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ABSTRACT
We apply the joint lensing and dynamics code for the analysis of early-type galaxies, ‘Com-
bined Algorithm for Unified Lensing and Dynamics ReconstructiON (CAULDRON)’, to a rotating
N-body stellar system with dark matter halo which significantly violates the two major assump-
tions of the method, i.e. axial symmetry supported by a two-integral distribution function. The
goal is to study how CAULDRON performs in an extreme case, and to determine which galaxy
properties can still be robustly recovered. Three data sets, corresponding to orthogonal lines
of sight, are generated from the N-body system and analysed with the identical procedure
followed in the study of real lens galaxies, adopting an axisymmetric power-law total density
distribution. We find that several global properties of the N-body system are recovered with
remarkable accuracy, despite the fact that the adopted power-law model is too simple to ac-
count for the lack of symmetry of the true density distribution. In particular, the logarithmic
slope of the total density distribution is robustly recovered to within less than 10 per cent (with
the exception of the ill-constrained very inner regions), the inferred angle-averaged radial
profile of the total mass closely follows the true distribution, and the dark matter fraction of
the system (inside the effective radius) is correctly determined within ∼10 per cent of the
total mass. Unless the line-of-sight direction is almost parallel to the total angular momentum
vector of the system, reliably recovered quantities also include the angular momentum, the
V/σ ratio and the anisotropy parameter δ. We conclude that the CAULDRON code can be safely
and effectively applied to real early-type lens galaxies, also providing reliable information for
the systems that depart significantly from the method’s assumptions.

Key words: gravitational lensing – methods: N-body simulations – galaxies: elliptical and
lenticular, cD – galaxies: kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

Determining the structure of early-type galaxies and reliably pin-
ning down their dark matter content is a crucial step in order to fully
understand the formation and evolution processes of these systems.

Within the currently favoured cosmological scenario, the �cold
dark matter (�CDM) paradigm, early-type galaxies are thought to
be formed via hierarchical merging of lower mass galaxies (Toomre
1977; White & Frenk 1991; Barnes 1992; Cole et al. 2000). While
very successful in reproducing many observational features of el-
liptical galaxies, including the complex ones (see e.g. Jesseit et al.
2007), these formation models are still encountering difficulties
in explaining the origin of the empirical scaling laws that corre-
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late the global properties of early-type galaxies (see e.g. Robertson
et al. 2006). Providing a reliable and detailed description of the
mass density distribution, orbital structure and intrinsic properties
of early-type galaxies is therefore critical in order to enable stringent
tests of galaxy formation models.

For this reason, considerable effort has been devoted during the
last decades towards the observation and the modelization of nearby
early-type galaxies, by means of both stellar dynamics and X-ray
studies, finding more or less strong evidence for a dark matter halo
component (e.g. Fabbiano 1989; Mould et al. 1990; Saglia, Bertin &
Stiavelli 1992; Bertin et al. 1994; Franx, van Gorkom & de Zeeuw
1994; Carollo et al. 1995; Arnaboldi et al. 1996; Rix et al. 1997;
Matsushita et al. 1998; Loewenstein & White 1999; Gerhard et al.
2001; Borriello, Salucci & Danese 2003; Romanowsky et al. 2003;
Humphrey et al. 2006; Forbes et al. 2008 and more recently the
SAURON collaboration: see e.g. de Zeeuw et al. 2002; Emsellem
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et al. 2004; Cappellari et al. 2006). Both methods, however, present
some difficulties. In the case of stellar dynamics, it is believed that
some degeneracy can be present between the mass profile of the
galaxy and the anisotropy of the stellar velocity dispersion tensor,
which can be alleviated when higher order velocity moments are
available (see e.g. Gerhard 1993) or by using physically motivated
distribution functions (DFs) (see e.g. Bertin 2000, for a discussion
of this point). X-ray analyses, on the other hand, can seriously over-
estimate the total mass of the system if the assumption of hydrostatic
equilibrium for the hot gas does not hold, especially near the centre
(see e.g. Pellegrini & Ciotti 2006; Ciotti & Pellegrini 2008).

A full understanding of the evolution of early-type galaxies can-
not be achieved without extending the study also to the mass density
profile of objects at higher redshift (z � 0.1). This, however, has
not been attempted until recently, due to the observational limita-
tions and increased difficulty in extracting the detailed kinematic
information, which hinders traditional analyses based on the stellar
dynamics only. An effective solution in order to overcome these
issues is constituted by a joint analysis, which combines the con-
straints from stellar dynamics with the information obtained from
gravitational lensing, when the early-type galaxy also happens to
act as a lens with respect to a background source at higher redshift
(Koopmans & Treu 2002; Treu & Koopmans 2002, 2003, 2004;
van de Ven et al. 2008). Koopmans et al. (2006) have success-
fully used this combined approach to analyse 15 early-type lens
galaxies (within a redshift range z = 0.06−0.33) discovered in the
Sloan Lens ACS Survey (SLACS; Bolton et al. 2006) as well as six
systems between z ∼ 0.5 and 1 from the Lenses Structure and Dy-
namics Survey, showing that all of the examined systems are well
described by a power-law total density distribution very close to r−2.
The technique for the joint lensing and dynamics analysis has been
expanded by Barnabè & Koopmans (2007, hereafter BK07) into a
general and self-consistent method, completely embedded within
the framework of Bayesian statistics, which puts constraints on the
total density distribution of the lens galaxy by taking advantage of
all the available data, i.e. not only the lensed image and a single
stellar velocity dispersion measurement, but also the surface bright-
ness distribution and the two-dimensional kinematic maps (first and
second projected velocity moments).

Similar to other methods for the determination of the structure
and internal dynamics of early-type galaxies, already mentioned
above, the joint lensing and dynamics analysis also rely on a cer-
tain number of assumptions. For example, the simple and robust
approach of Koopmans et al. (2006) treats the gravitational lensing
and the stellar dynamics as independent problems. The projected
mass distribution of the lens galaxy is modelled as a singular isother-
mal ellipsoid in order to determine the total mass within the Einstein
radius, which is then used as a constraint for the dynamical model,
where spherical symmetry and a specific prescription for the stellar
orbital anisotropy are assumed. The more sophisticated framework
of BK07 is designed to be very general and allows, in principle, for
an arbitrary choice of the total potential. In practice, however, such
freedom must balance against technical and computational limi-
tations. Therefore, in order to have a fast and efficient algorithm,
the current implementation of the method, the CAULDRON code,1 is
restricted to axisymmetric potentials and two-integral stellar phase-
space (DFs). Under these hypotheses, it has been shown in BK07
that the method is capable of recovering the correct potential pa-

1 Combined Algorithm for Unified Lensing and Dynamics ReconstructiON.

rameters and inclination angle with considerable accuracy, even in
the presence of realistic noise.

The point above raises the question of whether (and to what
extent) the simplifying assumptions can be deemed valid for the as-
trophysical systems to which such methods are applied. In fact, real
galaxies are not idealized objects, and there is no reason to expect
them to be exactly axisymmetric (and neither triaxial ellipsoids) or
to have two or three integrals of motion. Whereas axial symmetry
generally seems to constitute a fairly good approximate description
for most early-type galaxies, a more detailed inspection, such as
that allowed by the SAURON observations (see Emsellem et al.
2004; McDermid et al. 2006), reveals a multitude of features indi-
cating departure from axisymmetry, e.g. the presence of isophotal
twist in the surface brightness distribution, minor axis rotation and
kinematically decoupled cores.

For this reason, in this paper, we apply our algorithm to the end
product of a two-component (stars plus dark matter) N-body sim-
ulation of a merger process, i.e. to a system which does not obey
any restrictive prescription of symmetry and therefore violates the
assumptions of the method. We aim to study how the CAULDRON

algorithm performs when subjected to this kind of ‘crash-test’,
and which quantities can be robustly recovered even in such an
extreme case. A similar approach has been followed by Thomas
et al. (2007), who have applied their three-integral axisymmet-
ric Schwarzschild code to the study of non axisymmetric N-body
merger remnants, although without any gravitational lensing infor-
mation, and by Meneghetti et al. (2007) in the case of clusters of
galaxies.

This paper is organized as follows. In Section 2, we provide
an overview of the CAULDRON algorithm for combined lensing and
dynamics analysis. In Section 3, we summarize the properties of
the N-body system that we use as the lens galaxy. In Section 4, we
describe how the two-dimensional maps of the simulated data with
added realistic noise are obtained from the particle distribution. In
Section 5, we apply the joint lensing and dynamics analysis to the
simulated data and we present the results, which are then further
discussed in Section 6, where also conclusions are drawn.

2 TH E CAULDRON A L G O R I T H M F O R J O I N T
LENSI NG AND DYNAMI CS A NA LY SI S

In this section, we recall the main features of the CAULDRON algo-
rithm. We refer the reader to BK07 for a fully detailed description
of the method.

The central tenet of a self-consistent joint analysis is to adopt
a total gravitational potential � (or, equivalently, the total density
profile ρ from which � is calculated via the Poisson equation),
parametrized by a set η of non-linear parameters and use it simulta-
neously for both the gravitational lensing and the stellar dynamics
modelling of the data. As shown in BK07, these two modelling
problems, while different from a physical point of view, can be
expressed in an analogous way as a single set of coupled (regu-
larized) linear equations. For any given choice of the non-linear
parameters, the equations can be solved (in a direct, non-iterative
way) to simultaneously obtain as the best solution for the chosen
potential model: (i) the unlensed source surface brightness dis-
tributions and (ii) the weights of the elementary stellar dynam-
ics building blocks [e.g. orbits or two-integral components (TICs);
Schwarzschild 1979; Verolme & de Zeeuw 2002]. This linear op-
timization scheme is consistently embedded in the framework of
Bayesian statistics. As a consequence, it is possible to objectively
assess the probability of each model by means of the evidence merit
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function and, therefore, to rank different models (see Mackay 1992,
1999, 2003). In this way, by maximizing the evidence, it is possible
to recover the set of non-linear parameters η corresponding to the
‘best’ potential model. Here, in the context of Bayesian statistics,
the ‘best model’ means the most plausible model in an Occam’s
razor sense, given the data and the adopted form of the regular-
ization (the optimal level of the regularization is also set by the
evidence.).

Whereas the method is, in principle, extremely general,2 its cur-
rent practical implementation, which will be referred to as the CAUL-
DRON algorithm, is more restricted in order to make it computation-
ally efficient and applies specifically to axisymmetric potentials,
�(R, z) and two-integral DFs f = f (E, Lz) (where E and Lz are,
respectively, the energy and the angular momentum along the ro-
tation axis). Under these assumptions, the dynamical model can
be constructed by making use of the fast BK07 numerical imple-
mentation of the two-integral Schwarzschild method developed by
Cretton et al. (1999) and Verolme & de Zeeuw (2002), whose build-
ing blocks are not stellar orbits (as in the classical Schwarzschild
method) but TICs.3 The weights’ map of the optimal TIC superposi-
tion which best reproduces the observables is yielded as an outcome
of the joint analysis.

The CAULDRON algorithm has been successfully tested against the
analytic power-law galaxy models of Evans (1994), which respect
by construction the assumptions of axisymmetry and two-integral
DF, and afterwards has been employed for the detailed analysis
of the SLACS lens galaxy SDSS J2321−097 (Czoske et al. 2008,
hereafter C08). The latter is a case study which presents a bench-
mark data set particularly well suited to the needs of CAULDRON, i.e.
high-resolution Hubble Space Telescope (HST)/ACS images of the
gravitational lensed source and of the surface brightness distribu-
tion of the lens galaxy and two-dimensional maps of the projected
velocity moments of the lens galaxy derived from Very Large Tele-
scope (VLT)–VIMOS observations. Therefore, the observations of
SDSS J2321−097 will be used as a reference in order to generate
the simulated observables for the present study (see Section 4).

It has been shown by the work of Koopmans et al. (2006) that
a simple power-law model for the total density distribution pro-
vides a satisfactory description for all of the SLACS lens galaxies
examined so far. This has been further confirmed in the case of
SDSS J2321−097, where a fully self-consistent analysis was per-
formed. In this work, we aim to study the simulated galaxies exactly
as we would do for the real objects, without assuming any a priori
knowledge, and therefore we still adopt the same power-law model
that has been used in C08. In particular, the total mass density dis-
tribution of the galaxy is taken to be a power law stratified on the
axisymmetric homoeoids:

ρ(m) = ρ0

mγ ′ , 0 < γ ′ < 3, (1)

where ρ0 is a density scale, γ ′ will be referred to as the (logarithmic)

2 One could adopt for example a completely general pixelized potential for
which the best profile is then determined via Bayesian statistics only by the
data.
3 A TIC can be visualized as an elementary toroidal system, completely
specified by a particular choice of energy E and axial component of the
angular momentum Lz. TICs have simple 1/R radial density distributions
and analytic unprojected velocity moments, and by superposing them, one
can build f (E, Lz) models for arbitrary spheroidal potentials (cf. Cretton
et al. 1999): all these characteristics contribute to make TICs particularly
valuable and ‘inexpensive’ building blocks when compared to orbits.

slope of the density profile and
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where c0 and a0 are length-scales and q ≡ c0/a0.
The (inner) gravitational potential associated with a homoeoidal

density distribution ρ(m) is given by Chandrasekhar (1969) formula.
In our case, for γ ′ �= 2, one has
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There are three free non-linear parameters in the potential to
be determined via the evidence maximization: �0 [or equivalently,
through equation (B4) of BK07, the lens strength α0], the slope γ ′

and the axial ratio q. When required by the data, it is straightfor-
ward to include a core radius Rs in the density distribution. Beyond
the previously mentioned parameters, there are four additional pa-
rameters which determine the geometry of the observed system:
the position angle ϑPA, the inclination i and the coordinates of the
centre of the lens galaxy with respect to the sky grid. The position
angle and the lens centre can usually be accurately determined by
means of a preliminary exploration and kept fixed afterwards in
order to reduce the number of free parameters. Finally, for a proper
modelling of the lensed image, it can be necessary to include two
more parameters (shear strength ζ and shear angle ϑζ ) in order to
account for an external shear.

A curvature regularization [as described in Suyu et al. 2006 and
appendix (A) of BK07] is adopted for both the gravitational lensing
and the stellar dynamics reconstructions. As discussed in BK07, the
initial guess values of the hyperparameters (defining the level of the
regularization) are chosen to be quite large, since the convergence
to the maximum is faster when starting from an over-regularized
system.

3 TH E N-BODY SYSTEM

The model galaxy that we use as lens in this work is the end prod-
uct of a numerical N-body simulation of a dissipationless merging
between two equal-mass spherical galaxies embedded in their dark
matter halos. The simulation, run with the treecode FVFPS (Fortran
Version of a Fast Poisson Solver; Londrillo, Nipoti & Ciotti 2003;
Nipoti, Londrillo & Ciotti 2003), has been already presented and
described in a previous paper (Nipoti, Londrillo & Ciotti 2007), in
which it is named as E25o. Here, we recall the main properties of the
end product of this simulation, while we refer the reader to Nipoti
et al. (2007) for a detailed description of the initial conditions.

The simulation end product is a nearly ellipsoidal virialized sys-
tem, comprising a stellar component and a dark matter component.
The total number of particles is ∼1.2 × 106, and all particles have
the same mass. The stellar component has a total mass of ∼2M∗
and an angle-averaged half-mass radius ∼3.8r∗, where M∗ and r∗
are the mass unit and code length. The dark matter component is
more massive and more extended than the stellar component, hav-
ing mass ∼10M∗ and half-mass radius ∼19.3r∗. The system has

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 1114–1126



Crash-testing the CAULDRON code 1117

Figure 1. Axis ratios b/a (solid curves) and c/a (dotted curves) as functions
of the radius for the stellar (red) and total (black) density distributions of the
N-body system used as lens (we assumed r∗ = 1.969 arcsec).

a virial velocity dispersion ∼0.55(GM∗/r∗)1/2 and non-vanishing
total angular momentum L, corresponding to a value λ ∼ 0.07 in
terms of the spin parameter λ ≡ |Etot|1/2||L||G−1M−5/2

tot , where Etot

is the total energy and Mtot ∼ 12 M∗ is the total mass. Of course,
the model can be rescaled to represent physical systems of any size
and mass by choosing proper values of M∗ and r∗.

We define the minor-to-major (c/a) and intermediate-to-major
(b/a) axis ratios of the system at a radius r as the corresponding
axis ratios of the inertia ellipsoid of particles within an ellipsoid of
angle-averaged radius r (for details see Nipoti, Londrillo & Ciotti
2002). We find that the system is triaxial, with direction of the prin-
cipal axes and axis ratios depending on the radius. Fig. 1 shows
b/a (solid curve) and c/a (dotted curve) as functions of radius for
the stellar (red) and total (black) density distributions within about
the half-mass radius of the stellar component (we assumed r∗ =
1.969 arcsec; see Section 4). Both the stellar and the total distribu-
tions are strongly triaxial at r � 5 arcsec and mildly triaxial (almost
prolate) at r � 5 arcsec. The angle-averaged total density and the
mass profiles of the model are plotted as solid black curves in Figs 3
and 4, respectively.

4 C ONSTRUCTION O F THE OBSERVABLE S

In this section, we detail how the simulated observables (or ‘mock
data’) are generated from the dark matter and stellar particle distri-
bution taken from the virialized end product of the N-body simula-
tion described in Section 3.

In order to convert the N-body simulation in a realistic data set
with plausible physical characteristics (effective radius, redshift of
lens galaxy and source, Einstein radius), we use the actual lens
galaxy SDSS J2321−097 as a reference, for which both data anal-
ysis and joint lensing and dynamics study are presented in C08.
Therefore, we will adopt for the noise level and the sampling of
the data (i.e. size and binning of the data grids), the corresponding
values of SDSS J2321−097.

First, we impose the same redshift of SDSS J2321−097 for the
simulated galaxy, i.e. zl = 0.0819. The adopted source (Fig. 2)

Figure 2. Mock source to be lensed. This is an elliptical Gaussian brightness
distribution with σx = 0.2 arcsec, σy = 0.1 arcsec, position angle ϑPA =
115◦ and with a slight offset with respect to the lens centre.

to produce the artificial lensed image is an elliptical Gaussian
distribution, slightly offset with respect to the centre of mass of
the lens galaxy and (again in analogy with SDSS J2321−097) lo-
cated at a redshift zs = 0.5342. We then fix the values r∗ = 3 kpc
(
1.969 arcsec at redshift zl) and M∗ = 3 × 1011 M�, respectively,
for the length and mass units of the simulated galaxy. This setup
produces a galaxy that, when is observed along an arbitrary line of
sight, displays realistic values for both the effective radius Re(∼ 5–
6 arcsec, corresponding to ∼8 kpc at the redshift zl) and the Einstein
radius REinst(∼ 2 arcsec).

With this choice of r∗ and M∗, the simulated galaxy is a mas-
sive system of total mass 3.6 × 1012 M�, with a dark halo which
extends up to several hundred kpc. In analogy with the data set of
SDSS J2321−097, the spatial coverage of our data is confined to
the very inner regions of the galaxy, approximately corresponding
to Re/2. However, a fair amount of information also comes from
more distant regions of the system, which are seen in projection
along the line of sight (see discussion in C08).

We define for the galaxy an orthogonal reference frame with
the origin in the centre of mass of the simulated system; the z-
axis is oriented along the direction of the total angular momentum
of the stellar component. Since all the observables are quantities
projected in the sky plane, we select three orthogonal lines of sight
along which the simulated galaxy is assumed to be observed. In this
way, from a single simulation, we obtain three different data sets.
The first line of sight is chosen to be approximately oriented along
the z-axis of the galaxy, and therefore in the following we will refer
to the corresponding projection as the xy-plane projection or, for
simplicity, the ‘face-on’ projection. The remaining two projections
are taken along the mutually orthogonal axes both perpendicular
to the first line of sight and will be called the yz- and zx-plane
projections or, for brevity sake, the ‘edge-on’ projections.

The circularized half-light radii for the three projections are found
to be Re = 5.227 arcsec (yz-plane), 5.359 arcsec (zx-plane) and
6.156 arcsec (xy-plane).

When considering any one of the three projections, we will always
indicate z′ as the direction of the particular line of sight. For each
projection, the observables are then calculated following the same
procedure.
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(i) Lensed image. All the particles (both stellar and dark matter
ones), properly weighted by the respective masses, are cast in pro-
jection along the line of sight and binned in a two-dimensional-grid
along the sky plane in order to generate from the total density ρ tot a
projected density map �tot. The latter, once normalized to the criti-
cal density �cr = (c2/4πG) (Ds/DdDds), a quantity which depends
only on the geometry of the system,4 yields the convergence field
κ on the projection plane. The two-dimensional Poisson equation
∇2ψ = 2κ relates the convergence to the projected potential ψ ,
whose gradient immediately gives the deflection angle vector field
α = ∇ψ (see e.g. Schneider, Ehlers & Falco 1992).

We make use of a square grid of 3000 × 3000 bins for the
convergence. The grid size (equivalent to ∼40 arcsec) is such that it
contains, in projection, about half of the total number of particles.
Including more distant particles does not have any discernible effect
on the outcome, except slowing down all the related calculations,
since the number of bins must be increased in order to keep the
resolution constant. The Poisson equation is then solved via fast
Fourier transform, using the freely available package FFTW (Frigo
& Johnson 2005), and enabling us to obtain, from the convergence
(appropriately padded in order to avoid numerical issues with the
Fourier transform), the two components of deflection angle α. With
these deflection angle maps and the mock source described above,
the CAULDRON code can straightforwardly generate the lensed image,
already convolved with the HST/ACS F814W point spread function
(PSF) obtained with TINY TIM (Krist 1993). The lensed image is
constructed (in analogy with the lensing data for SDSS J2321−097)
on 100 × 100 grid, with each pixel corresponding to 0.05 arcsec.
Finally, a noise distribution based on the covariance maps of the
HST images of SDSS J2321−097 is added to the lensed image map
in order to produce the final data set.

The obtained lensing data sets for the three projections are shown
in the upper right-hand panel of Figs 5, 7 and 9.

(ii) Surface brightness distribution. We assume that the stellar
mass-to-light ratio is independent of position. The stellar particles
are cast along the chosen line of sight on a two-dimensional-grid in
the sky plane. Such grid is padded and oversampled by a factor of 3
with respect to the final grid adopted for this observable (see later).
This is necessary since, in order to take into account the effect
of seeing, we have to convolve this quantity with the PSF [here
modelized as a Gaussian distribution of full width at half-maximum
(FWHM) = 0.10 arcsec]. The map is then resampled, generating
the surface brightness distribution of the galaxy on a 50 × 50 grid
(1 pixel = 0.10 arcsec). Mock noise is then added consistently
with the corresponding variance maps of SDSS J2321−097. These
images are to first-order equivalent to HST–Near Infrared Camera
and Multi-Object Spectrometer (NICMOS) images.

The obtained data sets for the surface brightness distribution of
the three projections are shown in the upper left-hand panel of
Figs 6, 8 and 10.

(iii) Line-of-sight projected velocity moments. The procedure
to generate the kinematic maps is similar to the one described
above for the surface brightness distribution, including the oversam-
pling and convolution with the Gaussian PSF (but with a broader
FWHM = 0.90 arcsec, typical for ground-based observations with
the VLT).

4 Ds, Dl and Dls are the angular diameter distances from the observer to
the source, from the observer to the lens and from the lens to the source,
respectively.

The only difference is that now the velocities projected along the
line of sight (vz′ and v2

z′ for the two kinematic maps, respectively)
associated with each particle are summed up on each cell, producing
the unweighted maps to be used by CAULDRON. These maps can be
divided by the surface brightness distribution sampled on the same
grid (the ‘kinematic’ grid) in order to obtain the weighted maps, i.e.
the quantities 〈vz′ 〉 and 〈v2

z′ 〉. The projected velocity dispersion is
obtained as σ 2

z′ = 〈v2
z′ 〉 − 〈vz′ 〉2.

Due to the challenges of spectroscopic observations of distant
early-type galaxies, the kinematic grids of SDSS J2321−097 only
have 9 × 9 elements, with 1 pixel = 0.67 arcsec (i.e. the VLT-
VIMOS integral-field unit (IFU) fiber size). Since we are mimicking
those observation, we adopt the same grid. As usual, the mock noise
is added according to what we know from SDSS J2321−097.

The obtained kinematic data sets for the three projections are
presented in the upper central (for the line-of-sight velocity) and
upper right-hand (for the line-of-sight velocity dispersion) panels
of Figs 6, 8 and 10.

5 A NA LY SIS A ND RESULTS

In this section, we illustrate the results of the joint lensing and
dynamics analysis performed with CAULDRON on the three data sets
generated (as described in Section 4) from orthogonal projections
of the simulated galaxy.

5.1 Recovered structure

As discussed in Section 2, we have adopted an axisymmetric power-
law profile as a model for the total density distribution. The recov-
ered non-linear parameters of the best models for the three data sets
are reported in Table 1. The non-linear parameters listed in the table
are the inclination i (in degrees), the shear strength ζ and angle
ϑζ (in degrees), the lens strength α0, the logarithmic slope γ ′ and
the flattening q (a q larger than 1 denotes a prolate axisymmetric
shape). In order to speed up the optimization routine, the best values
for the lens centre and galaxy position angle were determined via
preliminary runs and afterwards were kept fixed (this procedure is
commonly used in this kind of analysis, see e.g. C08.). The core
radius Rs was initially set free as an additional non-linear parame-
ter, but, in order to make the optimization faster, it was later fixed
to a negligibly small value after verifying that the introduction of
this new parameter did not lead to an increase of the value of the
evidence merit function (and therefore, in a Bayesian sense, the
additional complexity was not justified). The optimization routine
also yields the best value for the three hyperparameters, which set
the ideal level of regularization.

Table 1. Recovered non-linear parameters of the best power-
law models for the three data sets (obtained as projection
of the simulated systems on the three orthogonal planes
indicated in the columns): inclination i (in degrees), shear
strength ζ and angle ϑζ (in degrees), lens strength α0, loga-
rithmic slope γ ′ and flattening q.

yz plane zx plane xy plane

i 56.5 88.9 53.6
ζ 5.36 × 10−2 8.71 × 10−2 5.99 × 10−2

ϑζ −24.6 32.4 27.8
α0 0.652 0.642 0.520
γ ′ 2.214 2.078 2.234
q 1.000 1.124 0.864
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The reconstructed observables for gravitational lensing and stellar
dynamics that correspond to the best model for the yz-plane data set
are presented and compared to the data in Figs 5 and 6, respectively.
Analogously, Figs 7–8 and 9–10 show the same quantities for the
zx-plane and xy-plane (i.e. face-on projection) data sets.

It is apparent that the residuals of the reconstructed lensed image
are fairly large, in particular, in the cases of the zx- and xy-plane
projections, where moreover the reconstructed source appears
patchy and unrealistically pixelized, despite the regularization. The
same effects, while less pronounced, are discernible also in the
case of the yz-plane projection, where the reconstruction was most
successful. This is a clear indication that the underlying total den-
sity distribution is actually more complex or inhomogeneous than
the simple power-law profile that we are using as a model (see
Section 5.3 for a more extended discussion) and that the model is
unable to de-lens all the lensed images simultaneously into a single
well-defined source.

The surface brightness distribution and the kinematics appear to
be reasonably well reconstructed. However, in the inner region, the
reconstructed velocity dispersion is more peaked than in the data,
with the possible exception of the zx-plane data set (the one for
which the recovered slope is the most shallow, cf. Table 1.). Together
with the faint central image visible in all the lensing data sets, this
indicates that the total density distribution of the system is shallower
in the central regions than in the outer regions, as confirmed by the
direct analysis of the angle-averaged density profile of the object
(see Fig. 3).

Despite several indications from the reconstructed observables
that the adopted power-law model is probably oversimplified for
the data at hand, we find that such a model still provides a satisfac-
tory description of the essential features of the system, and various
important physical quantities are robustly recovered.

Figure 3. Angle-averaged total density profile of the simulated system
(black line) compared with the density profiles of the recovered best models
(see Table 1) for the three orthogonal projections data sets. The yz-plane
model (red line) has a logarithmic density slope γ ′

yz = 2.214, the zx-plane
model (blue line) has a slope γ ′

zx = 2.078 and the xy-plane model (green
line) has a slope γ ′

xy = 2.234.

The angle-averaged total density profiles corresponding to the
best models of Table 1 for the three data sets are plotted in Fig. 3
and compared with the true profile of the simulated system. The
density slope, which is very close to γ ′ ∼ 2.2, is quite accurately re-
covered beyond the inner ∼0.5 arcsec. The zx-plane model presents
a slightly shallower profile (γ ′ ∼ 2.1), although the discrepancy is
small. The xy-plane model, which, in general, provides the worst
recovery of the true quantities (as it will be further discussed in
this section), has a density normalization which is lower than the
real one, but manages to almost perfectly catch the correct den-
sity slope. In the inner half arcsecond, the density profile of the
simulated galaxies becomes shallower (ρ ∼ 1/r), a feature that
the power-law model is obviously unable to capture, although, as
already discussed, we have other signals (e.g. from the velocity
dispersion) that the model breaks down in that approximate region
and that this is due to the presence of a break in the density profile.
Slightly more sophisticated models, such as a double or a single
power law with an added break radius, have also been explored,
but the reconstruction of the observables does not improve signif-
icantly and the additional complexity is therefore penalized by the
Bayesian evidence in favour of the single power law. In light of what
we know from the direct examination of the simulated object, the
reason for this failure is that the transition from the ρ ∼ 1/r2 region
to the ρ ∼ 1/r region is too abrupt to be adequately reproduced by
these models, and therefore they do not perform significantly better
than the simpler single power law.

Whereas the density slope is a substantially unharmed survivor
of the crash-test, the recovered flattening and inclination angle are
not reliable parameters in case the systems deviate too drastically
from the model’s assumptions. One should note, however, that these
quantities are only properly defined for an axisymmetric object, and
therefore do not have a straightforward interpretation when directly
applied to a simulated system which is approximately triaxial and
whose axis ratios also change as a function of radius (as seen in
Section 3). Both the best models for the yz- and xy-plane data set
give an inclination close to ∼55◦, so there is no sign that the latter
is interpreted as a face-on system. The zx-plane best model, on the
other hand, turns out quite correctly to be an almost edge-on system
(i 
 90◦). As for the flattening, it appears that the axisymmetric
model, faced with the insurmountable problem of triaxiality, tends
to adopt a density profile close to spherical (almost exactly spherical
in the case of the yz-plane data set, slightly prolate or oblate in the
cases of the zx- and xy-plane data sets, respectively.).

5.2 Total mass distribution and dark matter fraction

Closely connected to the density profile is the (angle-averaged) total
mass distribution, plotted in Fig. 4 for the three best models and
the true system. We find that in the case of the edge-on projections
models (yz- and zx-planes), the mass profile is very well reproduced
within a few per cent. The mass profile of the face-on projection
model is instead underestimated of about 25 per cent within a sphere
of radius ∼5 arcsec; this is a consequence of the too low density
normalization which is recovered for this model, as previously seen
in Fig. 3. Because of the tight constraints imposed by the lensing,
the total projected mass enclosed within REinst is within a few per
cent from the correct value for all the three models.

A quantity of extreme interest in the study of early-type galaxies
is the dark matter fraction of these objects. It is therefore important
to be able to test how reliable is the CAULDRON method in estimating
this parameter also for systems that defy its assumptions of axisym-
metry and two-integral DF. Since the method only provides a total
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Figure 4. Angle-averaged total mass distribution of the simulated system
(black line) compared with the total mass profiles of the recovered best
models (see Table 1) for the three orthogonal projections data sets: yz-plane
model (red line), zx-plane model (blue line) and xy-plane model (green line).

density distribution, however, it is necessary to make further as-
sumptions to be able to constrain the stellar density profile. In order
to limit, as much as possible, the arbitrariness of such assumptions
we adopt, as in the analysis of real galaxies, the so-called ‘maxi-
mum bulge’ approach (cf. C08). This consists in maximizing the
contribution of the luminous component (which is obtained as an
output of the best model reconstruction), i.e. maximally rescaling
the stellar density distribution without exceeding the total density
distribution, assuming that the stellar mass-to-light ratio is indepen-
dent of position. This method gives a lower limit for the dark matter
fraction, provided that the model’s assumptions hold true.

Under the maximum bulge hypothesis, we study both the volume
mass ratio (i.e. the dark matter fraction within a sphere of radius
taken to be equal to the effective radius of the considered data set)
and the projected mass ratio (i.e. the dark matter fraction within a
cylinder oriented along the line of sight with a radius equal to Re).
The results of this analysis for the three best models are summarized
in Table 2, which also shows the corresponding quantities for the
true system (at the appropriate radii). We find that the dark matter
fraction is remarkably well recovered for all the three models, and
it is within 10 per cent (in total mass) of the correct value for both
the volume and the projected mass ratio. The largest discrepancy
(10 per cent within the cylinder) is found for the face-on model, as
usual the most problematic one, while the yz-plane model (which
is the one that best reproduces the observables, in particular the
lensed image) manages to accurately recover the dark matter frac-
tion within �5 per cent of the correct value.

It must be noted that we assumed a position-independent stellar
mass-to-light ratio both in constructing the surface-brightness map
from the N-body system and in estimating the maximum stellar mass
for the best-fit models. In real galaxies, the stellar mass-to-light ratio
might depend on position, though the effect of a non-uniform stellar

Table 2. Dark matter fraction within a sphere of radius
r = Re (first column) and within the line-of-sight-oriented cylin-
der of radius r = Re (second column) for the three best models. The
corresponding quantities for the true system within the same radius
are also presented.

DM fraction DM fraction
(sphere) (cylinder)

yz-plane model (Re = 5.′′23) 0.20 0.29
true system (at the same radius) 0.16 0.33

zx-plane model (Re = 5.′′36) 0.24 0.37
true system (at the same radius) 0.16 0.34

xy-plane model (Re = 6.′′16) 0.19 0.25
true system (at the same radius) 0.20 0.35

mass-to-light ratio is not expected to be strong based on the observed
colour gradients (e.g. Kronawitter et al. 2000).

5.3 Reconstructed source

As it can be immediately seen by an examination of Figs 5, 7
and 9, the lensed image reconstruction for the three models is far
from the noise level, and the reconstructed source – with the partial
exception of the yz-plane model – has little in common with the
simulated source (Fig. 2) used to generate the lensed images. Even
assuming that one has no information about the actual source (as
it would be the case for real data sets), it is evident that the re-
constructed sources are unrealistically irregular and pixelized. We
remark that this is a consequence of having an underlying density
distribution for the system which is more complex and less homo-
geneous than the assumed power-law density model. As the present
test neatly displays, gravitational lensing is very sensitive to the
features of the potential within the Einstein radius, and even small
inhomogeneities and departures from the assumed model will gener-
ally have a detectable effect.5 Significantly, such large residuals have
never been encountered so far when analysing real lens galaxies,
with all the examined SLACS lenses being accurately reconstructed
by means of single power-law models, possibly with the inclusion
of an external shear (Koopmans et al. 2006, C08, Barnabè et al., in
preparation). This strengthens the statement that the simulated sys-
tem under analysis, while not being utterly unrealistic, constitutes
an extreme case and is therefore well suited for the ‘crash-test’ of
the code that we aim to conduct. It should be emphasized that, if
these were real data sets, from the mere visual inspection of the
results of the best lensed image reconstruction provided by CAUL-
DRON, we would already be able to conclude that we are dealing with
a unusually complex galaxy, which would surely deserve a more
sophisticated modelling once the preliminary study is completed.

In order to better understand the limitations of the axisymmetric
approach and the cause for the large residuals in the reconstructed
image, the same data set (i.e. yz-plane projection) has been analysed
by means of the adaptive Bayesian strong lensing code of VK08,
which can account for small corrections in the projected potential,
and therefore for departures from symmetry and for the presence
of clumpiness and substructure in the convergence, but which does

5 As a consequence, gravitational lensing can actually be used to quantify
the level of mass substructure in massive galaxies, through their effect on
highly magnified arcs and Einstein rings (see e.g. Vegetti & Koopmans 2008,
hereafter VK08).
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Figure 5. Best model lens image reconstruction for the yz-plane data set
(the generation of the simulated observables is detailed in Section 3.). From
the top left- to bottom right-hand panels: reconstructed source model; simu-
lated noisy data showing the lensed image; lensed image reconstruction and
residuals.

Figure 7. Same as Fig. 5, but relative to the zx-plane data set.

not include any constraint from the dynamics. Starting from the best
model axisymmetric potential of Table 1 and then introducing small
potential corrections and letting the parameters vary, it is found that
the lensed image can be reconstructed down to the noise level, and
the source is quite accurately recovered, by making use of an adap-
tive grid, as shown in Fig. 11. As it is visible in the convergence
map of Fig. 11 (bottom right-hand panel), there are two main over-
densities (with respect to the best model density profile), located
on the opposite sides with respect to the centre. These overdensi-
ties are at least an order of magnitude too weak to be indicative of

Figure 6. Best dynamical model for the yz-plane data set. First row: sim-
ulated noisy surface brightness distribution, projected line-of-sight velocity
and line-of-sight velocity dispersion. Second row: corresponding recon-
structed quantities for the best model. Third row: residuals.

Figure 8. Same as Fig. 6, but relative to the zx-plane data set.

the presence of a genuine localized massive dishomogeneity in the
simulated system (cf. VK08 and, in particular, their figs 8 and 9),
which is rather smooth and does not present massive substructures.
These features in the convergence map are therefore, rather than
to clumpiness, due to the deviation of the true (projected) mass
distribution from the simple assumption of elliptical shape.

5.4 Recovered dynamical quantities

A reliable knowledge of the dynamical structure of early-type galax-
ies would constitute a valuable asset for all the formation and
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Figure 9. Same as Fig. 5, but relative to the xy-plane data set.

evolution models. Therefore, in this section, we investigate how
accurately the axisymmetric CAULDRON code can recover the essen-
tial dynamical characteristics of the simulated system. We expect
comparable performances (and typically better ones) when the code
is applied to the real galaxies.

Since the dynamical modelling block of CAULDRON (see Section 2)
does not employ an actual orbit-superposition method, a detailed
analysis of the orbital families of the galaxy is beyond reach. How-
ever, we are able to study fundamental global dynamical quantities,
such as angular momentum, V/σ and anisotropy parameters. The
results of this study for the three models, compared with the true
quantities calculated directly from the simulated system, are listed
in Table 3.

The total angular momentum along the principal rotation axis, Lz,
has been calculated for the three models and the simulated system
within the same cylindrical region of radius R = 5arcsec and height
z = 5arcsec (this is a square box in the meridional plane of linear
size comparable to the effective radius; all the dynamical quantities
have been calculated within this region.). As seen in Table 3, Lz is
accurately recovered for the two edge-on projection models, with
discrepancies of less than 10 per cent from the correct value, despite

Table 3. Recovered dynamical quantities for the three best models
(last three columns) compared with the true values directly calculated
from the N-body system (second column). The dynamical quantities
are Lz (in units of kpc km s−1), the V/σ ratio and the three global
anisotropy parameters δ, β and γ (see text for a more exhaustive
description).

True value yz lane zx plane xy plane

Lz −143.1 −142.6 −143.3 16.8
V/σ 0.170 0.152 0.214 0.130
β 0.301 ≡0 ≡0 ≡0
γ 0.208 −0.470 −0.645 −0.986
δ 0.219 0.190 0.244 0.330

Figure 10. Same as Fig. 6, but relative to the xy-plane data set.

the fact that the line-of-sight velocity maps are considerably noisy.6

On the contrary, in the case of the face-on projection model, where
little or no information about the rotation is available from the
kinematic data (see top middle panel of Fig. 10: the map displays
essentially no rotation), the recovered Lz is obviously incorrect,
being of the opposite sign and, more importantly, quite close to
zero. This clearly highlights the great importance of the information
enclosed in the kinematic maps, despite the fact that such maps are
usually much more noisy and considerably more coarsely sampled,
in terms of number of pixels, than the surface brightness or lensed
image maps. On the opposite side, this result also cautions us in
being aware of the possible shortfalls of the method when studying
galaxies whose data show no discernible rotation.

The global quantity V/σ (see Binney 2005; Cappellari et al.
2007) is an indicator of the importance of rotation with respect
to the random motion. We find here that a value not too far from
the correct one is recovered for the edge-on projection models,
although the discrepancies are larger than in the case of the angular
momentum (the difference is of the order of 10 per cent for the yz-
plane model and 25 per cent for the zx-plane model.), and even the
face-on projection model, while underestimating the importance of
rotation of about 25 per cent, gives a quite reasonable result.

The anisotropy distribution is another very relevant dynamical
quantity, often considered an important indicator of the galaxy
formation processes. Since the simulated system is severely non-
spherical, however, the anisotropy profile cannot be reliably de-
scribed and compared to the models by making use of a simple radial
parameter, such as the commonly used βr (r) ≡ 1 − σ 2

tan(r)/σ 2
rad(r),

where σ tan and σ rad are the tangential and radial velocity disper-
sion, respectively. Instead, a more robust and consistent indicator

6 The mock galaxy also displays some rotation along the orthogonal axes,
although the angular momentum along these directions is only of the order
of �1 per cent of Lz. Because of its intrinsic properties, the model is not
capable of reproducing this kind of rotation (in other words, Lx and Ly are
always zero by construction).
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Figure 11. Result of the linear source and potential reconstruction for the yz-plane data set, as obtained by applying the adaptive Bayesian lensing code of
VK08. The first row shows, from left- to right-hand panels, the lensed image data set, the reconstructed image and the best source. The second row presents,
from left- to right-hand panels, the image residuals, the total potential correction and the substructure convergence.

is provided by the three global anisotropy parameters defined in
Cappellari et al. (2007) and Binney & Tremaine (2008):

β ≡ 1 − �zz

�RR

, (6)

γ ≡ 1 − �ϕϕ

�RR

, (7)

δ ≡ 1 − 2�zz

�RR + �ϕϕ

= 2β − γ

2 − γ
, (8)

where

�kk =
∫

ρσ 2
k d3x (9)

and σk denotes the velocity dispersion along the direction k at any
given location in the galaxy. For a two-integral DF, σ 2

R = σ 2
z every-

where, which implies �RR = �zz, so that the value of β is always
zero. Therefore, due to the simplifying assumptions on the DF,
our method will generally fail in recovering the true β value when
analysing a more complex system. We clearly observe this in this
study, where β = 0.301 for the simulated system (see again Table 3).
Not too unexpectedly, since the global anisotropy parameters are
related, this also has disrupting consequences on the recovered γ ,
which is always negative, indicating a mild tangential anisotropy
in the models, while the mildly radially anisotropic N-body system
has a positive γ . This discrepancy is confirmed by inspecting the
radial behaviour of a kinetic energy proxy for βr (r), i.e. the quantity
βK (r) ≡ 1 − K tan(r)/Krad(r), where Ktan and Krad are, respectively,
the spherically averaged tangential and radial components of the
kinetic energy. Interestingly, however, the global parameter δ is re-
markably robust, particularly for the two edge-on projection models,
with a discrepancy of the order of ∼15 per cent from the true value.

5.5 Uncertainties

In this section, we present the statistical uncertainties on the model
parameters calculated by making use of the identical procedure
which is used when dealing with the real systems.

Bayesian statistics represent a powerful tool for data analysis,
model comparison and the constraining of model parameters. A ma-
jor improvement in this direction has been made with the introduc-
tion of the Nested Sampling technique developed by Skilling (2004)
(see also Sivia & Skilling 2006 and e.g. Mukherjee, Parkinson &
Liddle 2006 for an astrophysical application). This method provides
a computationally efficient way to calculate the total marginalized
evidence, which is the key quantity for model comparison, and in
addition yields other valuable information, such as the posterior
probability density distributions, the mean values and the standard
deviations for each of the model parameters. The Nested Sampling
technique has been applied in the context of lensing and model
comparison by VK08.

Bayesian statistics require to formalize one’s assumptions by
defining priors P on the parameters ηi (see e.g. Mackay 1992). We
choose the priors to be uniform in a symmetric interval of size δηi

around the best recovered values ηb,i , i.e.

P (ηi) =
⎧⎨
⎩

constant for |ηb,i − ηi | ≤ δηi

0 for |ηb,i − ηi | > δηi.

(10)

In order to make sure that the priors include the bulk of the evi-
dence likelihood, very conservative estimates of the intervals δηi

are obtained by means of fast preliminary runs.
The posterior probability distributions (PPDs) for each parameter

obtained from the Nested Sampling analysis are shown in Fig. 12
for one of the models (yz-plane projection). Within the context of
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Figure 12. PPD for the non-linear parameters of the best power-law model for the yz-plane projection data set, as obtained from the Nested Sampling evidence
exploration. The width of the PPD has been calculated for each of the parameters, by considering the region around the peak which contains 99 per cent of the
probability, yielding: i = [57.81, 58.45], ζ = [0.05273, 0.05455], ϑζ = [−26.55, −25.47], α0 = [0.6512, 0.6550], γ ′ = [2.231, 2.244], q = [1.008, 1.023].

Bayesian statistics, each PPD histogram quantifies the error for the
considered parameter given the data and all the assumptions (i.e.
under the hypothesis that the adopted model is the correct one);
since many pixels in the data sets provide a lot of constraints, these
errors are typically very small, as is the case in the plot presented
here. It should be noted that, because of the marginalization over
all the parameters except the one under analysis, the PPD usually
provides the most conservative estimate of statistical errors. At the
same time, however, due to the projection effect arising from the
marginalization itself, the mean value of the parameter obtained
from the PPD can be significantly skewed with respect to the best
recovered value of the corresponding parameter obtained from the
best model (P. Marshall, private communication).

However, the statistical errors cannot take into account or give an
estimate of the systematic uncertainties, which are frequently much
larger than the former. In our case, significant systematic errors
arise mostly due to the adoption of an oversimplified model.7 The
entity of the systematic uncertainties can be quantified, at least as a
first-order approximation, by looking at the discrepancies between
the recovered parameters for the three data sets best models.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have applied CAULDRON, currently the most advanced code for
joint gravitational lensing and stellar dynamics analysis of early-

7 In real data sets of lens galaxies, sources of systematic errors which raise
particular concern are, for example, the PSF and the subtraction of the lens
galaxy surface brightness (see, e.g., the detailed study of Marshall et al.
2007).

type galaxies, to a galaxy model with dark matter halo resulting
from a numerical N-body simulation of galaxy merging. Such a
N-body system, which we use as lens, significantly violates the two
major assumptions upon which the algorithm is based, namely axial
symmetry of the total density distribution and two-integral stellar
DF. The purpose of this crash-test is to investigate how the code will
perform or fail in an extreme case, and to identify the quantities,
which can still be reliably recovered. Such robust quantities are
expected to be recovered with at least comparable accuracy when
CAULDRON is employed in the analysis of real galaxies which, while
not necessarily axisymmetric or described by a two- (or three-)
integral DF, will hardly depart from the code’s assumptions more
severely than the simulated system studied here.

Further complications can also arise, in general, due to the effects
of the environment on the lens galaxy. However, the SLACS galax-
ies, despite living in the overdense regions as expected for massive
early-type galaxies, are not found to be significantly affected by the
contribution of the environment or of line-of-sight contaminants
(see the in-depth study of Treu et al. 2008). Therefore, since the
environment does not play a major role for lens galaxies at least in
the redshift range z ∼ 0.1–0.4, we have not considered this issue
further in this paper.

From the N-body system we have generated three data sets cor-
responding to three orthogonal lines of sight, one of which has
been chosen to be approximately oriented along the total angular
momentum of the system, in order to obtain a ‘face-on’ projection
data set with little or no rotation discernible in the kinematic maps.
An elliptical Gaussian surface brightness distribution has been con-
structed and then gravitationally lensed by the mock galaxy in order
to create the lensing data set. We have also taken into account the
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effect of the PSF and added realistic noise to the simulated data,
using the real data set for the SLACS lens galaxy SDSS J2321−097
studied in C08 as a reference.

These data sets have been analysed with CAULDRON, assuming
an axisymmetric power-law total density distribution as a model,
with the identical procedure followed in the study of the real lens
galaxies. In the three cases, the recovered best models, obtained
via maximization of the Bayesian evidence, show clear difficulties
in reconstructing the observables (in particular, the lensed image
and the velocity dispersion map) up to the noise level. This is a
consequence of having adopted a very simple model which cannot
account for the complexity and the lack of symmetry of the true
density distribution.

However, the method is still capable of recovering with remark-
able accuracy several global structural and dynamical characteristics
of the examined system, provided that some information about the
galaxy rotation is available from the kinematic maps. In particular
as given below.

(i) The logarithmic slope γ ′ of the total density distribution is
a robust quantity which is recovered with remarkable accuracy
(within less than 10 per cent), even in the case of the face-on
projection data set. While a power-law model cannot account for
a break in the actual density profile, indications of its presence
will show up in the observables as features, which are not re-
produced by the best model (e.g. a much flatter central velocity
dispersion).

(ii) The angle-averaged total density and the total mass radial
profiles for the edge-on projection best models are found to closely
follow the corresponding true distributions, within approximately an
effective radius. Discrepancies are larger for the face-on projection
case.

(iii) The best reconstructed inclination angle and flattening of the
total density distribution have little or no relation with the corre-
sponding quantities of the N-body system. We conclude that when
the axisymmetric model is applied to a system with a more complex
geometry, one cannot expect to recover reliable information about
its shape.

(iv) By adopting the maximum bulge approach (i.e. maximizing
the contribution of the luminous component, assuming a position-
independent stellar mass-to-light ratio), it is possible to estimate
within approximately 10 per cent (in total mass) the dark matter
fraction of the analysed system, whether the mass ratio is calcu-
lated within a sphere or within a line-of-sight-oriented cylinder of
radius 
 Re.

(v) When rotation is present in the kinematic maps, global quan-
tities, such as the angular momentum Lz and the ratio V/σ (a mea-
sure of ordered versus chaotic motions), recovered from the best
model describe quite reliably (i.e. within ∼10 and 25 per cent, re-
spectively) the dynamical properties of the system under analysis.
The global anisotropy parameters β and γ are not correctly esti-
mated, i.e. the anisotropy distribution is not robustly recovered by
the method unless the analysed system effectively respects the as-
sumptions of axisymmetry and two-integral DF. The anisotropy pa-
rameter δ, on the contrary, is found to be a robust quantity even when
such assumptions are violated: we recover the correct value within
�15 per cent for the edge-on projection data sets.

The major conclusion of our study is that the joint lensing and dy-
namics code CAULDRON can also be effectively applied to the analysis
of the galaxies which deviate from the (quite restrictive) assump-
tions of axial symmetry and two-integral stellar DF. This result is
very relevant for the analysis of galaxies at z � 0.1, for which, due to

the data limitations, the more powerful methods available at lower
redshifts are not viable techniques. Several fundamental structural
and dynamical quantities, in particular the total density slope and
the dark matter fraction within the region where the data are avail-
able, can be recovered with good accuracy. Other quantities, such
as Lz and the anisotropy parameter δ, can be reliably recovered
provided that the rotation is detected in the kinematic maps: when
this is not the case (either because of the intrinsic properties of the
galaxy or because the system is observed face-on), the constraints
are much looser, and one needs to be very sceptical about the out-
comes of the best model relative to these quantities. We point out
that a special care should be taken when the best model does not
manage to reproduce the observables satisfactorily (i.e. at or close
to the noise level), in particular the lensed image. This is a strong
indication that the true density distribution deviates significantly
from the assumptions of the adopted model family, and therefore,
while there are still reliable recovered parameters (as listed above),
more delicate quantities such as flattening and inclination angle,
as well as the reconstructed source, should not be trusted. In these
cases, the CAULDRON code can provide a robust but only quite gen-
eral description of the structure of the galaxy, paving the way for
the more sophisticated modelling techniques which are necessary
(together, if possible, with a better data set) to achieve a deeper and
more detailed knowledge of the system.

Interestingly, large residuals in the lensed images reconstruction
such as the ones found in this study have never been encountered so
far in the analysis of the SLACS sample of lens galaxies (Koopmans
et al. 2006, C08) indicating that an axisymmetric single power-law
total density distribution constitutes a satisfactory model for these
systems.
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Czoske O., Barnabè M., Koopmans L. V. E., Treu T., Bolton A. S., 2008,

MNRAS, 384, 987 (C08)

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 1114–1126



1126 M. Barnabè et al.
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