test mass. In the right panel we show,
instead, the streaming velocity of stars in the disk equatorial
plane, both the Newtonian component (solid line), and the
lowest-order GR term (dotted line). Again, it is important to
remark that the orbits of the individual stars producing the v,
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Figure 4. Radial trend of the rotational velocity components (left), and of the streaming velocity (right), normalized to \/GMy/a, in the equatorial plane of the
counterclockwise rotating isotropic Miyamoto—Nagai disk with flattening parameter s = b/a = 0.1. The solid lines are the Newtonian components, and the dotted
lines are the first perturbative term, which should be added to the corresponding Newtonian term after multiplication by € ~ 10~°. Note how the circular velocity is
slightly larger than the streaming velocity, the well-known phenomenon of asymmetric drift produced by the disk vertical velocity dispersion support.

in the equatorial plane are in general not circular, and not
restricted to the equatorial plane. Notice how the Newtonian
streaming velocity is slightly below the Newtonian circular
velocity, the well-known phenomenon of asymmetric drift,
due to effect of the vertical component of the velocity
dispersion tensor (e.g., see BT08). Notice also how the
asymmetric drift (a small but well-measured phenomenon in
real galaxies) is several orders of magnitude larger than the
GR corrections.

The results for the Miyamoto—Nagai disk reinforce the
previous conclusions, i.e., also in three-dimensional galaxies,
with stars moving on noncircular orbits, the GR effects
predicted by linear gravitomagnetism on the rotational
velocities are a factor of ~10~® smaller than the Newtonian
predictions. If Newtonian gravity requires DM, unless “strong”
weak-field GR effects (beyond the linear gravitomagnetic
description) actually dominates the dynamics of the galaxies,
exactly the same amount and distribution of DM is required in
GR and in Newtonian gravity, in order to reproduce the
observed rotational curves.

5. Discussion and Conclusions

Recently, it has been suggested that the observed flat radial
profile of the rotation curves of disk galaxies at large
galactocentric radii could be a peculiar effect of GR in rotating
systems, instead of the dynamical signature of the presence of
DM halos. The suggestion is somewhat puzzling, as observed
galaxies are empirically in a weak-field regime, with
v/er 1073, and so GR corrections are expected to be very
small; however, GR is a nonlinear theory, and so important
effects cannot be excluded in principle.

In this paper, instead of attempting a GR modelization of the
rotation curve of some observed galaxy, we followed a
different approach, and we built rotation curves for purely
baryonic disks, structurally resembling real galaxies, and with
total mass and scale length in the observed range. The rotation
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curves are computed both in Newtonian gravity and in the
(gravitomagnetic) weak-field formulation of GR, and then
compared. After a detailed discussion of the mathematics, we
considered first the case of razor-thin disks made by purely
circular orbits. The orbital structure is highly idealized, but the
surface density of the disk is the standard exponential profile
adopted to model the stellar distribution in real disk galaxies;
we also considered another disk model, the Kuzmin—-Toomre
model, to gain confidence with the results obtained for the
exponential disk. Consistent with the gravitomagnetic approx-
imation adopted, we impose “self-consistency” on the
rotational velocity, i.e., we assume that the rotational velocity
of the test particle (star or gas cloud) and the rotational velocity
of the stellar population producing the gravitomagnetic field are
the same at each radius, and we require that the rotational
velocity is the solution of the Lorentz-like equation of motion.
The resulting problem is shown to be a regular perturbation
problem, with an intrinsinc order parameter € ~ 1076, and the
gravitomagnetic field is obtained from two different (but
equivalent) methods, i.e., by using elliptic integrals and Bessel
functions. It is found that the GR (normalized) perturbative
term is of the order of unity, with no indications of
anomalously large emerging effects, and the resulting physical
modification of the Newtonian rotation curve is therefore of the
order €~ 1076, well below the possibility of detection in
observed rotation curves, in agreement with the order-of-
magnitude estimate obtained by Toth (2021). Curiously, in the
external regions of the disk the gravitomagnetic GR perturba-
tive term tends to decrease the rotational speed, as can easily be
understood by considering the gravitomagnetic field as given
by the sum of the fields produced by each current ring of the
disk, and by the fact that the disk current in realistic disk
galaxies decreases sufficiently fast at increasing radius, so that
in the outer regions of the disk the gravitomagnetic field is
dominated by the inner current distribution. An important
warning follows: if one assumes a disk surface density
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distribution with a sufficiently slow radial decline at increasing
R, it is quite easy to show that the sum of the fields of external
rings can be very large (or even diverge), leading to the wrong
conclusion of a significant GR effect in real galaxies; in
theoretical /numerical studies of the present problem, the use of
realistic density profiles for the disks is of fundamental
importance.

As doubts have been casted that disk thickness effects, or
motions more complicated than purely circular orbits for the
stars producing the gravitomagnetic fields, could be impor-
tant, we also studied the case of gravitomagnetic rotation
curves in genuinely tridimensional stellar systems. We first
derived the gravitomagnetic Jeans equations starting directly
from the collisionless Boltzmann equation, and the asso-
ciated Jeans theorem. In this case the equations naturally
contain a vertical “pressure” term due to the vertical velocity
dispersion. We showed how in axisymmetric systems the
gravitomagnetic field depends on the azimuthal streaming
velocity field of the system (even though the orbits of the
single stars are in general notr axisymmetric). In such a
system, we can identity two different rotational velocities:
the circular velocity of a tracer in the equatorial plane, and
the (circular) streaming velocity of the stellar population
producing the gravitomagnetic field. For both cases we
found that the GR perturbative term, after multiplication by
the expansion parameter e~ 10~°, is completely negligible
over the Newtonian term, so that also for collisionless
axysimmetric systems the GR effects due to rotation appear
to be well below detectability, and unable to reproduce a flat
rotation curve at large radii any better than a Newtonian
model in absence of DM.

In conclusion, the study conducted in this paper excludes the
possibility that gravitomagnetic GR effects can compensate by
any detectable amount the Keplerian fall of the rotational
velocity that would characterize disk galaxies at large distances
in absence of DM halos, and produce the observed flat profiles:
from the observational point of view, in rotating disk galaxies
DM is required by GR exactly as in Newtonian gravity. Of
course, if a full GR simulation for the same baryonic disks used
in this papers (with disk parameters corresponding to the
observed weak-field regime of real galaxies) convincingly
proves the opposite, then among other things we should
conclude that gravitomagnetic weak-field approximation of GR
cannot be used to describe the weak-field regime in rotating
galactic disks.

I thank Giuseppe Bertin, Antonio Mancino, Bahram
Mashhoon, Jerry Ostriker, Silvia Pellegrini, Francesco Pegor-
aro, Renzo Sancisi, Massimo Stiavelli, and an anonymous
referee for important comments. Alberto Parmeggiani (Depart-
ment of Mathematics of Bologna University), is especially
thanked for discussions about some mathematical aspects of
this work.

Appendix A
Mathematical Identities

Here we list the most important mathematical identities used
in this work (see, e.g., BT08; C21; J98, and references therein).
The rotor of a vector function in cyclindrical coordinates is
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given by
0A
v /\A — l% — _50 eR+
R Oy 0z
ORA,,
(aAR 0A, )% L L[ ORA, _ 0Ar), (A1)
9z OR R\ OR Iy

The complete elliptic integrals of first and second kind in
Legendre form are given, respectively, by

Kk) =

fﬂﬂ dy’ fl dt
o J1—k2siny Jo Ja — 2 — k%)
/2 1 _ 1242
E(k):f = k2sin2<p/dgo/:f [
0 0 1 —12

(A2)
and, from Equation (8.123) of GRO7,
dK(k) _ _E(k) _ Kk)
dk k(1 — k?) k-’ (A3)

dE(k) _ E(k) — K(k)
dk k ’

The two integrals over ¢’ in Equations (8)—(9) leading to
Equations (11)—(12), after reduction to the first quadrant with
the bisection formula cos ¢’ = 2cos?(¢’/2) — 1, become

/

dy

Fo =
2RE cos ¢! + AZ?

27
fo JR? + & —

4K (k)

= , (A4)
JR + &? + AZ?
2 cos o' do’
F =
: fo \/Rz + €2 — 2REcos ¢’ + AzZ?
- 4 [(% - 1)K(k) - 2E§k)],
VR + 62 + A2 [\k k
(AS)
where®
k2 4R¢ Az=7z—-7. (A6)

T RY T A

For the considerations in Sections 2.1 and 2.2, we recall the
important identity
_ 0Fy l ORF
o0& R OR

, (AT)

which can be proved by differentiation of the explicit
expressions in Equations (A4)—(AS), or (with some work)
more elegantly directly from their integral representation.

In numerical applications, when using Equations (11)—(12),
it is important to recall that E(k)~1 for k— 1, but

K (k) ~ —Iny1 — k? ~ —Iny/1 — k, so that near the ring

8

Notice that, in Mathematica, K(k) = EllipticK[k*], and E(k) = EllipticE[£°].
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£ =R in the Az =0 plane both F; and F; diverge as

ARG Ar—0, £k

Fo~nFind RTE (A8)
_M §:R Az — 0;
R 9 9 3 9

however, the singularity is integrable and easily treated
numerically.
From the theory of Green functions it is possible to prove
that in cylindrical coordinates (e.g., BT08; C21)
1 S eintems) f >
0

m=—0oQ

x e MAALL AR, (AE)dA,

[l — yll
(A9)
where J,, are the Bessel functions of first kind and integer order
m, x = (Rcosp, Rsiny, z), y = (£cos¢’, {siny’, 7’), and
the Hankel transform for a function f(R) of the cylindrical
radius reads

k) = fo " RILORF(R)AR,

SR = [ A3, (0 (A10)
0
Appendix B
Gravitomagnetic Jeans Equations in Cylindrical
Coordinates

By using the standard approach of considering velocity
moments of Equation (31), and by working on cylindrical
coordinates, from the velocity moment of order O we obtain the
continuity equation

dp | 1 ORpvg Opv,
ot R OR 0z

and, from the three moments of order 1 (respectively, over v,
Vg, and v,,), the three momentum equations:

1 dpv,
R 0O¢

=0, B
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