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ABSTRACT
We show how the complex-shift method developed by Appell to study the gravitational field of

a point mass (and used in electrodynamics by, among others, Newman, Carter, Lynden-Bell,

and Kaiser to determine some remarkable properties of the electromagnetic field of rotating

charged configurations) can be extended to obtain new and explicit density–potential pairs

for self-gravitating systems departing significantly from spherical symmetry. The rotational

properties of two axisymmetric baroclinic gaseous configurations derived with the proposed

method are illustrated.
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1 I N T RO D U C T I O N

Potential theory is the cause of major difficulties in astrophysical

problems in which gravity is important. In general, to calculate the

gravitational potential associated with a given density distribution

it is necessary to evaluate a three-dimensional integral. Except for

special circumstances in which a solution can be found in terms of

elementary functions, this requires resorting to numerical techniques

and to sophisticated tools such as expansions in orthogonal functions

or integral transforms.

Under spherical symmetry, the density–potential relationship can

be reduced to a one-dimensional integral, while for axisymmetric

systems it is generally the case that a (usually non-trivial) two-

dimensional integral remains. As a result, the majority of the avail-

able explicit density–potential pairs refer to spherical symmetry, and

only a few axially symmetric pairs are known (e.g. see Binney &

Tremaine 1987, hereafter BT). In special cases (in particular when

a density–potential pair can be expressed in a suitable paramet-

ric form) there exist systematic procedures with which to generate

new non-trivial density–potential pairs (see, for example, the case

of Miyamoto & Nagai 1975 and the related Satoh 1980 discs; see

also Evans & de Zeeuw 1992; de Zeeuw & Carollo 1996). For non-

axisymmetric systems the situation is worse. One class of triaxial

density distributions for which the potential can be expressed in a

tractable integral form is that of the stratified homeoids, such as the

Ferrers (1887) distributions (e.g. see Pfenniger 1984; Lanzoni &

Ciotti 2003, and references therein) and special cases of the family

considered by de Zeeuw & Pfenniger (1988). Additional explicit

density–potential pairs are given by the Evans (1994) models and

by those constructed with the Kutuzov–Osipkov method (Kutuzov

& Osipkov 1980; see also Kutuzov 1998). Another way to construct

�E-mail: luca.ciotti@unibo.it

†Deceased

in a systematic way explicit density–potential pairs with finite de-

viations from spherical symmetry is presented in Ciotti & Bertin

(2005). This technique is based on an elementary property of the

asymptotic expansion of the homeoidal potential quadrature for-

mula for small flattenings,1 and has recently been applied to the

modelling of gaseous haloes in clusters (Lee & Suto 2003, 2004), to

the study of the dynamics of elliptical galaxies (Muccione & Ciotti

2003, 2004), and to a possible interpretation of the rotational field

of the extraplanar gas in disc galaxies (Barnabé et al. 2005, 2006).

In the context of classical electrodynamics a truly remarkable and

seemingly unrelated result was obtained by Newman (1973, see also

Newman & Janis 1965; Newman et al. 1965), who considered the

case of the electromagnetic field of a point charge displaced on the

imaginary axis. Successive analyses by Carter (1968), Lynden-Bell

(2000, 2002, 2004a, b, and references therein; see also Teukolsky

1973; Chandrasekhar 1976; Page 1976), and Kaiser (2004, and ref-

erences therein) revealed the astonishing properties of the resulting

holomorphic ‘magic’ field. As pointed out to us by the referee, the

complex-shift method was first introduced by Appell (1887, see also

Whittaker & Watson 1950) to the case of the gravitational field of

a point mass, and subsequently used in general relativity (e.g. see

Gleiser & Pullin 1989; Letelier & Oliveira 1987, 1998; D’Afonseca,

Letelier & Oliveira 2005, and references therein).

In this paper we show how the complex-shift method can be

applied in classical gravitation to obtain exact and explicit density–

potential pairs deviating significantly from spherical symmetry; we

are not aware that this possibility has been examined in the litera-

ture. The paper is organized as follows. In Section 2 we present the

idea behind the method, and discuss its application to the case of

spherical systems, describing two new self-gravitating and axisym-

metric systems obtained from the Plummer and isochrone spheres.

1 Such expansion can be traced back to the treatise on geodesy by Sir H.

Jeffreys (1970, and references therein; see also Hunter 1977).
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In Section 3 we focus on the rotational fields of the new pairs when

interpreted as gaseous systems. Section 4 summarizes the main

results obtained, and in the Appendix we examine the behaviour

of a singular isothermal sphere under the action of the complex

shift.

2 G E N E R A L C O N S I D E R AT I O N S

We start by extending the complexification of a point-charge

Coulomb field discussed by Lynden-Bell (2004b) to the gravi-

tational potential �(x) generated by a density distribution ρ(x).

From here on, x = (x, y, z) will indicate the position vector, and

〈x, y〉 ≡ xi yi is the standard inner product over the reals (repeated

index summation convention implied).

Let us assume that the (nowhere negative) density distribution

ρ (x) satisfies the Poisson equation

∇2� = 4πGρ, (1)

and that the associated complexified potential �c with shift i a is

defined as

�c(x) ≡ �(x − ia), (2)

where i2 = −1 is the imaginary unit and a is a real vector. The idea

behind the proposed method is based on the recognition (1) that the

Poisson equation is a linear partial differential equation, and (2) that

the complex shift is a linear coordinate transformation. From these

two properties, and from equations (1) and (2), it follows that

∇2�c = 4πGρc, (3)

where

ρc(x) ≡ ρ(x − ia). (4)

Thus, by separating the real and imaginary parts of �c and ρc ob-

tained from the shift of a known real density–potential pair one

obtains two real density–potential pairs.

It is pertinent to draw attention here to a distinction between

electrostatic and gravitational problems: while in the former case

a density (charge) distribution with negative and positive regions

can be (at least formally) accepted, in the gravitational case the

obtained density components have physical meaning only if they

do not change sign (see, however, Section 4). It is interesting that

a general result concerning the sign of the real and imaginary parts

of the shifted density can be obtained by considering the behaviour

of the complexified self-gravitational energy and total mass. In fact,

from the linearity of the shift, it follows that the volume integral

over the entire space,

Wc ≡ 1

2

∫
ρc�c d3x

= 1

2

∫
[�(ρc)�(�c) − �(ρc)�(�c)] d3x, (5)

coincides with the self-gravitational energy W = 0.5
∫

ρ� d3x of

the real unshifted seed density. Thus the imaginary part of Wc is

zero; that is,

1

2

∫
[�(ρc)�(�c) + �(ρc)�(�c)] d3x =

−G

∫ ∫ �[ρc(x)]�[ρc(x′)]
||x − x′|| d3x d3x′ = 0, (6)

and Wc is the difference of the gravitational energies of the real

and the imaginary parts of the shifted density. The vanishing of the

double integral (6) shows that the integrand necessarily changes

sign; that is, the complex shift cannot generate two physically ac-

ceptable densities. Additional information is provided by consider-

ing that, again for the above reasons, it is also the case that the total

mass of the complexified distribution Mc = ∫
ρc d3x coincides with

the total (real) mass of the seed density distribution M = ∫
ρ d3x,

so that∫
�(ρc) d3x = 0. (7)

Identities (6)–(7) then leave open the question whether at least �(ρc)

can be characterized by a single sign over the whole space. It turns

out that it can either change sign or not, depending on the specific

seed density and shift vector adopted. In fact, in the following section

we show that simple seed densities exist so that �(ρc) is positive

everywhere, while in the Appendix we present a simple case in

which �(ρc) changes sign.

2.1 Spherically symmetric ‘seed’ potential

We now restrict the previous general considerations to a spherically

symmetric real potential �(r), where r ≡ ||x|| = √〈x, x〉 is the

spherical radius, and ||...|| is the standard Euclidean norm. After

the complex shift the norm must still be interpreted over the reals2

(e.g. see Lynden-Bell 2004b), so that

||x − ia||2 = r 2 − 2i < x, a > −a2, (8)

where a2 ≡ ||a||2. Without loss of generality we assume that a =
(0, 0, a), and the shifted radial coordinate becomes

r 2
c = r 2 − 2iarμ − a2; μ ≡ cos θ, (9)

where θ is the colatitude of the considered point, μr = z,

and

�c = �(
√

r 2 − 2iaz − a2), (10)

ρc = ρ(
√

r 2 − 2iaz − a2). (11)

Note that, when starting from a spherically symmetric seed system,

the real and imaginary parts of the shifted density ρc can be obtained

(1) from evaluation of the Laplace operator applied to the real and

imaginary parts of the potential �c, (2) by expansion of the com-

plexified density in equation (11), or finally (3) by considering that

for spherically symmetric systems ρ = ρ(�), and so the real and

imaginary parts of ρc(�c) can be expressed (at least in principle) as

functions of the real and imaginary parts of the shifted potential.

2.2 The shifted Plummer sphere

As a first example, in this section we apply the complex shift to the

Plummer (1911) sphere. We start from the relative potential � =
−�, where

� = G M

b

1

ζ
, ζ ≡

√
1 + r 2, (12)

and r is normalized to the model scale-length b, so that the associated

density distribution is

ρ = 3M

4πb3

1

ζ 5
(13)

2 If one adopted the standard inner product over the complex field, one would

obtain ||x − i a||2 = r2 + ||a||2.
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(e.g. see BT). For ease of notation, from hereon we will use the

normalized density (to M/b3) and potential (to GM/b), and so

ρc = 3

4π
[�(�c) + i�(�c)]

5. (14)

From substitution (8) (where the shift a is also expressed in units of

b), the shifted potential �c = 1/ζ c depends on the square root of

ζ 2
c = 1 − a2 + r2 −2i az ≡ deiϕ , with

d ≡ |ζc|2 =
√

(1 − a2 + r 2)2 + 4a2z2, (15)

and

cos ϕ = 1 − a2 + r 2

d
, sin ϕ = −2az

d
. (16)

Note that cos ϕ > 0 everywhere for a < 1, and the following dis-

cussion is restricted to this case. The square root

ζc =
√

deπki+ϕi/2 (k = 0, 1) (17)

is made a single-valued function of (r, z) by cutting the complex

plane along the negative real axis (which is never touched by ζ 2
c)

and assuming k = 0, so that the model equatorial plane is mapped

into the line ϕ = 0. With this choice, the principal determination of

�c reduces to � when a = 0, and simple algebra shows that

cos
ϕ

2
=

√
1 + cos ϕ√

2
, sin

ϕ

2
= −

√
2az

d
√

1 + cos ϕ
. (18)

The real and imaginary parts of �c are then given by

�(�c) = �
(

ζ̄c

|ζc|2
)

=
√

d + 1 − a2 + r 2

√
2 d

, (19)

�(�c) = �
(

ζ̄c

|ζc|2
)

= az

d2�(�c)
, (20)

where ζ̄c is the complex conjugate of ζc, and from equation (14) we

obtain the expressions for the (normalized) axisymmetric densities:

�(ρc) = 3�(�c)

4π

[
�(�c)

4 − 10a2z2

d4
+ 5a4z4

d8�(�c)4

]
, (21)

�(ρc) = 3�(�c)

4π

[
5�(�c)

4 − 10a2z2

d4
+ a4z4

d8�(�c)4

]
. (22)

We verified that the two new density–potential pairs (19)–(21) and

(20)–(22) satisfy the Poisson equation (1).

Note that, in contrast to �(�c), the potential �(�c) changes sign

crossing the equatorial plane of the system. In accordance with this

change of sign, �(ρc) is negative for z < 0, as can be seen from

equation (22), and thus cannot be used to describe a gravitational

system. We do not discuss this pair any further but instead focus

on the real components of the shifted density–potential pair. Near

the centre d ∼ 1 − a2 + r2[1 + 2a2μ2/(1 − a2)] + O(μ2r4), and

the leading terms of the asymptotic expansion of equations (19) and

(21) are

�(�c) ∼ 1√
1 − a2

− r 2(1 − a2 + 3a2μ2)

2(1 − a2)5/2
+ O(r 4), (23)

�(ρc) ∼ 3

4π(1 − a2)5/2
− 15r 2(1 − a2 + 7a2μ2)

8π(1 − a2)9/2
+ O(r 4); (24)

in particular, the isodenses are oblate ellipsoids with a minor-to-

major squared axis ratio of (1 − a2)/(1 + 6a2). For r → ∞, d ∼
r2 + 1 − a2 + 2a2μ2 + O(μ2r−2), and

�(�c) ∼ 1

r
− 1 − a2 + 3a2μ2

2r 3
+ O(r−5), (25)

�(ρc) ∼ 15

4πr 5

(
1

5
− 1 − a2 + 7a2μ2

2r 2

)
+ O(r−9), (26)

so that �(ρc) coincides with the unshifted seed density (13) and

is spherically symmetric and positive.3 Thus, near the centre and

in the far field �(ρc) > 0 for 0 � a < 1. In addition, on the model

equatorial plane z = 0 (where d = 1 − a2 + R2, with R the cylindrical

radius), �(�c) coincides with the potential of a Plummer sphere

of scale-length
√

1 − a2, and from equation (21) it follows that

�(ρc) = 3�(�c)
5/(4π) > 0 for 0 � a < 1.

However, for z �= 0 a negative term is present in equation (21),

and the positivity of �(ρc) is not guaranteed for a generic value of

the shift parameter in the range 0 � a < 1. In fact, a numerical

exploration reveals that �(ρc) becomes negative on the symmetry

axis R = 0 at z � 0.81 for a = am � 0.588; the negative-density

region then expands around this critical point for increasing a > am.

The isodensity contours of �(ρc) in a meridional plane are shown

in the top panels of Fig. 1, for shift-parameter values a = 1/2 (left)

and a = 23/40 = 0.575 (right). The most salient property is the

resulting toroidal shape of the model with the large shift, which

is reminiscent of other similar structures known in the literature,

for example the Lynden-Bell (1962) flattened Plummer sphere, the

densities associated with the Binney (1981) logarithmic potential

and the Evans (1994) scale-free potentials, the Toomre (1982) and

Ciotti & Bertin (2005) tori (see also Ciotti, Bertin & Londrillo 2004),

and the exact Modified Newtonian Dynamics density–potential pairs

discussed in Ciotti, Nipoti & Londrillo (2006). Unfortunately, we

were not able to find an explanation (if indeed any exists) for this

similarity (see, however, Section 4).

2.3 The shifted isochrone sphere

Following the treatment of the Plummer sphere, we now consider

the slightly more complicated case of the shifted isochrone sphere.

Its relative potential and density are given by

� = G M

b

1

1 + ζ
, (27)

ρ = M

4πb3

3(1 + ζ ) + 2r 2

(1 + ζ )3ζ 3
, (28)

where ζ is defined in equation (12), and again all lengths are nor-

malized to the scale b (Hénon 1959; see also BT). In analogy with

equation (14), the normalized shifted density can be written as a

function of the normalized shifted potential:

ρc = �2
c

4πζ 3
c

(
3 + 2r 2

c �c

)
. (29)

The real and imaginary parts of �c = (1 + ζ̄c)/[1 + |ζc|2 + 2�(ζc)]

are easily obtained from equations (15)–(18) as

�(�c) = 1 + √
d + 1 − a2 + r 2/

√
2

1 + d +
√

2(d + 1 − a2 + r 2)
, (30)

�(�c) =
√

2az√
d(d + 1 − a2 + r 2)[1 + d +

√
2(d + 1 − a2 + r 2)]

,

(31)

3 This is a general property of shifted spherical systems, as can be seen by

expanding equation (11) for r → ∞.
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Figure 1. Isodensity contours in the (R, z) plane of �(ρc) of the shifted Plummer sphere for a = 1/2 (top left) and a = 23/40 (top right), and of the shifted

isochrone sphere for a = 1/2 (bottom left) and a = 4/5 (bottom right). The coordinates are normalized to the scale-length b of the corresponding seed spherical

model.

while �(ρc) and �(ρc) can be obtained by expansion of equa-

tion (29); however, their expression is quite cumbersome, and so

is not detailed here. Again, �(�c) changes sign when crossing the

model equatorial plane, revealing that �(ρc) also changes sign in

order to produce the resulting vertical force field near z = 0, and

the vanishing of the integral in equation (7). In accordance with

equation (11) on the model equatorial plane, �(ρc) is functionally

identical to an isochrone sphere of scale-length
√

1 − a2 (and so is

positive for 0 � a < 1), while for r → ∞

�(�c) ∼ r − 1

r 2
+ 1 + a2 − 3a2μ2

2r 3
+ O(r−4), (32)

�(ρc) ∼ 1

4πr 5

(
2r − 3 + 4a2 1 − 6μ2

r

)
+ O(r−7). (33)

As for the shifted Plummer sphere, it is also the case here that �(ρc)

coincides in the far field with the seed density, and so is positive for

0 � a < 1, while it becomes negative on the z axis at z � 0.648 for

a>am �0.804. In the bottom panels of Fig. 1 we show the isodensity

contours in the meridional plane of �(ρc) for the representative

values of the shift parameter a = 1/2 (left) and a = 4/5 (right):

again, the toroidal shape and the critical regions on the symmetry

axis are apparent in the case of the larger shift.

3 ROTAT I O NA L F I E L D S

A natural question to ask concerns the nature of the kinematical

fields that can be supported by the found density–potential pairs

�(�c)–�(ρc) if they represent self-gravitating stellar systems. In

general, the associated two-integral Jeans equations (e.g. BT, Ciotti

2000) can be solved numerically after having fixed the relative

amount of ordered streaming motions and velocity dispersion in

the azimuthal direction (e.g. see Satoh 1980; Ciotti & Pellegrini

1996). For simplicity, we restrict our attention here to the isotropic

case, in which the resulting Jeans equations are formally identical

to the equations describing axisymmetric, self-gravitating gaseous

systems in permanent rotation:⎧⎪⎪⎨⎪⎪⎩
1

ρ

∂P

∂z
= −∂�

∂z
,

1

ρ

∂P

∂R
= −∂�

∂R
+ 	2 R

(34)

(in order to simplify the notation, in the following we intend ρ =
�[ρc] and � = �[�c]). The quantities ρ, P and 	 denote the fluid

density, pressure and angular velocity, respectively; the rotational

(i.e. streaming) velocity is vϕ = 	R, while vR = vz = 0.

In problems in which ρ and φ are assigned, the standard approach

for the solution of equations (34) is to integrate for the pressure with

boundary condition P(R, ∞) = 0,

P =
∫ ∞

z

ρ
∂�

∂z′ dz′, (35)

and then to obtain the rotational velocity field from the radial equa-

tion

v2
ϕ = R

ρ

∂P

∂R
+ R

∂�

∂R
. (36)
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However, v2
ϕ can also be obtained without previous knowledge of P,

because by combining equations (35)–(36) and integrating by parts

with the assumption that P = ρ∂�/∂R = 0 for z = ∞ it follows

that

ρv2
ϕ

R
=

∫ ∞

z

(
∂ρ

∂R

∂�

∂z′ − ∂ρ

∂z′
∂�

∂R

)
dz′. (37)

We note that this ‘commutator-like’ relationship is not new (for

example see Rosseland 1926; Waxman 1978, and, in the context of

stellar dynamics, Hunter 1977).

Before solving equations (34) for the real parts of the density–

potential pairs of Section 2, it is useful to recall some basic properties

of rotating fluid configurations. For example, in several astrophys-

ical applications (for example the set-up of initial conditions for

hydrodynamical simulations), equations (34) are solved for the den-

sity under the assumption of a barotropic pressure distribution (and

neglecting the gas self-gravity), and for assigned ρ(R, ∞) = 0 or

ρ(R, 0) = ρ0(R).

As is well known, this approach can lead only to hydrostatic

(	= 0) or cylindrical rotation (	=	[R]) kinematical fields. In fact,

according to the Poincaré–Wavre theorem (e.g. see Lebovitz 1967;

Tassoul 1978), cylindrical rotation is equivalent to barotropicity,

or to the fact that the acceleration field on the right-hand side of

equations (34) derives from the effective potential

�eff ≡ � −
∫ R

R0

	2(R′)R′ dR′ (38)

(where R0 is an arbitrary but fixed radius), so that the gas density

and pressure are stratified on �eff.

However, barotropic equilibria are just a very special class of

solutions of equations (34). For example, in the context of galactic

dynamics isotropic axisymmetric galaxy models often show stream-

ing velocities dependent on z (for simple examples see, for example,

Lanzoni & Ciotti 2003; Ciotti & Bertin 2005). Such baroclinic con-

figurations (i.e. fluid systems in which P cannot be expressed as a

function of ρ only, and �eff does not exist at all) have been studied

in the past for problems ranging from geophysics, to the theory of

sunspots and stellar rotation (e.g. see Rosseland 1926), to the prob-

lem of modelling the decrease of rotational velocity of the extrapla-

nar gas in disc galaxies for increasing z (e.g. see Barnabé et al. 2005,

2006). Note that a major problem posed by the construction of baro-

clinic solutions is the fact that the existence of physically acceptable

solutions (i.e. configurations for which v2
ϕ � 0 everywhere) is not

guaranteed for arbitrary choices of ρ and �. However, the positivity

of the integrand in equation (37) for z � 0 is a sufficient condition

to have v2
ϕ � 0 everywhere. In fact, in Barnabé et al. (2006) sev-

eral theorems on baroclinic configurations have been proved start-

ing from equation (37): in particular, toroidal gas distributions are

strongly favoured in order to have v2
ϕ � 0 in the presence of a

dominating disc gravitational field. We note that also in the present

cases the density is of toroidal shape, although the distribution is

self-gravitating.

In the case of the�(ρc)–�(�c) pair of the shifted Plummer sphere,

the (normalized) commutator in equation (37) is a very simple func-

tion:

∂ρ

∂R

∂�

∂z′ − ∂ρ

∂z′
∂�

∂R
= 15a2

π

Rz(1 − a2 + r 2)

d7
, (39)

which is positive for z > 0 and 0 � a < 1, so that v2
ϕ � 0 as far

as �(ρc) is positive everywhere, i.e. for 0 � a < am. Remarkably,

the integration of equation (37) can be easily carried out in terms of

elementary functions:

ρv2
ϕ = 3a2 R2

2πd5

{
1 − d4(1 + a2 + r 2)

12a4(1 + R2)3

×
[

6a4(1 + R2)2

d4
− 2a2(1 + R2)

d2
+ 1 + a2 + r 2 − d

1 + a2 + r 2

]}
, (40)

while the direct integration of the pressure equation is much more

complicated [again showing the relevance of equation (37) , and we

report its normalized expression on the equatorial plane only:

P(R, 0) = 2(1 + R2) − a2

16π(1 + R2)2(1 − a2 + R2)2
. (41)

Note that v2
ϕ ∝ a2, and so it vanishes (as a consequence of the

imposed isotropy) when reducing to the spherically symmetric seed

density: in fact, it can be proved that the argument in parentheses

in equation (40) is regular for a → 0. The baroclinic nature of the

equilibrium is apparent, and confirmed by Fig. 2, where we show

the contours of constant v2
ϕ for a = 1/2 and a = 23/40 (top panels,

corresponding to the models plotted in the top panels of Fig. 1). The

normalized streaming velocity field in the equatorial plane is

v2
ϕ(R, 0) = a2 R2

3

6(1 + R2)2 − 4a2(1 + R2) + a4

(1 + R2)3(1 − a2 + R2)3/2
, (42)

and has a maximum at R � 1, while the normalized circular velocity

is the same as that of a Plummer sphere of scale-length
√

1 − a2

[cf. the comment after equation (26)]; that is,

v2
c (R) = R

∂�(R, 0)

∂R
= R2

(1 − a2 + R2)3/2
. (43)

It is easy to verify that equations (41) and (42) satisfy equation (36).

Unfortunately, we were unable to obtain the explicit formulae for

the analogous quantities for the shifted isochrone model. However, it

is easy to prove that also in this case the commutator is proportional

to a2, and so vanishes (as expected) for a → 0. A comparison of the

rotational fields of the two models in the far field can be obtained

by using the asymptotic expressions (25)–(26) and (32)–(33). In

particular, for the real part of the shifted Plummer sphere we found

v2
ϕ = 2a2 R2

r 5
− 5a2 R2(3 − a2 − 9a2μ2)

3r 7
+ O(R2r−9), (44)

while for �(ρc) of the isochrone shifted sphere

v2
ϕ = a2 R2

r 5

(
4

3
− 13

5r

)
+a2 R2(3159 + 5780a2 + 21780a2μ2)

r 7
+ O(R2r−8). (45)

Note that, even though the radial asymptotic behaviour of the density

is different in the two cases considered, the obtained velocity fields

have the same radial dependence in the far field, and in both cases

v2
ϕ decreases for increasing z and fixed R. In addition, v2

ϕ → 0 for

r → ∞, as expected from the spherical symmetry of the density

and potential for r → ∞: in fact, it is apparent from equation (37)

that spherical (additive) components of ρ and � [for example the

leading terms in the asymptotic expansions (25)–(26) and (32)–(33)]

mutually cancel in the commutator evaluation.
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Figure 2. Isorotational contours in the meridional plane of �(ρc) of the shifted Plummer sphere for a = 1/2 (top left), and a = 23/40 (top right). The bottom

panels show contours of constant pressure for the same models.

4 C O N C L U S I O N S

In this paper we have shown that the complex-shift method, intro-

duced in electrodynamics by Newman, and thoroughly studied by,

among others, Carter, Lynden-Bell and Kaiser, can be extended to

classical gravitation to produce new and explicit density–potential

pairs with finite deviation from spherical symmetry. In particular,

we showed that, after separation of the real and imaginary parts of

the complexified density–potential pair, the imaginary part of the

density corresponds to a system of null total mass, while the real

component can be positive everywhere (depending on the original

seed density distribution and the size of the complex shift).

As a simple application of the proposed method we examined the

properties of the axisymmetric systems resulting from the shift of

the Plummer and isochrone spheres. The analysis revealed that only

for shift values in some restricted range are the obtained densities

nowhere negative. This property is linked to the presence of a flat

‘core’ in the adopted (spherically symmetric) seed distributions. It

is thus expected that other distributions, such as the King (1972)

model, and the Dehenen (1993) and Tremaine et al. (1994) γ =
0 model, will also lead to physically acceptable shifted systems.

For the two new exact density–potential pairs we also found that the

associated rotational fields (obtained under the assumption of global

isotropy of the velocity dispersion tensor) correspond to baroclinic

gaseous configurations.

An interesting issue raised by the present analysis is the toroidal

shape of the obtained densities. While we were not able to find a

general explanation for this phenomenon, some hints can be ob-

tained by considering the behaviour of the complex shift for a → 0.

In fact, in this case it can easily be proved that, while the odd terms

of the expansion correspond to the imaginary part of the shifted

density (and contain the factor z), the even terms are real and, to

second order in a,

�(ρc) ∼ ρ − a2

2r

dρ

dr
+ a2z2

2r 3

(
dρ

dr
− r

d2ρ

dr 2

)
+ O(a4). (46)

This expansion is functionally similar to that obtained by Ciotti &

Bertin (2005) for the case of oblate homeoidal distributions, where

the term dependent on z2 is immediately identified with a spherical

harmonic (e.g. Jackson 1999) responsible for the toroidal shape. It

is clear that, when restricting attention to the small-shift approxima-

tion (46), all the computations presented in this paper can be carried

out explicitly for simple seed distributions. Moreover, from equa-

tion (46) it is easy to prove that negative values of density appear

on the z-axis – no matter how small the shift parameter is – when

the seed density has a central cusp ρ ∝ r−γ with γ > 0 (see, for

example, the explicit example in the Appendix).

For simplicity, we restricted our analysis in this paper to spher-

ically symmetric seed systems, which produce axisymmetric sys-

tems. A natural extension of the present investigation would be

the study of the density–potential pairs originating from the com-

plex shift of seed disc distributions, such as the Miyamoto & Nagai

(1975) and Satoh (1980) discs, or even from the generalization of

homeoidal quadrature formulae (see, for example, Kellogg 1953;

Chandrasekhar 1969, BT). Note that in such cases, in contrast to

the spherical cases discussed here, the shift direction is important:

for example, the complex shift of a disc along the z-axis will lead

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 1162–1168



1168 L. Ciotti and G. Giampieri

to a different system from that of an equatorial shift, which would

produce a triaxial object.

A second interesting line of study could be the use of the complex

shift to produce more elaborate density–potential pairs by adding

models with a weight function w(a); that is, by considering the

behaviour of the linear operator

�c =
∫

ρ(x − ia)w(a) d3a, (47)

where the integration is extended over some suitably chosen region.

We have not pursued this line of investigation, but it is obvious that

shifted density components with negative regions can be accepted in

this context, as long as it is possible to construct a weight function

leading to a final distribution nowhere negative (as happens, for

example, in spherical harmonics expansions).
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A P P E N D I X A : T H E S H I F T E D S I N G U L A R
I S OT H E R M A L S P H E R E

In this case the normalized density and potential are ρ = 1/r2 and

� = 4π ln r, so that from equations (10)–(11)

ρc = r 2 − a2

(r 2 − a2)2 + 4a2z2
+ i

2az

(r 2 − a2)2 + 4a2z2
, (A1)

�c = 2π ln(r 2 − a2 − 2iaz). (A2)

Note how, in contrast to the Plummer and isochrone spheres, �(ρc)

here describes a density distribution negative inside the open ball

r < a and positive outside. The density on the surface r = a is zero

except on the singular ring r = a in the equatorial plane. In the far

field the density decreases as 1/r2, while near the centre it flattens

to −1/a2, while the potential generated by �(ρc) is given by

�(�c) = π ln[(r 2 − a2)2 + 4a2z2]. (A3)

As for the other two cases discussed in this paper, the density �(ρc)

vanishes on the equatorial plane, and is positive above it and negative

below.
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