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A B S T R A C T 

In the homoeoidal expansion, a given ellipsoidally stratified density distribution and its associated potential are expanded in 

the (small) density flattening parameter η, and usually truncated at the linear order. The truncated density–potential pair obeys 
exactly the Poisson equation, and it can be interpreted as the first-order expansion of the original ellipsoidal density–potential 
pair, or as a new autonomous system. In the first interpretation, in the solutions of the Jeans equations the quadratic terms in 

η must be discarded (‘ η-linear’ solutions), while in the second (‘ η-quadratic’) all terms are retained. In this work, we study 

the importance of the quadratic terms by using the ellipsoidal Plummer model and the Perfect Ellipsoid, which allow for fully 

analytical η-quadratic solutions. These solutions are then compared with those obtained numerically for the original ellipsoidal 
models, finding that the η-linear models already provide an excellent approximation of the numerical solutions. As an application, 
the η-linear Plummer model (with a central black hole) is used for the phenomenological interpretation of the dynamics of the 
weakly flattened and rotating globular cluster NGC 4372, confirming that this system cannot be interpreted as an isotropic 
rotator, a conclusion reached previously with more sophisticated studies. 

Key words: methods: analytical – globular clusters: individual: NGC 4372 – galaxies: elliptical and lenticular, cD – galaxies: 
kinematics and dynamics – galaxies: structure. 
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 I N T RO D U C T I O N  

or their intrinsic simplicity in stellar dynamics, spherical models
re of great utility in both theory and applications (e.g. Binney &
remaine 2008 , hereafter BT08 ; Bertin 2014 ; Ciotti 2021 , hereafter
21 ). Ho we ver, phenomena such as rotation can be studied properly
nly by allowing for some flattening in the density profile. Among the
pecific difficulties encountered in modelling non-spherical systems,
he deri v ation of the gravitational potential is certainly a major
ne, and, apart from special cases in which the solution is known
n explicit form, one must resort to time-consuming numerical
ntegrations. In turn, if the potential is only known numerically, then
lso the Jeans equations must be solved numerically, making the
xploration of the parameter space even more laborious. Fortunately,
any real stellar systems are characterized by small deviations

rom spherical symmetry; examples of weakly flattened systems
re, for instance, E1/E3 galaxies and many globular clusters (GCs;
.g. Varri & Bertin 2012 ). For these systems, the technique of
he homoeoidal expansion (Ciotti & Bertin 2005 , hereafter CB05 )
rovides an approximate, yet robust, and easy procedure to build one-
nd multicomponent dynamical models (Ciotti et al. 2021 , hereafter
MPZ21 ; see also chapter 13 in C21 , and references therein). 
In practice, in the homoeoidal expansion method, a chosen ellip-

oidally stratified density distribution and the associated potential
re usually expanded and truncated at the linear order in terms of the
 E-mail: antonio.mancino6@unibo.it 
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ensity flattening η, therefore producing, thanks to the linearity of
oisson’s equation, an exact density–potential pair. Both the density
nd the potential are written as a spherical part plus a non-spherical
erm proportional to η; the non-spherical term, in turn, reduces to
he product of the square of the cylindrical radius R and a spherical
unction. This very specific structure allows for manageable solutions
f the Jeans equations. Of course, the truncation at the linear order in
of the original density–potential pair is only matter of convenience,

s the linearity of the Poisson equation implies that, at any truncation
rder in η, the resulting truncated functions are an exact density–
otential pair. Ho we ver, increasing the order of truncation increases
lso the number of terms to be considered in the solution of the
eans equations; therefore, it is natural to ask how good the linear
runcation already is, in order to save as much computational effort as
ossible, while maintaining a reasonable description of the original
ystem. 

A second closely related question arises when considering the
olution of the Jeans equations even for the linearly truncated
ensity–potential pair. In fact, the truncated density–potential pair
an be seen in two different ways: as the first-order expansion of the
llipsoidal parent galaxy model in the limit of small flattening or as
n independent non-spherical system. In the first interpretation (‘ η-
inear’), only linear terms in the flattening are retained in the solution
f the Jeans equations; in the second interpretation (‘ η-quadratic’),
he Jeans equations contain up to quadratic terms in the flattening.
n previous works, only the first interpretation has been discussed;
ere, we investigate the effects of including higher order η-terms
n the solutions of the Jeans equations: it is quite obvious that the
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iscarded terms, proportional to η2 and depending on coordinates, 
re not necessarily small, and, in principle, in some regions of space
hey could be even larger than lower order terms. 1 

In this paper, we address these questions, and compare the solu-
ions of the Jeans equations of the original ellipsoidal model (here- 
fter ‘full solution’) with their η-linear and η-quadratic expansions, 
n order to quantify the performance of the homoeoidal expansion 
ethod. For this study, we consider two simple ellipsoidal models: 

he Perfect Ellipsoid (de Zeeuw & Lynden-Bell 1985 , hereafter 
L85 ) and the ellipsoidal Plummer ( 1911 , hereafter P11 ) models, to
hich a central black hole (BH) is added. For these, the η-quadratic

and so the η-linear) solutions can be e v aluated analytically in terms
f elementary functions. In particular, for each model we compare 
he two expanded solutions with that reco v ered numerically for the
riginal model. We find that the η-linear approximation suffices to 
ro vide e xcellent agreement with the numerical solution, for small
ut realistic values of η. We then exploit this result by building an
-linear Plummer model for the GC NGC 4372, to investigate the 
elation between flattening and ordered rotation. This GC is a natural 
andidate for an exploratory study with our method, since its density 
rofile is well described by the Plummer model (see Kacharov et al.
014 ), and its flattening is sufficiently low for applicability of the
-linear modelling. Another moti v ation for this application is given 
y the remarkable property of homoeoidally expanded systems of 
aving a streaming velocity field that scales as 

√ 

η, increases linearly 
ith radius in the central regions, and decreases outward after a 
aximum; these features are noticeably similar to those commonly 

bserved, or adopted in a phenomenological description, for the 
otation curves of GCs. In agreement with previous results obtained 
ith more sophisticated methods (e.g. Varri & Bertin 2012 ; Bianchini 

t al. 2013 ; Jeffreson et al. 2017 ), our simple modelling excludes the
ossibility that NGC 4372 is an isotropic rotator, and we suggest
nstead that the observed rotational structure is possibly due to the 
resence of a rotating stellar substructure. 
The paper is organized as follows. In Section 2 , we summarize the

echnical details and main formulae of the homoeoidal expansion. 
n Section 3 , we set up and discuss the η-linear and η-quadratic
olutions of the associated Jeans equations. In Section 4 , the main
tructural and dynamical properties of the tw o f amilies of models
re presented, with a detailed analysis of the solutions of the Jeans
quations generated by the two different interpretations. Finally, in 
ection 5 we present a simple application of the η-linear modelling 

o the GC NGC 4372. 

 T H E  H O M O E O I DA L  EXPANSION  

e recall the main properties of the homoeoidal expansion. Let x =
 x , y , z), and consider a mass density distribution ρ( x ) of total mass
 stratified on ellipsoidal surfaces 

 

2 ≡ x 2 

a 2 
+ 

y 2 

b 2 
+ 

z 2 

c 2 
= ˜ x 2 + 

˜ y 2 

q 2 y 

+ 

˜ z 2 

q 2 z 

, (1) 

ith a ≥ b ≥ c > 0, ˜ x ≡ x/a, ˜ y ≡ y/a , ̃  z ≡ z/a , q y ≡ b / a , and q z ≡
 / a . For q y = q z = 1, the distribution is spherically symmetric, the
blate case corresponds to q y = 1 and 0 < q z < 1, and the prolate to
 < q y = q z < 1. We write 

ρ( x ) 
ρn 

= 

˜ ρ( m ) 

q y q z 
, ρn ≡ M 

4 πa 3 
. (2) 
 As an example, consider the quadratic truncation 1 − ηx + η2 x 2 /2 of the 
niformly convergent expansion of e −ηx . 2
ote that ˜ ρ, as a function of its argument, is independent of q y 
nd q z , and it can be identified with the spherical member of the
llipsoidal family. Note that the presence of the coefficient q y q z at
he denominator in equation ( 2 ) guarantees that M is the mass of the
odel independently of the flattening, 2 and, from equation ( 2 ), the
ass within the ellipsoid m reads 

M( m ) 

M 

= 

∫ m 

0 
˜ ρ( t ) t 2 d t . (3) 

he (relative) potential associated with the density distribution in 
quation ( 2 ) is given by 

�( x ) 
� n 

= 

1 

4 

∫ ∞ 

0 

F [ m ( x , u )] √ 

D( u ) 
d u, F ( m ) ≡ 2 

∫ ∞ 

m 

˜ ρ( t ) t d t (4) 

e.g. BT08 ; see also e x ercise 2.12 in C21 ), where � n ≡ GM / a , G is
he gravitational constant, 

( u ) ≡ (1 + u )( q 2 y + u )( q 2 z + u ), (5) 

nd 

 

2 ( x , u ) ≡ ˜ x 2 

1 + u 

+ 

˜ y 2 

q 2 y + u 

+ 

˜ z 2 

q 2 z + u 

. (6) 

inally (Roberts 1962 ), the gravitational self-energy W can be written
s 

W 

M� n 
= −w 1 + q 2 y w 2 + q 2 z w 3 

16 q y q z 

∫ ∞ 

0 
F 

2 ( m ) d m, (7) 

here the dimensionless coefficients w i are given in equation (3.12) 
f C21 . This expression is used in Section 4 for a check of the
omoeoidal expansion approach. 
The idea behind the homoeoidal expansion is to expand equa- 

ions ( 2 ) and ( 4 ) up to a prescribed order for vanishing flattening
arameters ε ≡ 1 − q y and η ≡ 1 − q z , so that the spherical case is
btained when ε = 0 and η = 0. From the linearity of the Poisson
quation, it follows that at an y e xpansion order in the flattening, the
esulting truncated density–potential pairs satisfy Poisson’s equation. 
 or e xample, at the linear order, the e xpansion of the density in
quation ( 2 ) reads 

ρ( x ) 
ρn 

= � 0 ( s) + ( ε + η)� 1 ( s) + 

(
ε ˜ y 2 + η˜ z 2 

)
� 2 ( s) , (8) 

here s ≡ r/a = 

√ 

˜ x 2 + ˜ y 2 + ̃  z 2 is the dimensionless spherical ra- 
ius, and the three dimensionless spherically symmetric components 
re 

 0 ( s) = � 1 ( s) = ˜ ρ( s), � 2 ( s) = 

1 

s 

d ̃  ρ( s) 

d s 
. (9) 

he corresponding expansion of the potential reads 

�( x ) 
� n 

= ψ 0 ( s) + ( ε + η)ψ 1 ( s) + 

(
ε ˜ y 2 + η˜ z 2 

)
ψ 2 ( s) , (10) 

here the dimensionless spherically symmetric components are 

 i ( s) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

s 

∫ s 

0 
˜ ρ( m ) m 

2 d m + 

∫ ∞ 

s 

˜ ρ( m ) m d m, 

1 

3 s 3 

∫ s 

0 
˜ ρ( m ) m 

4 d m + 

1 

3 

∫ ∞ 

s 

˜ ρ( m ) m d m, 

− 1 

s 5 

∫ s 

˜ ρ( m )m 

4 d m. 

(11) 
MNRAS 527, 9904–9916 (2024) 

0 

 For the normalization in case of an infinite total mass, see C21 . 
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o be physically acceptable, the truncated expanded density must
e nowhere ne gativ e. This requirement sets an upper limit on the
ossible values of ε and η, as a function of the specific density
rofile adopted; for a monotonically decreasing ˜ ρ( s), the positivity
f the right-hand side of equation ( 8 ) is assured provided that 

1 + ε + η

η
≥ A M 

≡ sup 
s≥0 

∣∣∣∣d ln ˜ ρ( s) 

d ln s 

∣∣∣∣ , (12) 

 CB05 ; see also e x ercise 2.11 in C21 ). 

.1 Axisymmetric oblate systems 

n this work, we shall focus on stellar-dynamical models slightly
eparting from spherical symmetry, being qualitatively oblate: this
s obtained by setting in the previous formulae ε = 0, so that η is
he only flattening parameter. Moreo v er, as in some of the following
omputations it is convenient to work with the truncated density–
otential pair explicit in R , we recast equations ( 8 )–( 10 ) by using the
dentity z 2 = r 2 − R 

2 , so that finally ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ρ( R, z) 

ρn 
= ρ0 ( s) + ηρ1 ( s) + η ˜ R 

2 ρ2 ( s), 

�( R, z) 

� n 
= � 0 ( s) + η� 1 ( s) + η ˜ R 

2 � 2 ( s) , 

(13) 

here ˜ R ≡ R/a, and the new dimensionless radial functions ρ i and
 i are related to the dimensionless radial functions � i and ψ i as { 

ρ0 = � 0 , ρ1 = � 1 + s 2 � 2 , ρ2 = −� 2 , 

� 0 = ψ 0 , � 1 = ψ 1 + s 2 ψ 2 , � 2 = − ψ 2 . 
(14) 

 T H E  J E A N S  E QUAT I O N S  

e assume that the axisymmetric model density ρ( R , z), with poten-
ial �( R , z), is supported by a two-integral phase-space distribution
unction f ( E , J z ), where E and J z are the energy and orbital angular
omentum z-component of stars (per unit mass), respectively. We

ndicate with � R , � ϕ , and � z the velocity, and with a bar o v er a quantity
ts average value over the velocity space. As is well known (e.g. BT08 ,
21 ), for such a system: (1) � R � z = � R � ϕ = � ϕ � z = 0; (2) the only
ossible non-zero streaming motion is in the azimuthal direction,
.e. � ϕ ; (3) at each point in the system, σ 2 

R = σ 2 
z ≡ σ 2 . The Jeans

quations reduce to ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∂ρσ 2 

∂z 
= ρ

∂� T 

∂z 
, 

∂ρσ 2 

∂R 

− ρ� 

R 

= ρ
∂� T 

∂R 

, � ≡ � 2 ϕ − σ 2 , 

(15) 

here � T is the total relative potential that can take into account
he effects of other density components, such as a dark matter halo
nd/or a central BH. Given the consolidated belief in a widespread
resence of BHs at the centre of stellar systems as galaxies of various
ypes (e.g. Kormendy & Ho 2013 ), in order to make this work more
eneral we consider 

 T ( R, z) = �( R, z) + 

GM BH 

r 
, (16) 

btained by adding to � the contribution of a central BH of mass
 BH (of course the contribution is that of a central point mass; for

onciseness, here and in the following, we refer in short to the BH
nstead of referring to its modelling through a point mass). To split
 

2 
ϕ into its ordered ( � ϕ ) and dispersion ( σϕ ) components, we adopt
NRAS 527, 9904–9916 (2024) 
he phenomenological Satoh ( 1980 ) k -decomposition: 

 ϕ = k 
√ 

� , σ 2 
ϕ = σ 2 + (1 − k 2 )� ; (17) 

 = 1 corresponds to the isotropic rotator, while for k = 0 no net
otation is present. Usually, k is assumed constant with | k | ≤ 1; how-
ver, more general decompositions are possible, with k depending
n R and z (see e.g. Ciotti & Pellegrini 1996 ). It is important to note
hat the possibility of using the Satoh decomposition depends on the
ositivity of � , a condition that can be violated in some proposed
odels, such as those with prolate densities (see section 13.3.2 in
21 and e x ercises 13.28 and 13.29 therein). 

.1 The vertical Jeans equation 

he velocity dispersion σ is obtained by integrating the first of the
eans equations ( 15 ) at fixed R , and imposing the boundary condition
f a vanishing ‘pressure’ ρσ 2 = 0 for z → ∞ , so that 

σ 2 = −
∫ ∞ 

z 

ρ
∂� T 

∂z ′ 
d z ′ = −

∫ ∞ 

r 

ρ
∂� T 

∂ r ′ 
d r ′ . (18) 

he second expression, where r ′ = 

√ 

R 

2 + z ′ 2 , is particularly useful
hen adopting the explicit- R formulation in equation ( 13 ): since the

ntegration is performed at fixed R , and the functions ρ i and � i are
pherically symmetric, as well as the potential of the central BH, the
xpression of ρσ 2 reduces to the e v aluation of a number of integrals
 v er the spherical radius. 
The general considerations in Section 1 can now be made quan-

itativ e. If the e xpanded density–potential pair is interpreted as the
rst-order expansion of the ellipsoidal parent model, only zero and
rst-order terms in the flattening must be retained in equation ( 18 ) ,
btaining the so-called η-linear case; in the second interpretation
the η-quadratic case), instead, the Jeans equations will contain
p to quadratic terms in the flattening . It is important to stress
hat η-quadratic models are not the quadratic expansion of the
olutions of the Jeans equations of the original ellipsoidal system
the full solutions), since two quadratic terms in the flattening are
issing when using equation ( 13 ) in equation ( 18 ). The quadratic

xpansion of the full solutions would be obtained by expanding the
ensity–potential pair up to the quadratic order included, so that in
quation ( 13 ) also the terms ρ3 and � 3 appear. Then, one should
runcate the solution of equation ( 18 ) up to the quadratic order in η
iscarding the cubic and quartic terms in η. In practice, the quadratic
xpansion of the full solution is given by the η-quadratic solution
lus the two terms involving the integrals of ρ0 and ∂ � 3 / ∂ z, and
3 and ∂ � 0 / ∂ z. In Section 4.1, we sho w some non-tri vial ef fects of

he ‘missing terms’ in the η-quadratic solution, by comparing the
numerical) full solution with those of the η-linear and η-quadratic
odels. 

.2 The radial Jeans equation 

nce the vertical Jeans equation is solved, no further integration
ould be required since � can be e v aluated from the second of the

eans equations ( 15 ) as a deri v ati ve, 

ρ� 

R 

= 

∂ρσ 2 

∂R 

− ρ
∂� T 

∂R 

= 

∫ ∞ 

z 

(
∂� T 

∂R 

∂ρ

∂z ′ 
− ∂� T 

∂z ′ 
∂ρ

∂R 

)
d z ′ ≡ [� T , ρ] . (19) 

he second expression above, in terms of a commutator between po-
ential and density, is ho we ver to be preferred, and it has been already
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iscussed in hydrodynamical and stellar-dynamical modelling appli- 
ations (e.g. Rosseland 1926 ; Hunter 1977 ; Waxman 1978 ; Barnab ̀e
t al. 2006 ; CMPZ21 ; see also C21 and references therein). The use of
he commutator reveals immediately properties of � that in the brute- 
orce approach of deri v ation are hidden in the algebra. For example,
t is immediate to show that for any pair of spherically symmetric
unctions the commutator v anishes; therefore, it follo ws that in the
atoh decomposition spherical models are necessarily isotropic (i.e. 

hey cannot rotate), independently of the value of k . The commutator
n equation ( 19 ) obeys several interesting and useful rules. As an
xample, rele v ant for the homoeoidal expansion, is the identity 

 f ( R )u ( r), g( R )v( r)] = 

d f ( R ) 

d R 

g ( R ) 
∫ ∞ 

r 

u ( x) 
d v ( x) 

d x 
d x 

− f ( R ) 
d g( R ) 

d R 

∫ ∞ 

r 

d u ( x) 

d x 
v( x )d x . (20) 

.3 The η-quadratic solution of the Jeans equations 

n this section, we present the general η-quadratic solution for the 
omoeoidal expansion of a model with a central BH of mass M BH =
M ; quite obviously, the η-linear solution is just obtained by ignoring 

he quadratic terms. As usual, we split the velocity dispersion into 
he contribution σ ∗, due to the potential of the model for the stellar
omponent, and σ BH , the one due to the potential of the BH: σ 2 =
2 
∗ + σ 2 

BH . By inserting the expansions ( 13 ) in equation ( 18 ), with
 T given by equation ( 16 ), some algebra shows that 

ρσ 2 
∗

ρn � n 
= 

H 00 ( s) 

2 
+ η

[
H 01 ( s) + 

˜ R 

2 H 02 ( s) 
]

+ η2 

[
H 11 ( s) 

2 
+ 

˜ R 

2 H 12 ( s) + 

˜ R 

4 H 22 ( s) 

2 

]
(21) 

nd 

ρσ 2 
BH 

ρn � n 
= μ

[
Y 0 ( s) + ηY 1 ( s) + η ˜ R 

2 Y 2 ( s) 
]
, (22) 

here, for i , j = 0, 1, 2, the dimensionless functions H ij ( s ) ≡ X ij ( s )
 X ji ( s ) and Y i ( s ) are given by 

 ij ( s) ≡ −
∫ ∞ 

s 

ρi ( t ) 
d � j ( t ) 

d t 
dt , Y i ( s) ≡

∫ ∞ 

s 

ρi ( t) 

t 2 
d t , (23) 

nd ρ i and � i are given in equation ( 14 ); note that H ij = H ji . 
We then e v aluate � = � ∗ + � BH from equation ( 19 ), where � ∗

nd � BH are the contributions due to the potential of the stars and
he one due to the potential of the central BH, respectively. From
quations ( 19 ), ( 13 ), and ( 20 ), we obtain 

ρ� ∗
ρn � n 

= 2 η ˜ R 

2 
[
Z 02 ( s) + ηZ 12 ( s) + η ˜ R 

2 Z 22 ( s) 
]

(24) 

nd 

ρ� BH 

ρn � n 
= 2μη ˜ R 

2 Y 2 ( s) , (25) 

here Z ij ( s) ≡ H ij ( s) − ρi ( s)� j ( s). As expected, � ∗ and � BH 

anish for η = 0; moreo v er, σ 2 
BH and � BH depend linearly on η

lso in the η-quadratic interpretation. 
A comment is in order here, about the fact that in the η-linear and

-quadratic frameworks the e xpressions abo v e refer to the products
σ 2 and ρ� , and not to the purely kinematical fields σ 2 and � . In
rder to obtain σ 2 and � , one must divide ρσ 2 and ρ� by the density
n equation ( 13 ), i.e. by a linear function in η. In the η-linear case
ne should then expand the fraction up to linear terms in η; in the η-
uadratic interpretation, instead, where the density–potential pair in 
quation ( 13 ) is considered a model by itself, one should not expand,
o that the purely kinematical fields are not polynomial functions of
he flattening. Of course, in the limit of small flattening, even in the
-quadratic interpretation, the kinematical fields can be expanded up 

o η2 terms included, thus obtaining more manageable expressions. 

 T H E  M O D E L S  

e now consider axisymmetric systems of density distribution ρ( R ,
), total mass M , scale length a , and axial ratio q = 1 − η, where 0
η < 1. From equations ( 1 ) and ( 2 ) with ε = 0, one has 

ρ( R, z) 

ρn 
= 

˜ ρ( m ) 

1 − η
, m 

2 = 

˜ R 

2 + 

˜ z 2 

(1 − η) 2 
. (26) 

n particular, we solve in closed form the η-quadratic Jeans equa-
ions for two ellipsoidal models: the ellipsoidal generalization of 
he Plummer model ( P11 ) and the Perfect Ellipsoid ( ZL85 ). The η-
inear cases are immediately obtained by neglecting the η2 terms. The 
imensionless densities of the two models are gi ven, respecti vely, by 

˜ ( m ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

3 

(1 + m 

2 ) 5 / 2 
, 

4 

π(1 + m 

2 ) 2 
, 

(27) 

nd the masses enclosed within m are 

M( m ) 

M 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

m 

3 

(1 + m 

2 ) 3 / 2 
, 

2 

π

(
arctan m − m 

1 + m 

2 

)
. 

(28) 

n the adopted notation, the circular velocity in the equatorial plane
an be written as 

� 2 c ( R) 

� n 
= 

˜ R 

2 

2 

∫ ∞ 

0 
˜ ρ

( ˜ R √ 

1 + u 

)
d u 

(1 + u ) 2 
√ 

q 2 + u 

(29) 

see e.g. equation 5.62 in C21 ), and for P11 we obtain 

� 2 c ( R) 

� n 
= 

p 

2 F ( φ, k) + ( ̃  R 

2 − p 

2 ) E ( φ, k) 

( p 

2 + 

˜ R 

2 ) 3 / 2 

− q ˜ R 

2 

( p 

2 + 

˜ R 

2 )(1 + 

˜ R 

2 ) 3 / 2 
, (30) 

here 

≡ arcsin 

√ 

p 

2 + 

˜ R 

2 

1 + 

˜ R 

2 
, k ≡

˜ R √ 

p 

2 + 

˜ R 

2 
, p 

2 ≡ 1 − q 2 , (31) 

nd F ( φ, k) and E ( φ, k) are the Legendre elliptic integrals of first
nd second kind in trigonometric form (e.g. Gradshteyn & Ryzhik 
007 ). For ZL85 we have 

� 2 c ( R) 

� n 
= 

2 ̃  R 

2 

π( p 

2 + 

˜ R 

2 ) 

( 

φ√ 

p 

2 + 

˜ R 

2 
− q 

1 + 

˜ R 

2 

) 

, (32) 

here p and φ are given in equation ( 31 ). Equations ( 30 ) and ( 32 ) are
xact for any finite value of η; with some work, they can be expanded
o any desired order in η, thus providing a check for the homoeoidal
xpansion, where 

� 2 c ( R) 

� n 
= � 2 0 ( ̃  R ) + η� 2 1 ( ̃  R ), � 2 i ( ̃  R ) ≡ − ˜ R 

d ψ i ( ̃  R ) 

d ̃  R 

. (33) 

e verified that the linear expansion of equations ( 30 ) and ( 32 ) are
n perfect agreement with equation ( 33 ), where � 0 and � 1 are given
n the appendix. 
MNRAS 527, 9904–9916 (2024) 
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For an axisymmetric model with a central BH, the full solution of
quations ( 18 ) and ( 19 ) can be recast in integral form by exploiting the
ssumed homoeoidal structure. For the contributions of the stellar-
ynamical models, we have 

ρσ 2 
∗

ρn � n 
= 

1 

2 q 

∫ ∞ 

˜ z 
˜ ρ( m 

′ ) ̃ z ′ d ̃ z ′ 
∫ ∞ 

0 

˜ ρ( m u ) d u 

(1 + u )( q 2 + u ) 3 / 2 
(34) 

nd 

ρ� ∗
ρn � n 

= 

p 

2 ˜ R 

2 

2 q 3 

∫ ∞ 

˜ z 

∣∣∣∣d ̃  ρ( m 

′ ) 
d m 

′ 

∣∣∣∣ ˜ z ′ d ̃ z ′ 

m 

′ 

∫ ∞ 

0 

˜ ρ( m u )ud u 

(1 + u ) 2 ( q 2 + u ) 3 / 2 
, 

(35) 

here p 2 = 1 − q 2 , m u = m ( x , u ) is given by equation ( 6 ), m 

′ =
 

˜ R 

2 + ̃  z ′ 2 /q 2 , and the two integrals are e v aluated at fixed ˜ R (see
.g. e x ercise 13.29 in C21 ). The contributions due to a central BH of
ass M BH = μM are instead given by 

ρσ 2 
BH 

ρn � n 
= 

μ

q 

∫ ∞ 

˜ z 
˜ ρ( m 

′ ) 
˜ z ′ d ̃ z ′ 

s ′3 
(36) 

nd 

ρ� BH 

ρn � n 
= 

μp 

2 ˜ R 

2 

q 3 

∫ ∞ 

˜ z 

∣∣∣∣d ̃  ρ( m 

′ ) 
d m 

′ 

∣∣∣∣ ˜ z ′ d ̃ z ′ 

ms ′3 
, (37) 

here s ′ = 

√ 

˜ R 

2 + ̃  z ′ 2 (see e.g. e x ercise 13.28 in C21 ). 
Finally, for what concerns the self-gravitational energy of the
odels, the integral in equation ( 7 ) e v aluates to 3 π/ 4 and 4 / π,

espectively, for the P11 models and ZL85 models, so that, by
xpanding up to the second order in η the coefficients w i in
quation ( 7 ), for the axisymmetric case one has 

W 

M� n 
∼ − 1 

8 

(
1 + 

η

3 
+ 

2η2 

15 

)∫ ∞ 

0 
F 

2 ( m )d m. (38) 

his expression can be used as a check of the homoeoidal expansion,
hen the self-gravitational energy is computed directly from the
ensity–potential pair in equation ( 13 ), limiting to the linear terms
n η. 

.1 Results 

s recalled in Section 2 , in the homoeoidal expansion there is an
pper limit on η (that depends on the truncation order), so that, for
smaller than the critical value, the truncated density is nowhere

e gativ e: from ( 12 ), η ≤ 1/4 for P11 models, and η ≤ 1/3 for ZL85
odels. Reassuringly, these critical values are quite large, allowing to

eal with moderately flattened stellar systems such as those discussed
n Section 5 . In general, for η close to the limit, the density tends to
ecome ne gativ e along the z-axis, producing densities with a ‘torus-
ike’ structure, similar to the Binney logarithmic halo for potential
attening near the critical value ( BT08 ), and to complex shifted
odels (e.g. Ciotti & Giampieri 2007 ). In Fig. 1 , we show the

sodensity contours of P11 and ZL85 models, for two different η
alues. Black dashed lines show the original ellipsoidal models in
quation ( 27 ), while red solid lines show the homoeoidally expanded
odels in equation ( 13 ), where the e xplicit e xpressions for ρ i are

iven in the appendix. The figure shows how well the truncated
ensity reproduces the original model with η = 0.15, and how
 toroidal shape in the outer parts of the systems appears for η
pproaching the critical value. Of course, truncating the density up to
he quadratic order in η increases the upper limit on the flattening, and
oth black and red isdodensities would be almost indistinguishable
lso in the analogous of Fig. 1 (not shown here for simplicity). 

In order to address the first goal of this work, i.e. to e v aluate ho w
-linear and η-quadratic solutions compare between them and with
NRAS 527, 9904–9916 (2024) 
espect to the full solutions for genuine ellipsoidal models, in Fig. 2
e show the velocity dispersion σ , and the streaming velocity � ϕ in

he equatorial plane, for P11 and ZL85 models for a flattening η =
.1, and in the isotropic rotator ( k = 1). The solutions are shown in
bsence of the central BH for simplicity; the explicit expressions
or the functions X i , Y i , H ij , and Z ij , entering ρσ 2 

∗ and ρ� ∗ in
quations ( 21 ) and ( 24 ), are given in the appendix. We first focus on σ .
or each model, the left panels of Fig. 2 show the full solution for the
llipsoidal model (black solid line), obtained by solving numerically
quation ( 34 ), the η-linear solution (dotted line), the η-quadratic
olution (dashed line), and the truncated expansion of the full solution
p to the quadratic order terms included (red dashed line). For
eference, the central values of σ in the η-quadratic solutions are 

σ 2 
0 

� n 
= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

2 + 4(67 −96 ln 2)η + 3(355 −512 ln 2)η2 

12(1 + η) 
, 

3(32 −3 π2 ) + 8(9 π2 −88)η + 24(15 π2 −148)η2 

24 π(1 + η) 
, 

(39) 

or the P11 and ZL85 models, respectiv ely. Ob viously, the η-linear
ase is obtained by neglecting the η2 terms at the numerators. A few
eneral features are apparent. The first is the expected similarity of
he full solution for the two models, due to the qualitatively similar
ehaviour of their density distributions in the central regions. In
he e xternal re gions, the decline of σ in both models goes as R 

−1/2 

eing ρσ 2 
∗ ∝ r −6 for the P11 models, and ρσ 2 

∗ ∝ r −5 for the ZL85 
nes. 
The second reassuring feature is how close the full solution and

hose in the homoeoidal approximation are, o v er the whole radial
ange: the per centual differences are so small (less than 0 . 3 per cent )
o be completely negligible in all practical applications. Therefore,
e can conclude that the effect of quadratic η-terms is negligible,

nd that the η-linear approximation, with its simplifications, can be
afely used to model systems with low flattening. 

We can now address an interesting result that emerges from Fig. 2 ,
lso completing the reasonings introduced at the end of Section 3.3.
or both models, the η-linear solution al w ays overestimates the full
olution (with differences decreasing for increasing R ), and so do the
ther approximations; ho we ver, the η-quadratic solutions dif fer from
he full solution more than the η-linear solutions. This result might be
nexpected, since a quadratic approximation should perform better
han a linear one. But it should be recalled that the η-quadratic
olution is not the quadratic approximation of the full solution. In fact,
he dashed red lines in Fig. 2 confirm that the quadratic approximation
 ρσ 2 

∗ ) quadratic performs better than the η-linear solution ( ρσ 2 
∗ ) η−linear .

s discussed in Section 3.3 , the quadratic expansion of the full
olution 

 ρσ 2 
∗ ) quadratic � ( ρσ 2 

∗ ) η−linear + η2 Q (40) 

ould be computed formally starting from the homoeoidal truncation
f the density–potential pair to the quadratic order in η, solving the
eans equations, and finally discarding all terms in flattening of order
igher than quadratic. Ho we ver, instead of performing such laborious
athematical calculations, we computed numerically the function Q

n equation ( 40 ) as 

 ≡ lim 

η→ 0 

ρσ 2 
∗ − ( ρσ 2 

∗ ) η- linear 

η2 
, (41) 

here ρσ 2 
∗ is the full (numerical) solution. In the formula abo v e,

he numerical value of η are reduced until convergence is reached
but maintained large enough to avoid numerical fluctuations). The
act that the η-quadratic solution is not the quadratic truncation
f the expansion of the full solution is made apparent by the fact
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Figure 1. Isodensity contours, normalized to ρn , for the P11 (left) and ZL85 (right) models. Dashed lines refer to the ellipsoidal (original) model, while solid 
lines refer to the η-linear expansion of the density, as given in equation ( 13 ). Contours correspond to values of 1, 10 −1 , and 10 −2 from inside to outside. The 
bottom panels show the case of the critical flattenings η = 1/4 for P11 models and η = 1/3 for ZL85 ones: for larger values of η, the truncated density in 
equation ( 13 ) would be ne gativ e near the z-axis (see equation 12 ). The outermost expanded contours differ most from the elliptical shape as η increases. 
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3 Alternatively (see e.g. BT08 ), the radius of the sphere of influence of the 
BH can be defined as the distance from the centre at which the circular 
velocity due to the BH equals the projected velocity dispersion, i.e. R infl = 

GM BH /σ
2 
los ( R infl). For our models, in the limit of spherical symmetry, and 

under the assumption of isotropic velocity dispersion, R infl � 6 μa , almost 
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hat the black dashed lines (the η-quadratic solutions) are more 
istant from the solid line than the η-linear solution (dotted lines);
his is due to the missing quadratic terms, which can be shown
o be collectively negative. The conclusion is that, when using the 
omoeoidal expansion to describe an ellipsoidal system, the η-linear 
nterpretation is to be preferred to the η-quadratic solution, not only 
or its greater simplicity, but also for its better accuracy. 

The right panels of Fig. 2 show the corresponding streaming 
elocity profile � ϕ in the equatorial plane for the isotropic case 
 k = 1); the radial range has been extended to R � 32 a, in order
o display the whole peak present at around R � 1 . 6 a. The Satoh
ecomposition can be adopted for these models given the positivity 
f � ∗, which is to be expected since � is nowhere negative for an
blate self-gravitating ellipsoid, as shown by equation ( 35 ). Several 
f the comments concerning the solutions for the velocity dispersion 
pply also to � ϕ , in particular that on the almost perfect (for practical
urposes) coincidence of the η-linear, η-quadratic, and full solutions. 
o we ver, the η-linear solutions are now the most discrepant with

espect to the full solutions, followed, in order, by the η-quadratic 
nd the true quadratic expansion. 

The effect of a central BH of mass M BH = 10 −3 M ∗ on the η-
inear solution is shown for the P11 and ZL85 models in Fig. 3 .
1

n each plot, the solid line is the total, the dashed line is the BH
ontribution, and the dotted line is the model for the stellar component 
lready shown in Fig. 2 ; the radial range is now extended down to
 = 10 −3 a to better appreciate the dynamical effects of the BH.
rom equation ( 28 ), the radius containing the fraction μ = 10 −3 of

he total mass (of the spherical model), that is the commonly adopted
stimate for the dynamical radius of the BH (see Chapter 4 in BT08 ),
s R dyn ≈ 0 . 1a. This value is nicely close to the position where
he lines corresponding to the total σ and � ϕ start to deviate from
he stellar-dynamical model contributions. 3 In particular, the BH 

etermines an increase of σ towards the centre that goes as R 

−1 / 2 ;
nstead, � ϕ still vanishes at the centre even in the presence of the BH.
his property can be quantified with the asymptotic analysis of � ∗
nd � BH near the centre: without the BH, the isotropic � ϕ decreases at
mall radii as R , whereas in presence of the BH it decreases as R 

1 / 2 ;
MNRAS 527, 9904–9916 (2024) 

6 times smaller than R dyn . 
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M

Figure 2. Left: Radial profile of the velocity dispersion σ in the equatorial plane ( z = 0) for the models discussed in Section 4 , with η = 0.1, and without a 
central BH ( μ = 0). The homoeoidal approximation reproduces remarkably well the full solution (solid line), o v er the displayed radial range of 0.01 < R / a � 

0.32. The values of σ for the η-linear models o v erestimate the full solution, and retaining the quadratic terms in the flattening further increases this o v erestimate. 
Right: Radial trend of � ϕ on the equatorial plane, for the same models on the left, and with the same meaning of the line type; the case of the isotropic rotator is 
sho wn. The v alues of � ϕ for the η-linear and η-quadratic models underestimate those of the full solution. In all panels, the red dashed line shows the expansion 
up to the quadratic order in η of the full solution (see equation 40 and Section 4.1 ). 
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hus, � ϕ does not diverge at the centre, as instead σ and � c do. This is
xplained by noticing that, for a generic model density with a central
rofile (1 + m 

2 ) −α , � BH ∝ R 

2 / r at small radii, and so in the Satoh
ecomposition � ϕ v anishes to wards the centre, 4 while � 2 ϕ di verges as
2 . Of course, when adopting a different decomposition of � 2 ϕ (such
s that in equation 13.107 in C21 ; see also De Deo L., Ciotti L., and
ellegrini S., in preparation), a central cusp in � ϕ would be obtained.
e conclude that special care should be used when interpreting the

esults of models used to predict the effects of a central BH on the
treaming velocity field of the stars. 

The previous discussion focused on the different solutions on the
quatorial plane. It is of course important to consider also their
ehaviour o v er the full ( R , z) plane, as 2D spectroscopy is nowadays
outinely performed (e.g. Emsellem et al. 2007 ; Krajnovi ́c et al.
008 ; Jeong et al. 2009 ). In Fig. 4 , we show the two-dimensional
aps of σ , σϕ , and � ϕ (for k = 1), for a P11 model with η = 0.1 and
NRAS 527, 9904–9916 (2024) 

 The vanishing of � BH is not a general property of ellipsoidal systems with 
 central BH (see e.g. fig. 3 in CMPZ21 ). 

r  

s  

n  

K  
= 0; contours are displayed for the full and the η-linear solutions.
he comparison shows that the η-linear σ keeps extremely close to

hat of the full solution, even outside the equatorial plane; a similar
greement persists for σϕ , while it becomes slightly worse for � ϕ .
o we ver, e ven if the shape of the isorotational surfaces in the η-linear

pproximation seems more discrepant from that of the true solution
han for the σ and σϕ cases, the � ϕ values of the η-linear and full
olutions along cuts at fixed z are still very similar, as we verified
ith plots of these cuts (where indeed the differences in velocity are
f the same extent as in the left panels of Fig. 2 ). 

 A N  APPLI CATI ON:  ROTAT I O N  A N D  

LATTENI NG  O F  G L O BU L A R  CLUSTERS  

Cs have traditionally been regarded as simple spherical, non-
otating stellar systems; ho we v er, small ellipticities hav e been ob-
erved since a long ago, and rotation is being detected in a growing
umber of them (e.g. Bianchini et al. 2018 ; Ferraro et al. 2018 ;
amann et al. 2018 ). The origin of the observed flattening has
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Figure 3. The η-linear modelling of an isotropic ( k = 1) system with η = 0.1, and a central BH with μ = 0.001, for the models in Section 4 . Solid lines show 

σ (left) and � ϕ (right) on the equatorial plane ( z = 0). Dotted and dashed lines sho w, respecti vely, the contributions of the stellar-dynamical model and the BH. 
Due to the presence of the BH, the velocity dispersion diverges at small radii as 1 / 

√ 

R , while the streaming velocity vanishes towards the centre as 
√ 

R (see 
Section 4.1 ). 

Figure 4. Maps of σ (left), σϕ (middle, k = 0), and � ϕ (right, k = 1), in units of 
√ 

� n , for P11 models with η = 0.1 and μ = 0. Dashed lines show the full 
solution, while solid lines show the solution of the η-linear modelling. The innermost contour corresponds to values of 0.26 for the normalized σ and σϕ , and 
of 0.16 for � ϕ . The values for the other contour lines decrease outward with steps of 0.02. 
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een attributed to the effects of internal rotation, velocity dispersion
nisotropy, and external tides (for a more extended discussion, see
.g. van den Bergh 2008 ). In particular, dynamical phenomena
uch as violent relaxation and two-body relaxation tend to produce
sotropic velocity distributions in the central regions of stellar
ystems, so that, if flattening is observed there, rotation should be
onsidered a possible explanation. In addition to contributing to the
hape of these systems, rotation is also expected to change their
ynamical evolution (e.g. Fiestas et al. 2006 ), and to be linked to
heir ‘dynamical age’ (e.g. Tiongco et al. 2017 ; Leanza et al. 2022 ;
ivernois et al. 2022 ). Finally, rotation has been suggested to have a

ole in the formation of multiple stellar populations in them (Lacchin
t al. 2022 ). Therefore, an assessment of the respective amounts of
otation and anisotropic pressure is particularly important. Indeed, in
ecent years much effort has been devoted to dynamical modelling of
Cs, using different strategies, as for example N -body simulations

e.g. Hurley & Shara 2012 ), Monte Carlo models (e.g. Giersz
t al. 2013 ; Kamlah et al. 2022 ), or self-consistent models specific
or quasi-relaxed, rotating stellar systems (Varri & Bertin 2012 ;
ianchini et al. 2013 ; Jeffreson et al. 2017 ); see Spurzem & Kamlah
 2023 ) for a recent re vie w. 

In general, these techniques are quite complex, and their ap-
lication time-consuming: it would be desirable to have a simple
 ut rob ust method to assess phenomenologically the importance of
otation, before applying more sophisticated tools, and we suggest
hat the homoeoidal expansion and the η-linear solutions of the Jeans
quations could be one of such possibilities. Moreo v er, for the choice
f Satoh’s decomposition and for a density profile roughly constant
n the central regions, the homoeoidal expansion predicts a sort of
universal profile’ for the streaming velocity � ϕ , of shape given by the
rst of equation ( 17 ) with k = 1, coupled to equations ( 24 ) and ( 25 ). In
articular, three main properties are predicted: (1) from equation ( 24 ),
 ϕ scales as the square root of flattening, and increases linearly
ith radius; (2) it reaches a maximum; (3) it decreases afterward.
f course, these properties transfer also to the projected streaming
elocity field � los . Thus, a simple and direct relation between the shape
f the system and its rotation profile is expected, and it is tempting
ere to test whether it is satisfied by well-observed systems. At first
ight, the three features of � ϕ (and � los ) agree with what observed, for
 chosen test-case object (see below), and also for others (e.g. Leanza
t al. 2022 ). Therefore, the method could provide a fast and flexible
ool to address, in a preliminary way, the following questions: are
bservations consistent with velocity dispersion isotropy? if not, does
 rescaling of � los with a different constant k value make the model
onsistent with observations? or, is there the need for a change of k
ith radius? 
As a test-case for the application of the homoeoidal method

e chose NGC 4372, a GC for which a detailed photometric and
pectroscopic study was conducted (Kacharov et al. 2014 ). NGC
372 has an observed low ellipticity of η = 0.08; and, thanks to a
arge number of precise radial velocity measurements, it has a � los 

rofile extending at least out to its half-light radius, 5 and a velocity
ispersion profile e xtending ev en further out. Kacharov et al. ( 2014 )
dopted a Plummer model, one of the two illustrating cases abo v e, as
n optimal representation of the observed properties; they estimated
 = 5 . 1 pc and M = 1 . 7 × 10 5 M �. All this makes NGC 4372 an
bvious candidate for our test. We modelled then NGC 4372 with
he P11 profile, of parameters as in Kacharov et al. ( 2014 ), and, based
NRAS 527, 9904–9916 (2024) 

 For a Plummer model, the characteristic radius a corresponds to the half- 
ass radius. 

6

t
i

n the results of Section 4.1 , with the η-linear solution of the Jeans
quations. For the model, and for k = 1, Fig. 5 shows the intrinsic
treaming velocity � ϕ (blue solid curves), the line-of-sight velocity
 los (blue dashed curves), and the line-of-sight velocity dispersion σ los 

see section 5 in CMPZ21 and chapter 11 in C21 for the formulae
sed to obtain the projected quantities); the corresponding observed
ata points (red dots) are also shown for comparison, together with
heir error bars. When projecting, we adopted two inclination angles:
 = 90 ◦ (upper panels in Fig. 5 ) and i = 45 ◦ (lower panels in Fig. 5 ).
n the first case, NGC 4372 is supposed to be viewed edge-on, and
he model was built with an intrinsic flattening coincident with the
bserved one ( η = 0.08); in the second case, the intrinsic flattening
ncreases 6 to η = 0.17. Overall, for both inclinations, σ los of the

odel accounts quite well for the observed profile, but the isotropic
 los does not so: its innermost rising part does not reproduce well the
bserv ed curv e, and, more important, at distances larger than � a it
emains too high. We are then forced to exclude the possibility that
GC 4372 is an isotropic rotator, and also that it is a rotator with a
ifferent but constant k , that would have a � los profile with the same
hape, just rescaled. Note that decreasing further the inclination angle
ould not change significantly this conclusion: it would produce an

ncreased intrinsic flattening, and then an increase of the isotropic
 ϕ , which would be almost perfectly compensated by the decrease of
he projection angle. 

Having discarded the possibility of an isotropic rotator, we
ttempted then to reproduce the observed profile with a radially
ependent Satoh decomposition. Since the blue solid curves in Fig. 5
ive the � ϕ field with k = 1 in equation ( 17 ), in practice they also show
 

� and its projection; the modifications needed on k can then be
asily deduced from these curv es. Quite ob viously, we do not attach
 deep physical meaning to these modifications, even though some
mplications can be derived. An inspection of Fig. 5 suggests that
he required changes to � los , to be produced by a radially dependent
 , are: (i) to preserve the linear rise of � los in the central regions,
ut include a sharp peak at a radius of ∼a /3, that is not present in
he constant k case; (ii) to be significantly lower than the isotropic
otation velocity outside � a . We parametrized these requests with
he trial function 

( R ) = 

A 

1 + ( ̃  R /B) n 
, (42) 

here ˜ R = R/a, and A , B , and n are three dimensionless free
arameters. In Fig. 5 , with black lines we show the intrinsic and
rojected streaming velocity profiles, obtained from equation ( 42 ),
ith A = 3.5, B = 0.5, and n = 2, and for the two inclination

ngles i = 90 ◦ and i = 45 ◦. The chosen values of A , B , and n are
ot the result of a rigorous ‘best-fitting’ procedure; they reproduce
uite reasonably the observ ed v elocity profile, and allow us to draw
hree robust conclusions: the central regions must rotate faster than
he isotropic rotator, as k � 3.5 there; rotation is very concentrated;
nd the � ϕ decline for R � a /2 is steep, with k ∝ 1/ R 

2 . The lack
f proper motion measurements for NGC 4372 prevented us from
stablishing the inclination angle, thus the intrinsic flattening. It
ould be interesting to extend our analysis to some other GCs with
ell-measured proper motions; ho we v er, as stressed abo v e, we found
 compensation between the system inclination and � los ; therefore,
e are confident that the results obtained are quite robust. 
 When the line of sight is inclined by an angle i with respect to the z-axis, 
he relation between the intrinsic flattening q and the observed flattening q obs 

s q 2 obs = cos 2 i + q 2 sin 2 i (see e.g. C21 ). 
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Figure 5. The η-linear modelling of the globular cluster NGC 4372, whose observed (projected along the line of sight) kinematics is shown by red points (from 

Kacharov et al. 2014 ). Solid lines show the intrinsic velocity � ϕ , and dashed lines show the projected velocity � los (on the left) and σ los (on the right). Blue lines 
show the isotropic case ( k = 1) and black lines the spatially dependent k( R ) in equation ( 42 ). Two inclination angles were adopted: i = 90 ◦ (upper panels) and 
i = 45 ◦ (lower panels). When i = 90 ◦, the intrinsic flattening coincides with the observed one ( η = 0.08); when i = 45 ◦, the intrinsic flattening is η = 0.17 (see 
Section 5 ). 
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The right panels of Fig. 5 also show that, with the k ( R ) in
quation ( 42 ), σ los differs from that of the isotropic rotator, which
s not a surprise because � los enters the expression for σ los (see e.g. 
quation 54 in CMPZ21 ): this is at the origin of the (small) drop of the
lack lines in the very central regions. In particular, the two outermost
ata points are better reproduced by the isotropic σ los rather than the 
ew one. We believe that a formal solution, reproducing both � los 

nd σ los , could be obtained by using a more complicated functional 
orm of k ( R ), for example that increases again up to unity for R �
 ; ho we ver, we consider this possibility quite implausible from a
hysical point of view. We conclude that NGC 4372 is unlikely to be
n isotropic rotator, because of its lower rotation at R � a and a higher
otation in its central region. Reassuringly, some of these conclusions 
ave also been reached with a more sophisticated approach, based 
n the construction of models supported by a self-consistent phase- 
pace distribution function (e.g. Varri & Bertin 2012 ; Jeffreson et al.
017 ). 
Before concluding this analysis, it is tempting to suggest another 

ossible interpretation for the observed kinematic features of NGC 

372: the GC could be a two-component system, with an inner
otating structure physically distinct from that of the main body of
he GC, and described by its own phase-space distribution function. 
ur modelling so far was implicitly based on the use of a single
istribution function, i.e. the GC was assumed to be a one-component 
ystem. If the total distribution function were the sum of two different
istribution functions, one for the non-rotating (or slowly rotating) 
C and the other for the fast rotating substructure, the total rotational
eld to be modelled with the Jeans equations would be the mass
MNRAS 527, 9904–9916 (2024) 
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veraged rotational field of the GC and of the substructure (not just
hat of the sampled stars of the subcomponent). It would be interesting
o determine observationally whether the stars contributing to the
rojected streaming velocity in the central region show a difference
n age and/or chemical composition with respect to the majority of
he stars of the GC. 

A different possibility would be that the rotational profile is
xplained by a significant change in the flattening of the system
pproaching the centre; in fact, the ellipticity is observed to vary in
he central regions of some GCs (e.g. Bianchini et al. 2013 ). The
ossibility that the inner regions can be actually interpreted as a
attened isotropic rotator is qualitatively supported by the scaling
f the isotropic � ϕ with 

√ 

η. We note, ho we ver, that in NGC 4372
he fiducial value � 3 of the Satoh k parameter in the central regions
ould require, if decreased to 1, an increase of the adopted η by a

actor of ≈9, bringing the flattening well abo v e the limiting value
llowed by the homoeoidal expansion. 

 DISCUSSION  A N D  C O N C L U S I O N S  

n this work, we studied some aspects of the Jeans modelling
f axisymmetric systems that are only slightly deviating from a
pherical shape, a situation often encountered in applications. In
articular, we considered two problems related to the homoeoidal
xpansion technique ( CB05 ; CMPZ21 ; C21 ; see also Lee & Suto
003 ; Muccione & Ciotti 2004 ; Ciotti et al. 2006 ; Ciotti & Pellegrini
008 ).This technique allows for a simple modelling of systems
lightly departing from spherical symmetry, based on the expansion
f the original ellipsoidal density–potential pair at the linear order
n terms of the density flattening η. Thanks to this expansion, a
umerical integration for the determination of the potential can be
sually a v oided, and the resulting (two-integral) Jeans equations can
ften be solv ed analytically. Ev en in case of a numerical treatment,
he integrals are no more difficult than for spherically symmetric

odels. 
Two interesting questions concerning the homoeoidal expansion,

specially rele v ant in modelling applications, were not properly
ddressed so far. The first is related to the physical interpretation
f the expanded density–potential pair, which obeys exactly the
oisson equation, and that can be interpreted as the linearization
f the original ellipsoidal models, or as a genuinely self-consistent
odel. In the first interpretation, only linear terms in the flattening
are retained in the solutions of the Jeans equations ( η-linear

olutions), while in the second interpretation all terms up to the
uadratic order are considered ( η-quadratic solutions). The question
s then to estimate the contribution of these quadratic terms to the
olutions (even in light of the fact that such terms do not present
pecial mathematical difficulties in the analytical treatment). The
roblem is not of secondary importance as it might appear: even if
2 is much smaller than η for small values of η, it is not guaranteed

hat the corresponding coordinate-dependent functional coefficients
n the expansion are necessarily small, and so the discarded η-
uadratic terms could be non-negligible over some region of space.
he second question is related to the additional fact that the η-
uadratic solutions of the Jeans equations are not the quadratic
runcation of the expansion of the full solutions in terms of powers of
he flattening. Therefore, it is interesting to estimate not only how the
-linear and η-quadratic solutions differ, but also how they deviate
rom the full solution. To quantitatively answer the questions abo v e,
e obtained the analytical η-quadratic solutions, and the (numerical)

olution of the two-integral Jeans equations, for two weakly flattened
llipsoidal systems, namely the ellipsoidal Plummer model and the
NRAS 527, 9904–9916 (2024) 
erfect Ellipsoid. We found that, for flattening of the order of η =
0 −1 , the differences between the η-linear and η-quadratic solutions
re everywhere negligible; moreover, the η-linear solution already
ro vides an e xcellent agreement with the full solution, and then
uffices for practical purposes. 

For an example of application of the use of the η-linear solution, we
hose the research field of GCs, systems with small flattening often
escribed by the Plummer model. The comparison with GCs was
lso suggested by the fact that the isotropic streaming velocity field
f weakly flattened ellipsoidal systems is in general linearly rising
n the inner part (it scales as the square root of the flattening, i.e.
 

η), reaches a maximum, and then shows a monotonic decline; this
ehaviour is remarkably similar to the phenomenological velocity
rofile usually adopted to describe the rotation of GCs. We considered
hen the GC NGC 4372, characterized by a small flattening ( η =
.08), and with an extended rotation curve observed. Our modelling
ules out the possibility that NGC 4372 is an isotropic stellar system
attened by rotation, in agreement with the conclusions obtained
y using more sophisticated modelling techniques, for example
ased on the construction of self-consistent solutions starting from
he phase-space distribution function (e.g. Varri & Bertin 2012 ;
ianchini et al. 2013 ; Jeffreson et al. 2017 ). Interestingly, we

how that rotation must exceed that of an isotropic rotator in the
entral region, which indicates the possibility of the presence of a
eparate highly rotating subcomponent. We conclude that the η-
inear homoeoidally expanded solutions can be a useful starting
oint to gain insight into the internal dynamics of weakly flattened
nd rotating stellar systems (as some GCs) before turning to more
omplex studies. 
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H 00 ( s ) = 

12 arctan 2 s 

π2 
+ 

8(3 s 2 + 2) 

π2 s (1 + s 2 ) 
arctan s + 

4(3 s 2 + 4) 

π2 (1 + s 2 ) 2 
− 3, (B5) 

H 01 ( s) = − 48 arctan 2 s 

π2 
− 8(12 s 6 + 20 s 4 + 7 s 2 − 2) 

π2 s 3 (1 + s 2 ) 2 
arctan s − 8(6 s 6 + 14 s 4 + 9 s 2 + 2) 

π2 s 2 (1 + s 2 ) 3 
+ 12, (B6) 

H 02 ( s) = − 180 arctan 2 s 

π2 
− 8(45 s 8 + 75 s 6 + 24 s 4 − 4 s 2 + 3) 

π2 s 5 (1 + s 2 ) 2 
arctan s − 4(45 s 8 + 105 s 6 + 68 s 4 + 4 s 2 − 6) 

π2 s 4 (1 + s 2 ) 3 
+ 45, (B7) 

H 11 ( s) = − 480 arctan 2 s 

π2 
− 32(30 s 6 + 50 s 4 + 16 s 2 − 1) 

π2 s 3 (1 + s 2 ) 2 
arctan s − 16(90 s 8 + 300 s 6 + 343 s 4 + 136 s 2 + 6) 

3 π2 s 2 (1 + s 2 ) 4 
+ 120, (B8) 

H 12 ( s) = − 1680 arctan 2 s 

π2 
− 8(420 s 8 + 700 s 6 + 224 s 4 − 32 s 2 + 3) 

π2 s 5 (1 + s 2 ) 2 
arctan s 

− 8(630 s 10 + 2100 s 8 + 2422 s 6 + 1036 s 4 + 81 s 2 − 9) 

3 π2 s 4 (1 + s 2 ) 4 
+ 420 , (B9) 

H 22 ( s) = − 3780 arctan 2 s 

π2 
− 24(315 s 8 + 525 s 6 + 168 s 4 − 24 s 2 + 8) 

π2 s 5 (1 + s 2 ) 2 
arctan s 

− 4(945 s 10 + 3150 s 8 + 3633 s 6 + 1536 s 4 + 64 s 2 − 48) 

π2 s 4 (1 + s 2 ) 4 
+ 945 . (B10) 

As in the text, ˜ R = R/a, and s = r / a , where a is the scale length of the model. 
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