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ABSTRACT

Dissipationless collapses in modified Newtonian dynamics (MOND) are studied by using a new particle-mesh
N-body code based on our numerical MOND potential solver. We found that low surface density end products have
shallower inner density profiles, flatter radial velocity dispersion profiles, and more radially anisotropic orbital dis-
tributions than high surface density end products. The projected density profiles of the final virialized systems are
well described by Sérsic profiles with index mP 4, down to m � 2 for a deep MOND collapse. Consistent with ob-
servations of elliptical galaxies, the MOND end products, if interpreted in the context of Newtonian gravity, would
appear to have little or no darkmatter within the effective radius. However, we found it impossible (under the assump-
tion of constant stellar mass-to-light ratio) to simultaneously place the resulting systems on the observed Kormendy,
Faber-Jackson, and fundamental plane relations of elliptical galaxies. Finally, the simulations provide strong evi-
dence that phase mixing is less effective in MOND than in Newtonian gravity.

Subject headings: galaxies: elliptical and lenticular, cD—galaxies: formation—galaxies: kinematics and dynamics—
gravitation — methods: numerical — stellar dynamics

1. INTRODUCTION

InBekenstein&Milgrom’s (1984, hereafterBM84) Lagrangian
formulation of Milgrom’s (1983) MOND, the Poisson equation

92�N ¼ 4�G� ð1Þ

for the Newtonian gravitational potential �N is replaced by the
field equation

: = �
k:�k
a0

� �
:�

� �
¼ 4�G�; ð2Þ

where a0 ’ 1:2 ; 10�10 m s�2 is a characteristic acceleration,
k: : :k is the standard Euclidean norm, � is the MOND gravi-
tational potential produced by the density distribution �, and in
finite-mass systems :� ! 0 for kxk ! 1. The MOND grav-
itational field ggg experienced by a test particle is

ggg ¼ �:�; ð3Þ

and the function � is such that

�( y) �
y; yT1;

1; y3 1;

�
ð4Þ

throughout this paper we use

�( y) ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p : ð5Þ

In the so-called deepMOND regime (dMOND), describing low-
acceleration systems (k:�kTa0), �( y) ¼ y and so equation (2)
simplifies to

: = k:�k:�ð Þ ¼ 4�Ga0�: ð6Þ

The source term in equation (2) can be eliminated by using
equation (1), giving

�
k:�k
a0

� �
:� ¼ :�N þ S; ð7Þ

where S ¼ curl h is a solenoidal field dependent on � and in
general different from zero. When S ¼ 0 equation (7) reduces
to Milgrom’s (1983) formulation and can be solved explicitly.
Such a reduction is possible for configurations with spherical,
cylindrical, or planar symmetry, which are special cases of a more
general family of stratifications (BM84; Brada&Milgrom 1995).
Although the solenoidal field S has been shown to be small for
some configurations (Brada &Milgrom 1995; Ciotti et al. 2006,
hereafter CLN06), neglecting it when simulating time-dependent
dynamical processes has dramatic effects such as nonconserva-
tion of total linear momentum (e.g., Felten 1984; see also x 3.1).
Nowadays some astronomical observational data appear con-

sistent with the MOND hypothesis (see, e.g., Milgrom 2002;
Sanders & McGaugh 2002). In addition, Bekenstein (2004) re-
cently proposed a relativistic version of MOND (tensor-vector-
scalar theory [TeVeS]), making it an interesting alternative to
the cold dark matter paradigm. However, dynamical processes
in MOND have been investigated very little so far, mainly due
to difficulties posed by the nonlinearity of equation (2). Here we
recall the spherically symmetric simulations (in which S ¼ 0)
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of gaseous collapse in MOND by Stachniewicz & Kutschera
(2005) and Nusser & Pointecouteau (2006). The only genuine
three-dimensionalMONDN-body simulations (in which eq. [2]
is solved exactly) are those by Brada & Milgrom (1999, 2000),
who studied the stability of disk galaxies and the external field
effect, and those of Tiret & Combes (2007). Other attempts to
study MOND dynamical processes have been conducted using
three-dimensional N-body codes by arbitrarily setting S ¼ 0:
Christodoulou (1991) investigated disk stability, while Nusser
(2002) and Knebe & Gibson (2004) explored cosmological
structure formation.1

In this paper we present results of N-body simulations of
dissipationless collapse in MOND. The simulations were per-
formed with an original three-dimensional particle-meshN-body
code, based on the numerical MOND potential solver presented
in CLN06, which solves equation (2) exactly. These numerical
experiments are interesting both from a purely dynamical point
of view, allowing for the first time exploration of the relaxation
processes in MOND, and in the context of elliptical galaxy for-
mation. In fact, the ability of dissipationless collapse to produce
systems strikingly similar to real elliptical galaxies is a remark-
able success of Newtonian dynamics (e.g., van Albada 1982;
Aguilar &Merritt 1990; Londrillo et al. 1991; Udry 1993; Trenti
et al. 2005; Nipoti et al. 2006, hereafter NLC06), while there
have been no indications so far that MOND can work as well in
this respect. Here we study the structural and kinematical prop-
erties of the end products of MONDsimulations, andwe compare
them with the observed scaling relations of elliptical galaxies:
the Faber-Jackson (FJ) relation (Faber & Jackson 1976), the
Kormendy (1977) relation, and the fundamental plane (FP) re-
lation (Djorgovski & Davis 1987; Dressler et al. 1987).

The paper is organized as follows. The main features of the
new N-body code are presented in x 2, while x 3 describes the
setup and the analysis of the numerical simulations. The results
are presented in x 4 and discussed in x 5.

2. THE N-BODY CODE

While most N-body codes for simulations in Newtonian grav-
ity are based on the gridless multipole-expansion tree code
scheme (Barnes & Hut 1986; see also Dehnen 2002), the non-
linearity of the MOND field equation (2) forces one to resort to
other methods, such as the particle-mesh technique (see Hockney
& Eastwood 1988). In this approach, particles are moved under
the action of a gravitational field that is computed on a grid, with
particle-mesh interpolation providing the link between the two
representations. In our MOND particle-mesh N-body code, we
adopt a spherical grid of coordinates (r, �, ’), made of Nr ;
N� ;N’ points, on which the MOND field equation is solved
as in CLN06. Particle-mesh interpolations are obtained with a
quadratic spline in each coordinate, while time stepping is given
by a classical leapfrog scheme (Hockney& Eastwood 1988). The
time step �t is the same for all particles and is allowed to vary
adaptively in time. In particular, according to the stability criterion
for the leapfrog time integration,we adopt�t ¼ �/ maxj92�j

� �1/2
,

where �P 0:3 is a dimensionless parameter.We found that � ¼ 0:1
assures good conservation of the total energy in the Newtonian
cases (see x 3.1). In the present version of the code, all the com-
putations on the particles and the particle-mesh interpolations
can be split among different processors, while the computations
relative to the potential solver are not performed in parallel. The
solution of equation (2) over the grid is then the bottleneck of the

simulations: however, the iterative procedure on which the po-
tential solver is based (see CLN06) allows one to adopt as a seed
solution at each time step the previously determined potential.

TheMOND potential solver can also solve the Poisson equation
(obtained by imposing � ¼ 1 in eq. [2]) so Newtonian simula-
tions can be run with the same code. We exploited this property
to test the code by running several Newtonian simulations of
both equilibrium distributions and collapses, comparing the re-
sults with those of simulations (starting from the same initial
conditions) performedwith the FORTRANversion of fast Poisson
solver (FVFPS) tree code (Londrillo et al. 2003; Nipoti et al.
2003). One of these tests is described in x 4.1.2.

We also verified that the code reproduces the Newtonian and
MOND conservation laws (see x 3.1): note that the conservation
laws in MOND present some peculiarities with respect to the
Newtonian case, so we give here a brief discussion of the sub-
ject. As already stressed by BM84, equation (2) is obtained from
a variational principle applied to a Lagrangian with all the re-
quired symmetries, so energy, and linear and angular momentum
are conserved. Unfortunately, as also shown by BM84, the total
energy diverges even for finite-mass systems, thus posing a com-
putational challenge to code validation. We solved this problem
by checking the volume-limited energy balance equation

d

dt

Z
V0

k þ ��þ a20
8�G

F
jj:�jj
a0

� �� �
d3x

¼ 1

4�G

Z
@V0

�
@�

@t
:�; n̂h i da; ð8Þ

which is derived in Appendix A. In equation (8) V0 is an arbi-
trary (but fixed) volume enclosing all the system mass, k is the
kinetic energy per unit volume, and

F( y) � 2

Z y

y0

�(� )� d�; ð9Þ

where y0 is an arbitrary constant; note that only finite quantities
are involved. Another important relation between global quan-
tities for a system at equilibrium (in MOND as in Newtonian
gravity) is the virial theorem

2K þW ¼ 0; ð10Þ

where K is the total kinetic energy andW ¼ trWij is the trace of
the Chandrasekhar potential energy tensor

Wij � �
Z

� (x)xi
@�(x)

@xj
d3x ð11Þ

(e.g., Binney & Tremaine 1987). Note that in MOND K þW is
not the total energy and is not conserved. However, W is con-
served in the limit of dMOND, asW ¼ �(2/3)(Ga0M

3
� )

1/2 for all
systems of finite total mass M� (see Appendix B for the proof ).
As a consequence, in dMOND the virial theorem is simply �4

V ¼
4GM�a0/9, where �V � 2K/M�ð Þ1/2 is the system virial velocity
dispersion (this relation was proved byMilgrom [1994]; see also
Milgrom [1984] and Gerhard & Spergel [1992]). In our simu-
lations we also tested that equation (10) is satisfied at equilibrium
and that W is conserved in the dMOND case (see xx 3.1 and 4).

3. NUMERICAL SIMULATIONS

The choice of appropriate scaling physical units is an impor-
tant aspect of N-body simulations. This is especially true in the

1 Cosmological N-body simulations in the context of a relativistic MOND
theory such as TeVeS have not been performed so far.
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present case, inwhichwewant to compareMONDandNewtonian
simulations having the same initial conditions. As is well known,
due to the scale-free nature of Newtonian gravity, a Newtonian
N-body simulation starting from a given initial condition de-
scribes in practice12 systems of arbitrary mass and size. Each
of them is obtained by assigning specific values to the length
and mass units, r� andM�, respectively, in which the initial con-
ditions are expressed. Also, dMOND gravity is scale free, be-
cause a0 appears only as a multiplicative factor in equation (6),
and so a simulation in dMOND gravity represents systems with
arbitrary mass and size (although, in principle, the results apply
only to systems with accelerations much smaller than a0). MOND
simulations can also be rescaled, but due to the presence of the
characteristic acceleration a0 in the nonlinear function �, each
simulation describes only11 systems, because r� andM� cannot
be chosen independently of each other.

On the basis of the above discussion, we fix the physical units
as follows (see Appendix C for a detailed description of the
scaling procedure). Let the initial density distribution be char-
acterized by a total mass M� and a characteristic radius r�. We
rescale the field equations so that the dimensionless source term
is the same in Newtonian, MOND, and dMOND simulations.
We also require that the second law of dynamics, when cast
in dimensionless form, is independent of the specific force law
considered, and this leads to fixing the time unit. As a result,
Newtonian and MOND simulations have the same time unit
t�N ¼ r 3/2� (GM�)

�1/2, while the natural time unit in dMOND
simulations is t�d ¼ r�(GM�a0)

�1/4. Note thatMOND simulations
are characterized by the dimensionless parameter 	 ¼ GM�/r

2
� a0

and scaling of a specific simulation is allowed provided the value
of 	 is maintained constant. Therefore, simulations with lower
	-values describe lower surface density, weaker acceleration sys-
tems; dMOND simulations represent the limiting case 	T1,
while Newtonian ones describe the regime with 	31. With
the time units fixed, the corresponding velocity and energy units
are v�N � r�/t�N , v�d � r�/t�d , and E�N ¼ M�v

2
�N, E�d ¼ M�v

2
�d ,

respectively (see Table 1 for a summary).

3.1. Initial Conditions and Analysis of the Simulations

We performed a set of five dissipationless-collapse N-body
simulations, starting from the same phase-space configuration:
the initial particle distribution follows the Plummer (1911) spher-
ically symmetric density distribution

�(r) ¼ 3M�r
2
�

4�(r 2 þ r 2� )
5=2

; ð12Þ

whereM� is the total mass and r� is a characteristic radius. The
choice of a Plummer sphere as the initial condition is quite ar-
tificial and not necessarily the most realistic to reproduce initial
conditions in the cosmological context (e.g., Gunn&Gott 1972).
We adopt such a distribution to adhere to other papers dealing
with collisionless collapse (e.g., Londrillo et al. 1991; NLC06;

see also x 5, in whichwe present the results of a set of simulations
starting from different initial conditions). The particles are at
rest, so the initial virial ratio 2K/jW j ¼ 0. What is different in
each simulation is the adopted gravitational potential, which
is Newtonian in simulation N, dMOND in simulation D, and
MONDwith acceleration ratio 	 in simulations M	 (	 ¼ 1, 2, 4).
For each simulation we define the dynamical time tdyn as the
time at which the virial ratio 2K/jW j reaches its maximum
value. In particular, we find tdyn � 2t�d in simulation D and tdyn �
2t�N in simulations N, M1, M2, and M4. We note that tdyn �
GM5/2

� (2jK þW j)�3/2 in simulation N.
Following NLC06, the particles are spatially distributed ac-

cording to equation (12) and then randomly shifted in position
(up to r�/5 in modulus). This artificial, small-scale ‘‘noise’’ is
introduced to enhance the phase mixing at the beginning of the
collapse, because the numerical noise is small and the velocity
dispersion is zero (see also x 4.2). As such, these fluctuations are
not intended to reproduce any physical clumpiness.
All the simulations (realized with N ¼ 106 particles, and a

grid with Nr ¼ 64, N� ¼ 16, and N’ ¼ 32) are evolved up t ¼
150tdyn. In all cases the modulus of the center-of-mass position
oscillates around zero with rmsP 0:1r�; similarly, the modulus
of the total angular momentum oscillates around zero2 with
rmsP 0:02, in units of r�M�v�N (simulations M	 and N) and of
r�M�v�d (simulation D). The quantity K þW in the Newtonian
simulation and W in the dMOND simulation are conserved to
within 2% and 0.6%, respectively. The volume-limited energy
balance equation (8) is conserved with an accuracy of 1% in
MOND simulations, independent of the adopted V0. To estimate
possible numerical effects, we reran one of the MOND collapse
simulations (M1) using N ¼ 2 ; 106, Nr ¼ 80, N� ¼ 24, and
N’ ¼ 48: we found that the end products of these two simula-
tions do not differ significantly, as far as the properties relevant
to the present work are concerned.
The intrinsic and projected properties of the collapse end

products are determined as in NLC06. In particular, the posi-
tion of the center of the system is determined using the iterative
technique described by Power et al. (2003). Following Nipoti
et al. (2002), we measure the axis ratios c/a and b/a of the inertia
ellipsoid (where a, b, and c are the major, intermediate, and minor
axis, respectively) of the final density distributions, their angle-
averaged profile, and their half-mass radius rh. We fitted the final
angle-averaged density profiles with the 
-model (Dehnen 1993;
Tremaine et al. 1994)

�(r) ¼ �0r
4
c

r
(rc þ r)4�

; ð13Þ

where the inner slope 
 and the break radius rc are free param-
eters, and the reference density �0 is fixed by the total massM�.
The fitting radial range is 0:06P r/rhP10. In order to estimate
the importance of projection effects, for each end product we
consider three orthogonal projections along the principal axes
of the inertia tensor, measuring the ellipticity � ¼ 1� be/ae, the
circularized projected density profile, and the circularized ef-
fective radius Re � aebeð Þ1/2 (where ae and be are the major and
minor semi-axis, respectively, of the effective isodensity ellipse).
We fitted (over the radial range 0:1PR/ReP 10) the circularized

TABLE 1

Time, Velocity, and Energy Units

for N-Body Simulations

Newtonian and MOND dMOND

t�N ¼ r 3/2� (GM�)
�1/2 t�d ¼ r�(GM�a0)

�1/4

v�N ¼ (GM�)
1/2r�1/2

� v�d ¼ (GM�a0)
1/4

E�N ¼GM2
� r

�1
� E�d ¼ (Ga0)

1/2M 3/2
�

2 As an experiment we also ran a simulation, with the same initial conditions
and parameter 	 asM1, in which the force was calculated from eq. (7), imposing
S ¼ 0. In this simulation the linear and angular momentum are strongly not con-
served: for instance, the center of mass is already displaced by�7r� after�30tdyn.
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projected density profiles of the end products with theR1/m Sérsic
(1968) law:

I(R) ¼ Ie exp �b(m)
R

Re

� �1=m

�1

" #( )
; ð14Þ

where Ie � I(Re) and b(m) ’ 2m�1/3þ 4/405m (Ciotti &Bertin
1999). In the fitting procedure m is the only free parameter,
because Re and Ie are determined by their measured values ob-
tained by particle count. In addition, we measure the central ve-
locity dispersion �0, obtained by averaging the projected velocity
dispersion over the circularized surface density profile within an
aperture of Re/8. Some of these structural parameters are reported
in Table 2 for the five simulations described above, as well as for
three additional simulations, which start from different initial con-
ditions (see x 5).

4. RESULTS

In Newtonian gravity, collisionless systems reach virialization
through violent relaxation in a few dynamical times, as predicted
by the theory (Lynden-Bell 1967) and confirmed by numerical
simulations (e.g., van Albada 1982). On the other hand, due to
the nonlinearity of the theory and the lack of numerical sim-
ulations, the details of relaxation processes and virialization in
MOND are much less well known. Thus, before discussing the
specific properties of the collapse end products, we present a
general overview of the time evolution of the virial quantities
in our simulations, postponing to x 4.2 a more detailed descrip-
tion of the phase-space evolution. In particular, in Figure 1 we
show the time evolution of 2K/jW j, K, W, and K þW for sim-
ulations D, M1, and N. In the diagrams time is normalized to
tdyn, so plots referring to different simulations are directly com-
parable (the values of tdyn in time units for the five simulations
are given in x 3.1). In simulation N (right) we find the well-
known behavior of Newtonian dissipationless collapses: 2K/jW j
has a peak, then oscillates, and eventually converges to the equi-
librium value 2K/jW j ¼1; the total energy K þW is nicely con-
served during the collapse, although it presents a secular drift,
a well-known feature of time integration in N-body codes. The
time evolution of the same quantities is significantly different in
a dMOND simulation (left). In particular, the virial ratio 2K/jW j
quickly becomes close to 1 but is still oscillating at very late
times because of the oscillations of K, while W is constant as
expected. As we show in x 4.2, these oscillations are related to
a peculiar behavior of the system in phase space. Finally, sim-
ulation M1 (center) represents an intermediate case between
models N and D: the system starts as dMOND, but soon its core
becomes concentrated enough to enter the Newtonian regime.

After the initial phases of the collapse, Newtonian gravity acts
effectively in damping the oscillations of the virial ratio. Over-
all, it is apparent how the system is in a ‘‘mixed’’ state, neither
Newtonian (K þW is not conserved) nor dMOND (W is not
constant).

4.1. Properties of the Collapse End Products

4.1.1. Spatial and Projected Density Profiles

We found that all the simulated systems, once virialized, are
not spherically symmetric. However, while the dMOND col-
lapse end product is triaxial (c/a � 0:2, b/a � 0:4), MOND and
Newtonian end products are oblate (c/a � c/b � 0:5). The el-
lipticity � of the projected density distributions (measured for
each of the principal projections) is found in the range 0.5Y0.8 in
D and 0Y0.5 in M1, M2, M4, and N. These values are consistent
with those observed in real elliptical galaxies, with the exception
of �b in model D (see Table 2), which would correspond—if
taken at face value—to an E8 galaxy. These results could be
just due to the procedure adopted to measure the ellipticity (see
x 3.1); however, we find it interesting that dMOND gravity
could be able to produce some systems that would be unstable

TABLE 2

End Product Properties

Simulation 	 c/a b/a 
 rc /rh ma mb mc �a �b �c

D............................................. . . . 0.21 0.41 0:17þ0:39
�0:17 0:27þ0:09

�0:02 2.87 � 0.01 2.50 � 0.03 2.16 � 0.02 0.48 0.80 0.58

M1.......................................... 1 0.47 0.85 1:24þ0:40
�0:36 0:44þ0:20

�0:12 3.20 � 0.07 3.00 � 0.09 3.07 � 0.13 0.42 0.51 0.17

M2.......................................... 2 0.48 0.92 1:45þ0:26
�0:34 0:53þ0:19

�0:13 3.38 � 0.08 3.24 � 0.08 3.28 � 0.12 0.49 0.45 0.08

M4.......................................... 4 0.47 0.90 1:54þ0:26
�0:32 0:58þ0:20

�0:15 3.55 � 0.10 3.40 � 0.11 3.34 � 0.15 0.51 0.45 0.10

N............................................. . . . 0.45 0.91 1:69þ0:13
�0:15 0:74þ0:14

�0:12 4.21 � 0.07 4.35 � 0.08 3.96 � 0.13 0.48 0.55 0.12

D0 ............................................ . . . 0.25 0.45 0:72þ0:36
�0:50 0:37þ0:12

�0:11 3.06 � 0.06 2.90 � 0.04 2.71 � 0.08 0.44 0.76 0.56

M0 ........................................... 20 0.42 0.83 1:26þ0:44
�0:40 0:47þ0:25

�0:15 3.41 � 0.09 3.36 � 0.06 3.20 � 0.13 0.49 0.57 0.16

N0 ............................................ . . . 0.45 0.93 1:78þ0:15
�0:18 0:78þ0:24

�0:18 4.29 � 0.10 4.56 � 0.15 4.19 � 0.22 0.51 0.55 0.09

Notes.—First column: name of the simulation. The expression 	 ¼ GM�/r
2
� a0: acceleration ratio; c/a and b/a: minor-to-major and intermediate-to-major axis ratios,

respectively; 
, rc: best-fit 
-model parameters; ma, mb, mc, and �a, �b, �c: best-fit Sérsic indices and ellipticities, respectively, for projections along the principal axes.

Fig. 1.—Time evolution of 2K /jW j,K,W, andK þW for simulations D,M1,
and N. The K,W, andK þW are in units of E�d (left) and E�N (center and right).
For clarity, the time axes are zoomed in between 0 and 10.
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in Newtonian gravity. We remark that a similar result, in the
different context of disk stability in MOND, has been obtained
by Brada & Milgrom (1999).

In order to describe the radial mass distribution of the final
virialized systems, we fitted their angle-averaged density profiles
with the 
-model (13) over the radial range 0:06 P r/rhP10. The
best-fit 
 and rc for the final distribution of each simulation are
reported in Table 2 together with their 1 � uncertainties (calcu-
lated from ��2 ¼ 2:30 contours in the space 
-rc). As also ap-
parent from Figure 2 (bottom), the Newtonian collapse produced
the system with the steepest inner profile (
 �1:7), the dMOND
end product has inner logarithmic slope close to zero, while
MOND collapses led to intermediate cases, with 
 ranging from
�1.2 (	 ¼ 1) to �1.5 (	 ¼ 4). We also note that the ratio rc/rh
(indicating the position of the knee in the density profile) in-
creases systematically from dMOND to Newtonian simulations.

The circularized projected density profiles of the end products
are analyzed as described in x 3.1. The best-fit Sérsic indicesma,
mb, and mc (for projections along the axes a, b, and c, respec-
tively) are reported in Table 2, together with the 1 � uncertainties
corresponding to��2 ¼ 1; the relative uncertainties on the best-
fit Sérsic indices are in all cases smaller than 5% and the aver-
age residuals between the data, and the fits are typically 0:05P
h�SBiP0:2, where SB � �2:5 log ½I (R)/Ie� is the surface bright-
ness. The fitting radial range 0:1 P R/Re P10 is comparable with
or larger than the typical ranges spanned by observations (e.g.,
see Bertin et al. 2002). In agreement with previous investiga-
tions, we found that the Newtonian collapse produced a system
well fitted by the deVaucouleurs (1948) law.MONDcollapses led
to systems with Sérsic indexm < 4, down tom � 2 in the case of
the dMOND collapse. Figure 3 (middle row) shows the circular-
ized (major axis) projected density profiles for the end products of
simulations D, M1, and N, together with their best-fit Sérsic laws
(m ¼ 2:87, 3.20, and 4.21, respectively), and the corresponding
residuals. Curiously, NLC06 found that low-m systems can be also
obtained in Newtonian dissipationless collapses in the presence

of a preexisting dark matter halo, with the Sérsic index value
decreasing for increasing dark-to-luminous mass ratio.

4.1.2. Kinematics

We quantify the internal kinematics of the collapse end prod-
ucts by measuring the angle-averaged radial and tangential com-
ponents (�r and �t) of their velocity-dispersion tensor, and the
anisotropy parameter 
(r) � 1� 0:5�2

t /�
2
r . These quantities are

shown in Figure 2 for simulations D, M1, and N. We note that
the �r profile decreasesmore steeply in the Newtonian than in the
MOND end products, while it presents a hole in the inner re-
gions of the dMOND system. In addition, the dMOND galaxy is
radially anisotropic (
 � 0:4), even in the central regions, where
models N andM1 are approximately isotropic (
 � 0:1). All sys-
tems are strongly radially anisotropic for rk rh. For each model
projection we computed the line-of-sight velocity dispersion �los,
considering particles in a strip of width Re/4 centered on the
semimajor axis of the isophotal ellipse. The line-of-sight velocity-
dispersion profiles (for the major-axis projection) are plotted
in the top panels of Figure 3. The Newtonian profile is very steep
within Re, while MOND and dMOND profiles are significantly
flatter there. As well as �r, �los decreases for decreasing radius in
the inner region of model D. The kinematical properties of M2
and M4 are intermediate between those of M1 and of N: overall
we find only weak dynamical nonhomology among MOND end
products. The open symbols in Figure 2 (right) refer to a test
Newtonian simulation run with the FVFPS tree code (with 4 ;
105 particles). The structural and kinematical properties of the
end product of this simulation are clearly in good agreement with
those of the end product of simulation N (solid lines), which
started from the same initial conditions.

4.2. Phase-Space Properties of MOND Collapses

To explore the phase-space evolution of the systems during the
collapse and the following relaxation, we consider time snapshots

Fig. 2.—Angle-averaged density, radial velocityYdispersion, and anisotropy-
parameter profiles ( from bottom to top) for the end products of simulations D,
M1, and N. Dotted lines in the bottom panels represent � / r�1 profiles, which
are shown for reference. Open circles in the right column show the corresponding
profiles obtained with the FVFPS tree code from the same initial conditions.

Fig. 3.—Line-of-sight velocity-dispersion profiles (top), circularized projected
density profiles, and residuals of the Sérsic fit (bottom) of the end products of sim-
ulations D, M1, and N (squares; 1 � error bars are always smaller than the symbol
size). The dotted lines are the best-fitting Sérsic models.
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of the particles’ radial velocity (vr) versus radius, as in Londrillo
et al. (1991). In Figure 4 we plot five of these diagrams for
simulations D, M1, and N: each plot shows the phase-space
coordinates of 32,000 particles randomly extracted from the cor-
responding simulation, and as in Figure 1, times are normalized
to the dynamical time tdyn (see x 3.1). At time t ¼ 0:5tdyn all par-
ticles are still collapsing in simulation N, while in MOND sim-
ulations a minority of particles have already crossed the center of
mass, as revealed by the vertical distribution of points at r � 0 in
panels D and M1. At t ¼ tdyn (time of the peak of 2K/jW j in the
three models), sharp shells in phase space are present, indicating
that particles are moving in and out collectively and phase mix-
ing has not taken place yet. At t ¼ 4tdyn is already apparent that
phase mixing is operating more efficiently in simulation N than
in simulation M1, while there is very little phase mixing in the
dMOND collapse. At significantly late times (t ¼ 44tdyn), when
the three systems are almost virialized (2K/jW j � 1; see Fig-
ure 1), phase mixing is complete in simulation N, but phase-
space shells still survive in modelsM1 andD. Finally, the bottom

panels show the phase-space diagrams at equilibrium (t ¼ 150tdyn),
when phase mixing is completed also in the MOND and dMOND
galaxies: note that the populated region in the (r, vr) space is
significantly different inMOND and in Newtonian gravity, which
is consistent with the sharper decline of radial velocity dispersion
in the Newtonian system.

Thus, our results indicate that phase mixing is more effective in
Newtonian gravity than in MOND.3 It is then interesting to es-
timate in physical units the phase-mixing timescales of MOND
systems. From Table 1 it follows that t�N ’ 4:7(r�/kpc)

3/2 ;
(M�/10

10 M�)
�1/2 Myr ¼ 29:8	�3/4(M�/10

10 M�)1/4 Myr for
a0 ¼1:2 ; 10�10 m s�2. For example, in the case of model M1,
adoptingM� ¼ 1012 M� [and r� ¼ GM�/a0ð Þ1/2 ’ 34 kpc], shells

Fig. 4.—Phase-space (radial velocity vs. radius) diagrams for simulations D, M1, and N at various times. The quantity vr is in units of v�d (simulation D) and v�N
(simulations M1 and N; see Table 1).

3 Ciotti et al. (2007) found similar results in ‘‘ad hoc’’ numerical simulations
in which the angular force components were frozen to zero, so that the evolution
was driven by radial forces only. In fact, while phase mixing is less effective both
in MOND and in Newtonian simulations with respect to the simulations here re-
ported, the phase-mixing timescale in MOND is still considerably longer than in
Newtonian gravity.
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in phase space are still apparent after �8.3 Gyr (’44tdyn). Sim-
ulation M1 might also be interpreted as representing a dwarf
elliptical galaxy of, say,M� ¼ 109 M� [and r� ¼ GM�/a0ð Þ1/2’
1:1 kpc]. In this case 44tdyn � 1:5 Gyr. We conclude that in some
MOND systems substructures in phase space can survive for sig-
nificantly long times.

In addition to the (r, vr) diagram, another useful diagnostic
to investigate phase-space properties of gravitational systems is
the energy distribution N (E ) (i.e., the number of particles with
energy per unit mass between E and E þ dE; e.g., Binney &
Tremaine 1987; Trenti &Bertin 2005). Independently of the force
law, the energy per unit mass of a particle orbiting at xwith speed
v in a gravitational potential �(x) is E ¼ v2/2þ �(x), and E is
constant if � is time-independent. In Newtonian gravity � is usu-
ally set to zero at infinity for finite-mass systems, so E < 0 for
bound particles; in MOND all particles are bound, independently
of their velocity, because � is confining and all energies are ad-
missible. This difference is reflected in Figure 5, which plots the
initial (top) and final (bottom) differential energy distributions for
simulations D, M1, and N. Given that the particles are at rest at
t ¼ 0, the initial N (E) depends only on the structure of the grav-
itational potential and is significantly different in the Newtonian
and MOND cases. We also note that N (E ) is basically the same
inmodels D andM1 at t ¼ 0, becausemodelM1 is initially in the
dMOND regime. In accordance with previous studies, in the
Newtonian case the final differential N (E ) is well represented by
an exponential function over most of the populated energy range
(Binney 1982; van Albada 1982; Ciotti 1991; Londrillo et al.
1991; NLC06). In contrast, in model D the final N (E ) decreases
for increasing energy, qualitatively preserving its initial shape.
In the case of simulation M1 there is an apparent dichotomy be-
tween a Newtonian part at lower energies (more bound particles),
whereN (E ) is exponential, and a dMONDpart at higher energies,
where the final N (E ) resembles the initial one. We interpret this

result as another manifestation of a less effective phase-space re-
organization in MOND than in Newtonian collapses.

4.3. Comparison with the Observed Scaling Relations
of Elliptical Galaxies

It is not surprising that galaxy scaling relations represent an
even stronger test for MOND than for Newtonian gravity, due
to the absence of dark matter and the existence of the critical
acceleration a0 with a universal value in the former theory (e.g.,
see Milgrom 1984; Sanders 2000). For example, when inter-
preting the FP tilt in Newtonian gravity one can invoke a sys-
tematic and fine-tuned increase of the galaxy dark-to-luminous
mass ratio with luminosity (e.g., Bender et al. 1992; Renzini &
Ciotti 1993; Ciotti et al. 1996), while in MOND the tilt should
be related to the characteristic acceleration a0. Note, however,
that in MOND, as well as in Newtonian gravity, other important
physical properties may help to explain the FP tilt, such as a sys-
tematic increase of radial orbital anisotropy with mass or a sys-
tematic structural weak homology (Bertin et al. 2002). Due to
the relevance of the subject, we attempt here to derive some pre-
liminary hints. In particular, for the first time, we can compare with
the scaling relations of elliptical galaxies MOND models pro-
duced by a formation mechanism, even though the considered
formation mechanism (dissipationless collapse) is quite simple.
In this section we consider the end products of simulations

M1, M2, and M4. As already discussed in x 3, each of the three
systems corresponds to a family with constant M�/r

2
� . This de-

generacy is represented by the straight dotted lines in Figure 6a:
all galaxies on the same dotted line have the same 	-value. This
behavior is very different from the Newtonian case, in which
the result of a N-body simulation can be placed anywhere in the
space Re-M�, by arbitrarily choosingM� and r�. For comparison

Fig. 5.—Initial (top) and final (bottom) differential energy distributions. The
energy per unit mass E is in units of E�d /M� (model D) and E�N/M� (models M1
and N). The energy zero points in models D andM1 are such that the most bound
particles of the M1 and N end products have the same energy and the highest
energy particles of models D and M1 at t ¼ 0 have the same energy.

Fig. 6.—Location of the end products M1 (circles), M2 (squares), M4 (tri-
angles), and M 0 (stars) in the planes (a) M�-Re, (c) M�-�0, (d ) M�-m, and in the
plane (b) in which the FP is seen edge-on. Vertical bars account for the projection
effects, while the filled symbols refer to average values between the two extremes.
The thick solid lines represent the observed (a) Kormendy, (c) FJ, and (b) FP
relations, and the thin solid lines give estimates of the corresponding scatter
(Bernardi et al. 2003a, 2003b). The normalization is such that Re ’ 4 kpc for
stellar mass M� ¼ 1011 M� (Shen et al. 2003). See text for the meaning of the
dotted lines.
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with observations, the specific scaling laws represented in Fig-
ure 6 (thick solid lines) are the near-infrared r�-band Kormendy
relation Re / M 0:63

� , the FJ relationM� / �3:91
0 (Bernardi et al.

2003a), and the edge-on FP relation in the same band log Re ¼
A log �0 þ B log (M�/R

2
e )þ const: (with A ¼ 1:49, B ¼ �0:75;

Bernardi et al. 2003b), under the assumption of a luminosity-
independent stellar mass-to-light ratio.

The physical properties of each model are determined as
follows. First, for each model (identified by a value of 	 ¼
GM�/r

2
� a0) we measure the ratio Re/r� (see x 3.1), and so we

obtain Re ¼ Re(	;M�). This function, for fixed 	 and variable
M�, is a dotted line in Figure 6a. As apparent, only one pair (Re ,
M*) satisfies the Kormendy relation for each 	: in particular,
we obtain that models M1, M2, and M4 have stellar masses
1:6 ; 1012, 1:4 ; 1011, and 1010 M�, respectively (so lower 	
models correspond to higher mass systems). We are now in the
position to obtain r� ¼ GM�/a0	ð Þ1/2 and v�N ¼ (	a0GM�)1/4;
thus, we know the physical value of the projected central ve-
locity dispersion, and we can place our models also in the FJ
and FP planes. It is apparent that these two relations are not
reproduced, in particular, by massive galaxies. We note that
this discrepancy cannot be fixed even when considering the
mass interval allowed by the scatter in the Kormendy relation
(Fig. 6a, thin solid lines), as revealed by the dotted lines in
Figures 6b and 6c, which are just the projections of the dotted
lines in Figure 6a onto the planes of the edge-on FP4 and the
FJ. Finally, Figure 6d plots the best-fit Sérsic index m of the
models as a function of M�. Observations show that elliptical
galaxies are characterized by m-values increasing with size:
mk 4 for galaxies with Rek3 kpc and m P 4 for those with
ReP3 kpc (e.g., Caon et al. 1993). Our models behave in the
opposite way, as m decreases for increasing size (mass) of the
system. So, while model M4 (Re �1 kpc, m � 3:4) is consis-
tent with observations, models M1 and M2 have significantly
lower m than real elliptical galaxies of comparable size. How-
ever, this finding is not a peculiarity of MOND gravity: also in
Newtonian gravity dissipationless collapse end products with
m > 4 are obtained only for specific initial conditions (NLC06),
while equal-mass Newtonian mergings are able to produce
high-m systems (Nipoti et al. 2003).

So far we have compared the results of our simulations with
the scaling relations of high surface brightness galaxies. How-
ever, it is well known that low surface brightness, hot stellar
systems, such as dwarf elliptical galaxies and dwarf spheroidal
galaxies, have larger effective radii than predicted by theKormendy
relation (e.g., Bender et al. 1992; Capaccioli et al. 1992; Graham
& Guzmán 2003). In particular, dwarf elliptical galaxies are
characterized by effective surface densities comparable to those
of themost luminous elliptical galaxies, while their surface bright-
ness profiles are characterized by Sérsic indices smaller than 4
(e.g., Caon et al. 1993; Trujillo et al. 2001). Dwarf spheroidal
galaxies are the lowest surface-density stellar systems known,
and typically have exponential (m �1) luminosity profiles (e.g.,
Mateo 1998). So, simulations M1 and D can be interpreted as
modeling a dwarf elliptical and a dwarf spheroidal galaxy, re-
spectively, and their end products qualitatively reproduce the
surface brightness profiles of the observed systems. As pointed
out in x 4.1.2, the velocity-dispersion profile of model D is rather
flat, with a hole in the central regions: interestingly, observa-

tions of dwarf spheroidal galaxies indicate that their velocity-
dispersion profiles are also flat (e.g., Walker et al. 2006 and
references therein).

5. DISCUSSION AND CONCLUSIONS

In this paper we studied the dissipationless collapse inMOND
by using a new three-dimensional particle-mesh N-body code,
which solves the MOND field equation (2) exactly. For obvious
computational reasons, we did not attempt a complete explora-
tion of the parameter space, and we just presented results of a
small set of numerical simulations, ranging from Newtonian to
dMOND systems. The main results of the present study can be
summarized as follows:

1. The intrinsic structural and kinematical properties of the
MOND collapse end products depend weakly on their character-
istic surface density: lower surface-density systems have shal-
lower inner density profiles, flatter velocity-dispersion profiles,
and more radially anisotropic orbital distributions than higher
surface-density systems.

2. The projected density profiles of the MOND collapse end
products are characterized by Sérsic index m lower than 4, and
decreasing indexes for decreasing mean surface density. In par-
ticular, the end product of the dMOND collapse, modeling a very
low surface density system, is characterized by a Sérsic index
m � 2 and by a central hole in the projected velocity-dispersion
profile.

3. We found it impossible to satisfy simultaneously the ob-
served Kormendy, Faber-Jackson, and fundamental plane rela-
tions of elliptical galaxies with the MOND collapse end products,
under the assumption of a luminosity-independent mass-to-light
ratio. In other words, this point and the two points above show
that, in the framework of dissipationless collapse, the presence of
a characteristic acceleration is not sufficient to reproduce impor-
tant observed properties of spheroids of different mass and sur-
face density, such as their scaling relations and weak structural
homology.

4. From a dynamical point of view we found that phase mix-
ing is less effective (and stellar systems take longer to relax) in
MOND than in Newtonian gravity.

A natural question to ask is how the end products of our
simulations would be interpreted in the context of Newtonian
gravity. Clearly, models D and N would represent dark matterY
and baryon-dominated stellar systems, respectively.More inter-
estingly, models M1, M2, and M4, once at equilibrium, would
be characterized by a dividing radius, separating a baryon-
dominated inner region (with accelerations higher than a0) from
a dark matterYdominated outer region (with accelerations lower
than a0). This radius is �1.1rh for M1, �1.8rh for M2, and
�2.7rh for M4. So, all these models would show little or no
dark matter in their central regions. Remarkably, observational
data indicate that there is at most asmuch darkmatter as baryonic
matter within the effective radius of elliptical galaxies (e.g.,
Bertin et al. 1994; Cappellari et al. 2006 and references therein).

The conclusions above have been drawn by considering only
simulations starting from a Plummer density distribution. To
explore the dependence of these results on this specific choice,
we ran also three simulations starting from a cold (2K/jW j ¼ 0),
truncated density distribution�(r) ¼CM�/(r

3
� þ r 3),whereC�1 �

4� ln (1þ r 3t /r
3
� )/3, M� is the total mass, and rt ¼ 20r� is the

truncation radius. Small-scale noise is introduced as described in
x 3.1. Note that in the external parts the new initial conditions are
significantly flatter than a Plummer sphere. The three simulations

4 In Fig. 6b the dotted lines are nearly coincident because (1) the models are
almost homologous and (2) the variable in the abscissa is independent of 	, as
the FP coefficients A ��2B in this case.
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are labeled D0 (dMOND), M0 (MOND with acceleration ratio
	 ¼ 20),5 and N0 (Newtonian). As in the case of Plummer initial
conditions, in these cases the final intrinsic and projected density
distributions are also well represented by 
-models and Sérsic
models, respectively. In analogy with model N, the Newtonian
collapse N0 produced the system with the steepest central den-
sity distribution (see Table 2). In addition, model M0, when com-
pared with the scaling laws of elliptical galaxies (stars in Fig. 6),
follows the same trend as models M1, M2, andM4. The analysis
of the time evolution in phase space of models D0, M0, and N0

confirmed that mixing and relaxation processes are less effective
in MOND than in Newtonian gravity.

How do the presented results depend on the specific choice
(eq. [5]) of theMOND interpolating function�? Recently, a few
other interpolating functions have been proposed to better fit
galactic rotation curves (Famaey & Binney 2005) and in the
context of TeVeS (Bekenstein 2004; Zaho & Famaey 2006). It
is reasonable to expect that the exact form of � is not critical in a
violent dynamical process such as dissipationless collapse. We
verified that this is actually the case, by running an additional
MOND simulation with the same initial conditions and param-
eter 	 as simulation M1, but adopting � ( y) ¼ y/(1þ y), as pro-
posed by Famaey & Binney (2005). In fact, neither in the time
evolution nor in the structural and kinematical properties of the
end products did we find significant differences between the two
simulations. This result suggests that, in the context of structure
formation in MOND, the crucial feature is the presence of a char-
acteristic acceleration separating the two gravity regimes, while
the details of the transition region are unimportant.

Though the dissipationless collapse is a very simplistic model
for galaxy formation, it is expected to describe reasonably well
the last phase of ‘‘monolithic-like’’ galaxy formation, in which

star formation is almost completed during the initial phases of the
collapse. The importance of gas dissipation in the formation of
elliptical galaxies is very well known, going back to the seminal
works of Rees & Ostriker (1977) and White & Rees (1978; see
also Ciotti et al. [2007], and references therein, for a discussion
of the expected impact of gas dissipation on the scaling laws
followed by elliptical galaxies). This aspect has been completely
neglected in our exploration, and we are working on an hybrid
(stars plus gas) version of the MOND code to explore quanti-
tatively this issue. We also stress that the dissipationless collapse
process catches the essence of violent relaxation, which is cer-
tainly relevant to the formation of spheroids even in more com-
plicated scenarios, such asmerging. For example, it is well known
that in Newtonian dynamics systems with de Vaucouleurs pro-
files are produced by dissipationless merging of spheroids (e.g.,
White 1978) or disk galaxies (e.g., Barnes 1992), as well as by
dissipationless collapses (van Albada 1982). Merging simu-
lations in MOND have not been performed so far, and a rele-
vant and still open question is how efficient merging is inMOND,
in which the important effect of dark matter halos is missing
and galaxies are expected to collide at higher speed than in
Newtonian gravity (Binney 2004; Sellwood 2004). Our results,
indicating that relaxation takes longer in MOND than in New-
tonian gravity, go in the direction of making merging timescales
even longer in MOND; on the other hand, analytical estimates
seem to indicate shorter dynamical friction timescales in MOND
than in Newtonian gravity (Ciotti & Binney 2004). Therefore, the
next application of our code will be the study of galaxy merging
in MOND.

We are grateful to James Binney and Scott Tremaine for help-
ful discussions and to the anonymous referee for useful com-
ments. This work was partially supported by the MIUR grant
CoFin2004.

APPENDIX A

THE VOLUME-LIMITED ENERGY-BALANCE EQUATION IN MOND

In this appendix we derive a useful volume-limited integral relation representing energy conservation in MOND, which is well
suited for testing numerical simulations. The total (ordered and random) kinetic energy per unit volume of a continuous distribution
with density � and velocity field u is

k ¼ �

2
(jjujj2 þ tr �2

ij ); ðA1Þ

where �2
ij is the velocity-dispersion tensor. In the present case the energy-balance equation is (e.g., Ciotti 2000)

d

dt

Z
V (t)

k d3x ¼ �
Z
V (t)

�u = :� d3x; ðA2Þ

where the integral in the right-hand side is the work per unit time done by mechanical forces. By application of the Reynolds transport
theorem and using the mass continuity equation we obtain

@

@t
(k þ ��) þ: = (k þ ��)u½ � ¼ �

@�

@t
: ðA3Þ

When � is the MOND gravitational potential, � can be eliminated using equation (2), so

4�G�
@�

@t
¼ : = (�:�)

@�

@t
¼ : = �:�

@�

@t

� �
� a20

2

@

@t
F

jj:�jj
a0

� �� �
; ðA4Þ

5 This value of 	 is not directly comparable with those in simulations M1,
M2, and M4, because of the different role of r� in the corresponding initial
distributions.
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where F is defined in equation (9). Thus, equation (A3) can be written as

@

@t
k þ ��þ a20

8�G
F

jj:�jj
a0

� �� �
þ: = (k þ ��)u� �:�

4�G

@�

@t

� �
¼ 0: ðA5Þ

By integration over a fixed control volume V0 enclosing all the system mass, one obtains equation (8).

APPENDIX B

THE VIRIAL TRACE W IN DEEP MOND SYSTEMS OF FINITE MASS

Here we prove thatW ¼�(2/3) Ga0M
3
�

� �1/2
for any dMOND system of finite massM�. Eliminating � from equation (11) by using

equation (6), and considering the trace of the resulting expression, one finds

W ¼ � 1

4�Ga0

Z
D �½ �: = k:�k:�ð Þ d3x; ðB1Þ

where we define the operator D � x;:h i. The remarkable fact behind the proof is that the integrand above can be written as the
divergence of a vector field, so only contributions from r ! 1 are important. We will then use the spherically symmetric asymptotic
behavior of dMOND solutions for r ! 1 (BM84),

ggg ¼ �:� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�a0

p

r
êr; ðB2Þ

and Gauss’s theorem to evaluate W.
Theorem.—For a generic potential the following identity holds:

D �½ �: = (k:�k:�) ¼ : = D �½ �k:�k:�� xk:�k3

3

 !
: ðB3Þ

Proof.—From standard vector analysis (e.g., Jackson 1999) it follows that

D �½ �: = k:�k:�ð Þ ¼ : = D �½ �k:�k:�ð Þ � k:�k :�;:D �½ �h i ðB4Þ

and

k:�k :�;:D �½ �h i ¼
: =
�
xk:�k3

�
3

: ðB5Þ

Identity (B5) follows from the expansion :D �½ � ¼ :�þ D :�½ � as

k:�k3 þ k:�k :�;D :�½ �h i ¼ k:�k3 þ
D k:�k3
h i

3
¼

: =
�
xk:�k3

�
3

: ðB6Þ

Combining equations (B4) and (B5) completes the proof of equation (B3).
We now transform the volume integral (B1) into a surface integral over a sphere of radius r, and we consider the limit for r ! 1,

together with the asymptotic relation (B2), obtaining

W ¼ � 1

4�Ga0
lim
r!1

Z
4�

2

3
r 3g2 d� ¼ � 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ga0M 3

�

q
: ðB7Þ

APPENDIX C

SCALING OF THE EQUATIONS

Given a generic density distribution �, and the mass and length unitsM� and r�, we define the dimensionless quantities x̃ � x/r� and
�̃ � �r 3� /M�. From equation (3) the equation of motion for a test particle can be written in dimensionless form as

d 2x̃

d t̃ 2
¼ � ��t

2
�

r 2�
:̃�̃; ðC1Þ
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where �� and t� are for the moment two unspecified scaling constants, �̃ ¼ �/�� and t̃ ¼ t/t�, and the dimensionless gradient operator
is :̃ ¼ r�:. In all of our simulations we define t� � r�/�

1/2
� , so that the scaling factor in equation (C1) is unity, while �� is specified case-

by-case from the field equation as follows.
In Newtonian gravity the Poisson equation (1) can be written as

:̃2�̃ ¼ 4�
GM�

r���
�̃; ðC2Þ

we fix �� ¼ GM�/r�, so t� ¼ r 3� /GM�
� �1/2 � t�N. The dMOND field equation (6) in dimensionless form is written

:̃ = jj:̃�̃jj:̃�̃
	 


¼ 4�
GM�a0

�2
�

�̃; ðC3Þ

thus, the natural choice is �� ¼ GM�a0ð Þ1/2 and t� ¼ r�(GM�a0)
�1/4 � t�d . Finally, the MOND field equation (2) in dimensionless

form is

:̃ = � 	jj:̃�̃jj
	 


:̃�̃
h i

¼ 4�
GM�

r���
�̃; ðC4Þ

where 	 � ��/r�a0. In this case, as in the Newtonian case, �� ¼ GM�/r�; therefore, t� ¼ t�N and 	 ¼ GM�/r
2
� a0.
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