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ABSTRACT

Early-type galaxies (ETGs) are observed to be more compact, on average, at z = 2 than at
z >~ 0, at fixed stellar mass. Recent observational works suggest that such size evolution could
reflect the similar evolution of the host dark matter halo density as a function of the time
of galaxy quenching. We explore this hypothesis by studying the distribution of halo central
velocity dispersion (o) and half-mass radius (ry,) as functions of halo mass M and redshift z,
in a cosmological A cold dark matter N-body simulation. In the range 0 < z < 2.5, we find
o9 o< MO31=037 and ry, oc MO2879-32_ close to the values expected for homologous virialized
systems. At fixed M in the range 10" Mo <M < 5.5 x 10" Mg we find 0 o (1 + 2)°3 and
7 o (1 4+ z)7%7. We show that such evolution of the halo scaling laws is driven by individual
haloes growing in mass following the evolutionary tracks oo o M*? and r, oc M?®, consistent
with simple dissipationless merging models in which the encounter orbital energy is accounted
for. We compare the N-body data with ETGs observed at 0 < z < 3 by populating the haloes
with a stellar component under simple but justified assumptions: the resulting galaxies evolve
consistently with the observed ETGs up to z 2~ 2, but the model has difficulty in reproducing the
fast evolution observed at z > 2. We conclude that a substantial fraction of the size evolution
of ETGs can be ascribed to a systematic dependence on redshift of the dark matter haloes

structural properties.
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1 INTRODUCTION

Since early studies in the 1970s, we know that early-type galax-
ies (ETGs) adhere to some empirical scaling relations, such
as the luminosity—velocity dispersion (Faber & Jackson 1976),
size—surface brightness (Kormendy 1977), Fundamental Plane
(Djorgovski & Davis 1987; Dressler et al. 1987), black hole mass—
bulge mass (Magorrian et al. 1998), black hole mass—velocity dis-
persion (Ferrarese & Merritt 2000; Gebhardt et al. 2000) and black
hole mass—Sérsic index (Graham et al. 2001; Graham & Driver
2007) relations. Such correlations, some of which were first used
as distance estimators to help building the distance scale ladder,
have given the astrophysical community important clues about the
possible scenarios of galaxy formation (e.g. Ciotti 2009). In this
respect, the stellar mass—size relation has currently a special role,
because galaxy sizes and masses can be measured out to z >~ 2.5-3.
With such data available, different authors found indications that
the population of ETGs undergoes a significant size evolution from
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z >~ 3 to 0, such that present-day galaxies have, on average, sig-
nificantly larger sizes than higher-z galaxies of similar stellar mass
(see e.g. Stiavelli et al. 1999; Ferguson et al. 2004; Daddi et al.
2005; Trujillo et al. 2006; Cimatti et al. 2008; van der Wel et al.
2008; van Dokkum et al. 2008; Saracco, Longhetti & Andreon 2009;
Cassata et al. 2011; Damjanov et al. 2011; Krogager et al. 2013).
For the current galaxy formation models it is still challenging and
non-trivial to explain such behaviour of massive ETGs. Various
mechanisms have been proposed to explain the observed size evo-
lution, including dry (i.e. dissipationless) major and minor merging
(see Khochfar & Silk 2006; Hopkins et al. 2009b; Naab, Johansson
& Ostriker 2009; Nipoti et al. 2009b; Lépez-Sanjuan et al. 2012;
Laporte et al. 2013; Sonnenfeld, Nipoti & Treu 2014) and feedback-
driven expansion (see e.g. Fan et al. 2008, 2010; Ragone-Figueroa
& Granato 2011; Ishibashi, Fabian & Canning 2013). Currently, the
issue is far from being resolved and further observations, together
with more comprehensive theoretical models, are desirable.
Recently, Carollo et al. (2013, see also Poggianti et al. 2013)
argued that the median size growth of ETGs of stellar mass
10" M@ < M, < 10" Mg could be due to the dilution of the
sample of galaxies quenched at early times in a population of bluer
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and larger galaxies that have been quenched much later. In the sam-
ple of ETGs with M, > 10" M the same authors find indications
of intrinsic size evolution, which cannot be explained with the di-
lution of the population. In other words, Carollo et al. (2013) find
evidence that not all the progenitors of local quenched-ETGs can be
identified with the compact quiescent ETGs observed at z ~ 1-2,
because a substantial fraction of present-day ETGs have stopped
forming stars much later than the higher-z ETGs. An interesting
conclusion of Carollo et al. (2013) is that the stellar density of
ETGs scales with the mean density of the Universe at the time of
quenching. This suggests that the host halo evolution could be the
main driver of the galaxy evolution, in the sense that the redshift
dependence of the properties of an ETG results similar to that of its
host halo (see also recent results by Stringer et al. 2013).

The natural tool to explore such halo-galaxy connection would
be a large-scale, high-resolution, cosmological simulation jointly
following the evolution of dark matter (hereafter DM) and baryons,
including star formation and feedback. However, given the well-
known uncertainties and technical issues still present in this method
(see e.g. Kere§ et al. 2012; Vogelsberger et al. 2012; Hopkins,
Narayanan & Murray 2013), we adopt here a simpler approach, try-
ing to extract useful information on the evolution of ETGs studying
the behaviour of a population of DM haloes in a DM-only cosmo-
logical simulation. We focus our attention on the scaling laws of DM
haloes in a A cold dark matter (ACDM) Universe and in particular
on their size and velocity dispersion evolution. Our aim is trying to
understand whether the evolution of the haloes is somehow similar
to that of ETGs which are expected to be hosted in such haloes.
Therefore, we will also try to compare our N-body data with avail-
able observations of ETGs, populating haloes with galaxies under
simple but justified assumptions.

This paper is organized as follows: in Section 2 we present the
methods of our investigation and we set the stage with all the def-
initions and simple theoretical expectations; in Section 3 we show
our results on the scaling relations of the dark halo population; in
Section 4 we trace the merger histories of individual haloes which
are representative for the entire population; in Section 5 we link
the dark halo properties with those of the ETGs and compare the
predicted size and velocity dispersion evolution with recent obser-
vations; Section 6 summarizes and concludes.

2 METHODS AND DEFINITIONS

2.1 Computational tools

We performed a cosmological N-body simulation with the publicly
available code GADGET-2 (Springel 2005, see also Springel, Yoshida
& White 2001) in a standard ACDM flat Universe where the matter
density, dark energy density and Hubble constant are, respectively,
Qom = 0.28, 2o, o = 0.72 and Hy = 70km s7! Mpc". In the run
we simulated the evolution of 5123 ~ 1.3 x 108 particles of mass
My >~ 1.5 x 10° Mg h~', from z = 99 to 0, in a cosmological
comoving box of side / = 128 Mpc h~!, where / is the reduced
Hubble constant 4 = Hy/100kms~! Mpc™!. The initial conditions
of the simulation were generated using a modified version of the
publicly available code GrAFIC2 (see Bertschinger 2001). We used
a softening length of ~1kpc/h~! throughout the simulation. The
simulation was run on 72 cores on the UDF Linux cluster at the
Space Telescope Science Institute (Baltimore, MD) and took about
6 d to complete. We produced 16 snapshots equally spaced in log a,
where a(f) = (1 + z)~! is the cosmic scale factor, from z ~2.5t0 0.
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2.2 Definitions of the structural and kinematical properties of
dark matter haloes

In this section, we define the fundamental structural and kinematical
properties of the simulated DM haloes, such as the mass M, the size
r and the velocity dispersion o. There is not a unique method to
identify a DM halo in a cosmological N-body simulation, because,
as for every non-truncated and non-isolated particle system, it is not
trivial to define the set of particles that belong to the object: various
techniques have been proposed in the astrophysical literature (e.g.
friends-of-friends or spherical overdensity algorithms;' see Davis
et al. 1985; Efstathiou et al. 1985; Lacey & Cole 1993; Evrard et al.
2008). The problem is relevant, because different sets of particles
can lead to different estimates of the properties of the object.

In this work, we adopted the conventions of Knollmann & Knebe
(2009) and we have used their AHF finding code. The haloes are
identified from the peaks of a three-dimensional density field calcu-
lated in a grid with adaptive mesh refinement (AMR). The spherical
region of radius r,, which is centred at the centre of mass of the
particles in the highest refinement level of the AMR grid, defines
the set of particles that belong to the DM halo? (see Knollmann &
Knebe 2009). We use a standard definition of a halo as a certain
spherical top-hat overdensity, via the formula

3M

ol Ac(2)pe(2), e))

where p.(z) = 3H?(z)/87G is the critical density of the Universe
at redshift z, A.(z) is the overdensity value at the same time, H(z) is
the Hubble parameter and G is the gravitational constant. We adopt
the following definition of the critical overdensity in a flat Universe
with negligible radiation energy density:

Ac(z) = 181 + 82 [Q(z) — 1] — 39[Q(z) — 117, )

where Q(z) = Qom(1 +2)°/E(z)> and E(z)> = Qom(l +2)° +
Q0.4 such that the haloes identified are expected to be close to
equilibrium (see Lacey & Cole 1993; Bryan & Norman 1998).

Given the velocities of all particles belonging to the halo, we
compute the virial velocity dispersion of the system

1/2

N 3 —_\
Vi,j — Vi)
ov = e )

i=1 j=1

where N is the number of particles in the halo, v; ; is the jth com-
ponent of the ith particle’s velocity and v; is the jth component of
the average velocity.

The definition of the halo size is also non-trivial, since it is in-
timately affected by the choice of the spherical overdensity. As a
matter of fact the definition of r, via equation (1) is based on the
idea that the material surrounding the overdensity is bound to the
halo if the dynamical time of the particle is less than the Hub-
ble time at that redshift, so one can reasonably expect the halo of
size ra to be in equilibrium. For this reason, r, is often, but im-
properly, called virial radius and, in any case, in the following we
will adopt such convention. However, other definitions of the halo

!'For a brief review of different methods see Knebe et al. (2011).

2 An unbinding procedure is also run on the haloes in order to remove the
gravitationally unbound particles inside the spherical region (see Knollmann
& Knebe 2009).
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size are possible: for example, the gravitational radius (i.e. the true
virial radius)

GM
n=r @)
and the half-mass radius ry, i.e. the radius of the sphere enclosing
half the total mass of the halo, M(<r,) = M/2.

We also employ a definition of the halo velocity dispersion alter-
native to oy: we compute the velocity dispersion profile o (<r) in
the same fashion as the mass profile, where the velocity dispersion
is calculated as in equation (3) and the sum is only on the particles
within the spherical region of radius . From the o (<r) profile, we
then estimate the central velocity dispersion

op=0(<nmn). ()

We define our sample of DM haloes by selecting those for which
Th > 2Fconys Where 1oy 1 the convergence radius in the sense of
Power et al. (2003), i.e. the radius within which the two-body colli-
sions dominate the orbital motions of the particles integrated by the
code and the density estimates are therefore unreliable. We verified
that, for our sample, the mass contained within the convergence
radius is typically a small fraction of that contained within the
half-mass radius, so our measurement of o should be robust. The
sample selected with the above criterion is made of ~11 000 DM
haloes, with a lower limit in mass Mjoyer 1.3 x 10" M.

2.3 Behaviour of the different size and velocity
dispersion proxies

In this section we discuss the relations between different size and
velocity dispersion estimators, in particular how the virial proxies
(ra, ov) compare to the central ones (14, 0¢).

In this work we use o and ry, (see Section 2.2) to characterize
the haloes because it is reasonable to expect that the stellar central
velocity dispersion o, and the effective radius R. of the galaxies
inside such haloes are more related to the halo central quantities
than to the halo virial quantities. However, different choices would
be possible. For instance, a tight correlation between r, and R, has
been suggested, both theoretically (see Mo, Mao & White 1998)
and using abundance matching techniques (see Kravtsov 2013). In
addition, it is well known that the ratio r, /r,, depends only weakly
on the density profile (see Ciotti 1991; Nipoti, Londrillo & Ciotti
2003; Binney & Tremaine 2008). It is therefore interesting to verify
how the different proxies correlate in our sample of haloes and how
their values depend on the choice of the critical overdensity A..

In Fig. 1 we show the dependence of 75, 7y and r, on Ac atz =0
for a representative halo with M ~ 103 M@ . As expected from
equation (1), the virial radius has a perfect 7o o< A !/ scaling. We
note that also the gravitational radius scales roughly as r, o< A7'/3
and this is because it depends only on virial quantities (see equation
4), while the half-mass radius has slightly less steep dependence
on A, namely 7, o« A;%%2. This is an additional reason to prefer
1, to ra in the present context. Formally, also the quantity oy, and
so 0, depends on A, but the dependence is weak: the variation is
no more than 10 percent in oy, when varying A. by an order of
magnitude.

In Fig. 2 we show the distributions of the halo population at
z = 0in the op—ovy, r,—7ra and rg—r planes. We find that in all
cases a linear correlation is in good agreement with the distribution
of the haloes in the three planes; fitting with power laws we get
oy X 08‘9710‘01, Ih X rg%i‘““ and ry o ri’lio‘m. Interestingly, for
a given halo, the ratio og/ov is very close to unity: the average
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Figure 1. Virial radius (red squares, see equation 1), gravitational radius
(grey circles, see equation 4) and half-mass radius (blue triangles) as func-
tions of the critical overdensity A fora M ~ 1013 M@ halo, taken from the
z = 0 snapshot of the simulation.

ratio in our sample is (oo/ov) = 1.01. We recall that it is not a
priori expected that the central quantities correlate linearly with the
virial ones. This finding indicates that the DM haloes are not sys-
tematically non-homologous: in other words, more massive haloes
are, on average, just rescaled versions of less massive haloes (at
least, as far as the relation between virial and central quantities is
concerned). The scatter around the linear relations in Fig. 2 can be
ascribed to some degree of non-homology at a given halo mass or to
the fact that some haloes are not completely virialized. We note also
that Diemer, Kravtsov & More (2013b) recently found that there is
a remarkable homology in their cluster-sized haloes sample: they
argued that a tight relation exists between the mass and velocity
dispersion profiles of DM haloes. Moreover, they claimed that the
mass—velocity dispersion relation of the halo sample is almost in-
sensitive to the size definition (in the range 100 < A, < 2500 in
equation 1) because of such homology in the radial profiles.

For the purposes of this work, given that, on average, the central
quantities (o,/7,) scale linearly with the virial quantities (ov,ra),
our results would be virtually unchanged if we adopted o v, instead
of ¢, and r, or r, instead of 1y, to characterize our haloes.

2.4 Virial expectations for the halo mass—velocity dispersion
and mass—size relations

With the adopted halo definition (equation 2) we expect the DM
haloes to be virialized in every snapshot of the simulation from
z >~ 2.5 to 0. It follows that some well-known scaling laws are
expected for the dark halo population: from equation (4), under
the assumption of a linear proportionality between the virial radius
(equation 1) and the gravitational radius (equation 4) it follows (e.g.
Lanzoni et al. 2004) that for haloes in equilibrium

M x o). (0)
The correlation is expected to depend on redshift as
oy o [E@) M]'? @)

(see e.g. Evrard et al. 2008). Using equation (1) to define the haloes
and the definition of the critical density p. = 3H 2/8nG, for a flat
Universe we get

ra=[26M A H( ®)
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Figure 2. Distributions of the simulated haloes at z = 0 in the oo—ov (left-hand panel), i, —ra (central panel) and ry—r4 (right-hand panel) planes. In each

panel, the black short-dashed line is the /inear best fit to the distribution.

where H(z) = HyE(z). Assuming a linear dependence of the form
ra = &r,, where £ is a dimensionless constant, then the virial ve-
locity dispersion can be written as o2 = GM& /r», implying

GM\'"?
oy =¢§'? (f) A)°H (). ©
We have seen in Section 2.3 that o & ov, so also the mass and
redshift dependence of o is expected to be given by equation (9).
Under the assumption that r, and r, scale linearly with r5 (see
Section 2.3), from equation (8) we have that a fixed z

rh o< rg o M3, (10)

The z-dependence of the other size proxies is also given by equation
(8),as ry ocrp and ry o 1y (see Section 2.3).

3 SCALING RELATIONS OF DARK MATTER
HALOES AS FUNCTIONS OF REDSHIFT

Here we present the distributions of the size and the velocity disper-
sion as functions of mass and redshift for our sample of ~11000
DM haloes (see Section 2.2) in the mass range 10" Mo <M<
5.5 x 10" M. We adopt the same lower mass limit in all the snap-
shots of our simulation, while we do not restrict the upper mass
limit, which varies from M ~ 2.67 x 103 Mpatz ~25t0 M ~
55 x 10 M@ atz =0.

3.1 Mass-velocity dispersion: the measured correlation
and evolution

The simulated DM halo population is well represented by the fol-
lowing best-fitting relation:

log (i) = ylog (i) s (11)
km/s Mgp ’

where
logy = (0.103 £ 0.008) log(1 + z) — (0.49 £ 0.002),
logb = (0.163 £ 0.02) log(1 + z) + (0.179 % 0.006). (12)

In Fig. 3(a) we show the distribution of the sample in the M —aoy
plane at z = 0 and we find a best-fitting correlation of the type
M 03‘0410‘0' (i.e. y =~ 0.32). For comparison we also show the
best-fitting correlation at z >~ 2.5: the slope is slightly larger than that
at z =0, i.e. y =~ 0.37, whereas the normalization is significantly
higher: as we expected, at fixed mass higher-z haloes have higher
velocity dispersion.

Assuming o x oy (see Section 2.3), we can compare our results
with both theoretical expectations, e.g. equation (6), and previous
findings. At fixed mass M = 10'> Mg, we find a good agreement
with equation (7): i.e. our sample follows? 00,12 X E(2)°3°. In the
top panel of Fig. 4 we show the evolution of the central velocity
dispersion at M = 10> M in the redshift range 0 < z < 2.5.
We have chosen M = 10'2 Mg as a reference mass, since it is
roughly the mean mass in our sample at z = 0 and it is still well
resolved (about 8 x 10? particles). As expected from cosmological
predictions (equation 7), 0, 12 decreases with time. We find a power-
law best-fitting evolution of the type ¢ 12 o (1 + z)*¥ and also a
better representation (about two orders of magnitude in the reduced
x?2) of the results via the fitting formula log 51> = 0.29 x> + 0.2 x,
where x = log(l + z). We comment here that fixing a typical
mass, say M = 10'> M as in Fig. 4, means that we are analysing
different haloes at different z, unlike fixing a halo and focusing on
its evolution.

To further compare the results of our simulation with theoretical
predictions and previous works, we have analysed the correlation
between the mass and the virial velocity dispersion ovy. In Fig. 3(b)
we plot the distribution of the DM haloes in the M —ov plane. In
general, there is a very good agreement with the theoretical expec-
tation (6) derived from the equilibrium assumption: the best-fitting
relation corresponds to M oc oo”’=%! . Other authors found similar
results from independent simulations (see e.g. Evrard et al. 2008;
Stanek et al. 2010; Diemer et al. 2013b; Munari et al. 2013). We
fitted the evolution of the normalization, at M = 10> M, of the
M —ov correlation for our simulated haloes as a function of E(z). We
find that from z ~ 2.5 to 0 the normalization at M = 10'> M, fol-
lows o'y, 12 o E(z)*33, which is in remarkably good agreement with
theoretical expectations (equation 7). We compare also our results
with previous findings: for M = 10'* M Stanek et al. (2010) esti-
mate an evolution oy, 14 & E(z)*3* and we find oy, 14 o« E(2)*3; for
M =103 M@ Lau, Nagai & Kravtsov (2010) find o'y, 143 o< (1 +
2)%% in their non-radiative case (with fixed A, = 500) and we find

ov, 143 o (1 + 2)°%.

3.2 Mass-size: the measured correlation and evolution

The simulated DM halo population is well represented by the fol-
lowing best-fitting relation:

log [ " log (M) 1 b (13)
0 — | =vylo _— s

g kpe y log Mo

3 We define Ax, y = Ax(M = 10Y My).
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Figure 3. Distributions at z = 0 of the simulated haloes in the planes M —oy (panel a), M —ovy (panel b), M —ry, (panel ¢) and M —r, (panel d). In each panel,
the plane has been binned in cells and the grey-scale represents the logarithm of the counts of haloes in each cell. The red dotted lines are the best fits at z = 0
(00 o MO3 oy o MO333 1y, o MO320 and 1y o« MO379); for comparison, the best fits at z = 2.5 are plotted as blue dot-dashed lines.

where
logy = (—0.069 £ 0.01) log(1 + z) 4+ (—0.489 £ 0.003),

logb = (0.02 & 0.02) log(1 + z) + (0.312 £ 0.004). (14)

The measured correlation for the simulated haloes is shown in
Fig. 3(c). The best-fitting relation computed for this sample at z =0
is M r]f'lziom (i.e. y > 0.32). For comparison, we also plot here
the z >~ 2.5 best-fitting correlation: the slope is slightly decreas-
ing with redshift, down to y =~ 0.28 and the normalization in this
mass range gets lower at later times. As we expected, at fixed mass
higher-z haloes have smaller size, i.e. they have higher density.

We then fit the evolution of the normalization at M = 10'2 Mg
of the M —ry, correlation as a function of redshift in the range 0 <
7 < 2.5: we find an evolution of the type ry, 12 oc E(z)~%%, which is
in good agreement with the expectations given by equation (8).
In the bottom panel of Fig. 4 our findings on the evolution in
time of ry 1o are shown: as expected (equation 8), we find that
I, 12 increases with time. We find a power-law best-fitting ry, 1, o
(1 4+ 2)7°7" and also that a better representation of the results is
given by log 1y, 12 = —0.53x% — 0.41 x, where x = log (1 + z).

In Fig. 3(d) we plot the distribution of the DM haloes in the
M —r, plane. Also in this case we find a reasonably good agree-
ment with the virial expectation (10), with a best-fitting correlation
M oc rg71*002 We notice here that the somehow steeper slope than
expected in Fig. 3(d) is due to a tail of the distribution composed
of low-mass haloes (M < 10'> M) with small r,: this feature can
be due to the fact that some DM haloes are not in equilibrium,

MNRAS 440, 610-623 (2014)

for instance, because they could have experienced a recent ma-
jor merger, and so virialization is not a good assumption for such
objects.

4 EVOLUTION OF INDIVIDUAL HALOES

4.1 Evolution of simulated dark haloes in the mass—velocity
dispersion and mass—size planes

According to the halo definition here adopted (equation 1) the halo
mass increases monotonically with time, so studying a property
of a halo as a function of its mass is equivalent to studying the
time evolution of the same property. Here we present the time
evolution of o and r, for some individual representative haloes in
our simulation, by tracking them in the planes 6p—M and r,—M. In
Fig. 5 we plot the evolutionary tracks followed by a representative
halo with mass M ~ 5.5 x 10'* M at z = 0: we reconstruct the
growth in velocity dispersion (top panel) and size (bottom panel)
as the halo gets more massive. It is apparent that neither in the
M —oy nor in the M —ry, plane the halo evolves along the scaling
law of slope ~1/3. The actual evolution experienced by the halo
in Fig. 5 is significantly shallower in the M —oy plane, with best-
fitting oy oc M2, and steeper in the M —ry, plane, with best-fitting
m oc M%®, consistent with the results of previous works on binary
dissipationless mergers (see e.g. Nipoti et al. 2003; Boylan-Kolchin,
Ma & Quataert 2005; Hopkins et al. 2009a; Hilz et al. 2012; Hilz,
Naab & Ostriker 2013).
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Figure 4. Top panel: halo central velocity dispersion at fixed M = 10'2 Mg
as a function of redshift. The black dashed line is the power-law best fit to
the points, while the black solid line is a fit quadratic in logarithm (see the
text). Bottom panel: same as top panel but for the half-mass radius at fixed
M=10"Mg.

Fig. 6 gives an overall picture of the evolution in the M—oy
(upper panel) and M —r;, (lower panel) planes of the whole halo
population. In particular, we follow the evolution from z >~ 2.5
of three objects, having M ~ 10'3, 10'* and 5.5 x 10™ Mg at
z = 0, representative of an ETG sized halo, a group sized halo and a
cluster sized halo, respectively. Fig. 6 indicates that the evolutionary
tracks of the whole population of DM haloes in the simulation
reflect that of the halo shown in Fig. 5; therefore, we do not find
clear indications of mass-dependent evolution. In other words, the
velocity dispersion grows weakly and the half-mass radius grows
strongly independently of the halo mass. The fact that the individual
haloes experience an evolution in o with a shallower slope than
the global oy oc M'/3 correlation (and vice versa for the evolution
in r,) is responsible for the z-evolution of the normalization of
the op—M correlation, such that at fixed mass o is smaller at
lower-z. Similarly, the z-evolution of the normalization of the r,— M
correlation is such that at fixed mass ry, is larger at lower-z.

4.2 Comparison with simple dry merger models

In a hierarchical context, the evolution and mass assembly of haloes
are often decomposed in two main processes: diffuse accretion and
mergers (e.g. Fakhouri, Ma & Boylan-Kolchin 2010). According
to the halo definition here adopted (equation 1), the halo mass
can grow in principle even in an isolated and static configuration,
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Figure 5. Top panel: evolution of a DM halo of mass M(z = 0) =~
5.5 % 104 M in the M —oy plane from z > 2.5 to O (red squares). Here,
mass traces time: the least massive point is the one at highest-z. The black
dot—dashed line is a power law of index 1/3, plotted for comparison. Bottom
panel: same as top panel, but in the M —ry, plane.

just because the critical density of the Universe decreases with
time (see e.g. Diemer, More & Kravtsov 2013a). However, in a
realistic cosmological context a halo experiences several mergers
in its lifetime and in many cases they dominate its mass assembly.
In the following, we will consider the case in which merging is the
driving process for the structural evolution of individual haloes and
we will compare our results with predictions of simple dry merging
models.

4.2.1 Analytic arguments

Here we present some of the analytic arguments one can use to
describe the evolution of the velocity dispersion and size of a halo
which grows mainly via mergers with other haloes. If both the
mass-loss in the collision and the orbital energy of the encounter
are negligible, in an equal-mass merger scenario the halo is expected
to grow in size linearly with mass, while its velocity dispersion is
expected to remain constant (see e.g. Nipoti et al. 2003). Under
the same hypothesis, if the evolution is dominated by accretion of
many satellites much less massive than the main halo, the velocity
dispersion is expected to decrease linearly with the mass, while the
size would grow quadratically with mass (see e.g. Naab et al. 2009).
In a realistic merging history consisting of both major and minor
mergers, we expect the behaviour of 7, and o to be in between
those predicted by the two extreme cases illustrated above.
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Figure 6. Top panel: evolution in the M —oy plane of three representative
haloes in our simulation. The red filled squares refer to a cluster-sized halo
of mass M(z = 0) ~ 5.5 x 10'* M¢ (the same halo as in Fig. 5, but with
a finer sampling), the green filled diamonds refer to a group-sized halo of
mass M(z = 0) ~ 10" M), while the blue filled triangles refer to an ETG-
sized halo of mass M(z = 0) ~ 103 M@. The two black solid lines are
the best-fitting M —oy correlation for the whole population at z = 0 and
at z >~ 2.5. The big blue and red arrows represent a schematic view of the
evolutionary track in the M —oy plane for, respectively, the low-mass and
high-mass haloes. Bottom panel: same as top panel, but in the M —ry, plane.

However, the assumptions of zero orbital energy and negligible
mass-loss are not necessarily realistic. Some authors have shown
how the effect of mass-loss could play an important role in the
evolution of the velocity dispersion and of the size of an object (see
e.g. Nipoti et al. 2003; Hilz et al. 2012). Also the effect of the orbital
energy on the evolution of o and r, can be non-negligible (Nipoti,
Treu & Bolton 2009a; Nipoti et al. 2012, hereafter N12), even if
there are indications that most halo encounters are on orbits close
to parabolic (see e.g. Khochfar & Burkert 2006). In this section we
attempt to study the effect of orbital energy using the data of our
simulation.

If we know the orbital energy, we can predict analytically the
merger-driven evolution of the virial velocity dispersion ov: the
dissipationless merging of two virialized systems, which have ki-
netic energies, respectively, 7 = Moy ,/2and T, = M»0y ,/2,0n
a barycentric orbit of energy E,,, results in a system that, when in
equilibrium, has virial velocity dispersion (see Nipoti et al. 2003)

ol — Mo | + Mo, _y Eon (15)
Ve M, + M, M+ My’
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assuming no mass-loss (the subscript f indicates the final value). As
long as 0y o oy (see Section 2.3), equation (15) can be used to
predict also the evolution of o .

Similarly, one can predict how the size of the halo is evolving
in the merging process: assuming a linear proportionality ry, o 7y
(see Section 3.2 and Fig. 2), we have that r, M/O’\z,. We can use
equation (15) to make predictions in the context of a simple dry
merging model: we calculate the half-mass radius of the halo at a
given redshift, then we predict its evolution calculating the ratio

2
e M+ Moy,

2

(16)
Th,1 M, oy

where o ; was calculated through equation (15) and we have taken
halo 1 as reference progenitor.

4.2.2 Orbital parameters

To account for the contribution of E, in the evolution of o and
r, for our haloes (i.e. to apply equation 15), we need to extract
the merger orbital parameters from our simulation. We have recon-
structed the merger histories of the haloes and then calculated the
orbital parameters of the encounters in the point-mass approxima-
tion (hereafter PMA) of the progenitors (i.e. approximating every
merging halo as a point located in its centre of mass and having the
same mass as the object; see e.g. Khochfar & Burkert 2006; Wetzel
2011).

As well known, the orbit of a collision is completely characterized
by two parameters, for instance the orbital energy and the orbital
angular momentum or the eccentricity and the pericentric radius.
Here we find convenient to characterize the orbits of our mergers
with the orbital energy E,, and the eccentricity

2E0begrb (17)

e= )1+ b
WGM M)’

where M| and M, are the masses of the two colliding systems,
Lo is the norm of the barycentric orbital angular momentum and
w=MM,/(M; + M,) is the reduced mass. In Fig. 7 we plot the
histograms of E,;, and e (computed in the PMA) of the encounters
experienced by a M(z = 0) ~ 5.5 x 10" Mg DM halo in our
simulation from z =~ 2.5 to 0. We find that the distribution of the
orbital energies has a clear peak at E,;, > 0 (left-hand panel of Fig. 7)
and that of the eccentricities have a clear peak at e >~ 1 (right-hand
panel of Fig. 7), with both distributions having non-negligible tails
both at bound orbits (e < 1 and E, < 0) and unbound orbits (e > 1
and Eyp > 0). Overall, our findings are in agreement with those
of Khochfar & Burkert (2006): the large majority of the mergers
happen on orbits close to parabolic.

The orbital potential energy computed in the PMA (U, pma) 1S
always larger (in modulus) than the actual orbital potential energy
Uow, computed for the extended objects. As an example, one can
think of a toy model in which the two particle systems are initially
very far away, where the PMA is justified, and then they start to get
nearer and nearer up to the limit in which the centres of mass of the
two system coincide: in this limit the orbital potential U,, in the
PMA diverges, while that of the extended system is still finite.

We tried to obtain a better estimate of the orbital energy by em-
pirically correcting U, pma as follows. We computed the relative
distance d, of a merger as the distance of the centres of the haloes
in the snapshot before the merging, i.e. it is the latest snapshot in
which the two haloes are distinct. Calculating the distribution of d,¢|
of the collisions in our simulation, we find that it peaks at dye; =~ ra
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Figure 7. Histograms of the orbital energies (left-hand panel) and of the
eccentricities (right-hand panel), computed in the PMA, of the mergers
experienced by a M(z = 0) = 5.5 x 101 M@ DM halo, from z >~ 2.5 t0 0.
The orbital energies are normalized to the internal energy 7 = M a‘% /2 of
the reference halo. The dashed area, centred on the median value, contains
80 per cent of the counts.

of the biggest merging halo. Assuming an NFW (see Navarro, Frenk
& White 1997) profile for the dark haloes, we made some exper-
iments in order to evaluate the overestimate of |U,y| in the PMA
varying the parameters of the haloes (such as mass ratio, size ratio
and concentration) and, most important, the relative distance be-
tween their centres of mass. We used GADGET-2 to calculate the U,
of the encounter between the two systems and we compared it to
that calculated in the PMA. We find that, quite independently of the
structural parameters of the haloes, in a range of relative distances
consistent with that measured in our simulation, Uqt, 2 Ugrb, pma /2.

4.2.3 Application to N-body data

In the hypothesis that mergers are the driving mechanism for halo
evolution, it is possible, with equation (15), to predict the evolution-
ary track of a halo in the M —oy plane across different snapshots
in the simulation. For a given halo, starting from M and o of the
most massive progenitor, we considered one at a time every merger
in the halo merger tree and we used for each of them equation (15)
to predict the evolution of o after the collisions. In Fig. 8 (top
panel) we show the evolution of a representative halo in the oy—M
plane and we compare it with the predictions of three dry-merging
models based on equation (15): the parabolic-merger model (i.e.
Eo = 0), the PMA model (Eo, = Eor, pma, Where Eq, pua is the
orbital energy computed in the PMA) and the corrected PMA model
(Uory = Uor, pma/2; see Section 4.2.2). The relative errors of the
models with respect to the N-body data (bottom panel of Fig. 8)
indicate that in the majority of the cases, the parabolic merger ap-
proximation tends to underestimate the o evolution by a factor of
~20-30 per cent, while Eq, = Eqrb, pma model tends to overestimate
its growth up to &80 per cent, probably due to the overestimate of
|Uor | introduced by the PMA. When we apply the empirical cor-
rection we find a much better agreement with the N-body data. We
have checked that the resulting behaviour is fairly independent of
the halo considered (i.e. on the halo mass at z ~ 0).

Using equation (16), where we compute o'y, ¢ as in equation (15),
we are able to predict also the evolution in size of the halo. The
results are summarized in Fig. 9. The parabolic merging model
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always tends to overestimate the actual size growth of the halo:
such trend is in agreement with the analytical expectation of strong
growth of the halo size (see Section 4.2.1). On the other hand, the
Eoi = Eo, pva model is underestimating the ry, evolution. Applying
the empirical correction to the orbital energy in the PMA, we find
a much better representation of the N-body data with respect to
previous cases (see the bottom panel of Fig. 9), in agreement with
our previous results on the velocity dispersion evolution (see Fig. 8).

The results above deserve a further comment: since in the code
we are using energy is conserved (see Springel 2005), in principle,
if we took into account all the possible complications to the merging
model we would reproduce the actual measured evolution. Here we
focus on the effect of one of these possible complications, namely
the orbital energy. Other authors have used this approach before,
studying for example the effect of escapers (see e.g. Nipoti et al.
2003; Hilz et al. 2012): in particular, Hilz et al. (2012) found that
mass-loss can be very important in reproducing the size growth of
collisionless systems in binary mergers simulations. Our effort is
complementary to such works: we added a detailed study of the
importance of the orbital energy, finding that taking into account
such effect in a simple dry merging model can be crucial in order
to reproduce the halo evolution in a cosmological context.

5 IMPLICATIONS FOR THE SIZE EVOLUTION
OF EARLY-TYPE GALAXIES

In the previous sections we have described the evolution in size and
velocity dispersion of the population of DM haloes. This evolution
is qualitatively similar to that of the observed population of ETGs.
The aim of this section is to compare quantitatively our N-body
data to observations. Since there are no baryons in the simulation,
we need to populate our DM haloes with galaxies, by assigning the
stellar mass M, and the stellar effective radius R., which can be
done using currently available prescriptions for the stellar-to-halo
mass relation (SHMR) and the stellar-to-halo size relation (SHSR).

5.1 The stellar-to-halo mass relation

A critical point in this work is the assignment of stellar masses to
the dark haloes of our N-body simulation. To do so, we need to
assume a SHMR, i.e. a function that associates a stellar mass M, to
each given halo mass M at a given redshift z. Many prescriptions
are available at the time of this writing for this function (see e.g.
Behroozi, Conroy & Wechsler 2010; Wake et al. 2011; Leauthaud
etal. 2012; Moster, Naab & White 2013), but the detailed properties
of the SHMR are still uncertain and debated.

In order to account for the uncertainties in the SHMR, we use
two different models of SHMR: Model 1, adopting the prescription
of Behroozi et al. (2010, hereafter B10) and Model 2, adopting the
prescription of Leauthaud et al. (2012, hereafter L12). A graphical
representation of such models can be found in Fig. 10: the SHMR
is plotted in different colours in the redshift range 0 < z < 4.
The functional forms and parameters of the two prescriptions used
here are summarized in section 3.2.1 of N12. Throughout the paper
we adopt a Chabrier (2003) initial mass function. As in N12, for
simplicity, we do not take into account the scatter of the SHMR:
to each halo we assign an M, which is the mean value of the
distribution.

We consider a subset of the DM halo population presented
in Section 2.2. We cut our sample of objects to have a stellar
mass logM,/Mp > 10.5 and such that no halo exceeds M ~
4 x 101 Mg . The stellar mass lower limit is so that the population
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Figure 8. Top panel: evolution of a M(z = 0) ~ 5.5 x 10 Mg halo in the M —oy plane from z > 2.5 to 0 (red filled squares). The different arrows represent
the predictions of the o in the different models, starting from the reference point which is (M, o) of the halo measured at the previous snapshot: grey dotted
arrows are in the parabolic (Eq, = 0) model, the blue dot—dashed arrows in the Eop, = Eoib, pMa model, in which the orbital energy is computed in the PMA,
while the golden short-dashed arrows are in the Uot, = Uorb, pma /2 model, in which the orbital potential energy is half that in the PMA (see the text). Bottom
panel: relative deviations of the model predictions from the measured N-body data.

is dominated by ETGs, since at high stellar mass the fraction of
ETGs over the total number of galaxies is larger. The halo mass
upper limit is motivated by the fact that DM haloes with mass larger
than M = 4 x 10" M are more likely to host groups of galaxies
than single ETGs. We notice here that even if the two models have
the same upper limit in halo mass, they have a different upper limit in
stellar mass, because of the different model of SHMR used: Model
2 has a steeper slope and a higher normalization at the high-mass
end, resulting in more massive galaxies associated with the same
halo mass with respect to Model 1. The stellar mass ranges used
here are: 3.2 x IOIOM@ <M, <14 x 10" Mg (corresponding
t0 8.5 x 10" M@ <M <4 x 10" Mg in halo mass) for Model
1 and 3.2 x 10°M@p < M, <2 x 10" M (corresponding to
9 x 10! Mp <M=<4x 10 Mg in halo mass) for Model 2.

5.2 The stellar-to-halo size relation

After having characterized every DM halo with a stellar mass under
the assumption of a SHMR, the second step is to assign a size,
namely an effective radius R., to the stellar component. The choice
of the SHSR is not trivial and at this time there is not yet a prescrip-
tion that can be taken as a reference.

MNRAS 440, 610-623 (2014)

However, recently Kravtsov (2013, following the theoretical work
of Mo et al. 1998; Fall & Efstathiou 1980) argued that such relation
can be measured over a wide range of stellar masses, using abun-
dance matching techniques to derive a functional form. Kravtsov
(2013) finds that the relation between the virial radius r, of the
host halo and the effective radius R. of the galaxy is linear. Such
result confirms the theoretical predictions (see Mo et al. 1998) that
the virial radius of the halo is linearly proportional to the size of
the galactic disc and that the constant of proportionality depends
on the spin parameter A = J |E|'/2G~'M /2, where J is the norm
of the angular momentum of the halo, E is the total energy of the
halo and G is the gravitational constant. Moreover, the fact that
both early-type and late-type galaxies follow this linear SHSR with
a scatter of ~20 per cent (see Kravtsov 2013) can be interpreted as
the fact that the Mo et al. (1998) model not only works for disc
galaxies, but it also represents a general behaviour of all types of
massive galaxies.

Here we assume R. o ry,, where ry, is the halo half-mass radius,
defined in Section 2.2. However, in Section 2.3 we showed that
Th X Fa, ON average, SO our assumption is consistent with the re-
sults of Kravtsov (2013). As a check to this hypothesis, we compare
the stellar mass—effective radius correlation for our model galaxies
(i.e. M,—R.) at z = 0 with that observed in the local Universe,
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Figure 10. Stellar mass M, as a function of the halo mass M and redshift
according to the prescriptions of B10 (top panel; here used in Model 1) and
L12 (bottom panel; here used in Model 2).

taking as reference the M, — R, correlation of the ETGs in the Sloan
Digital Sky Survey (SDSS; Shen et al. 2003). In Fig. 11 we plot the
distribution of the effective radius as a function of the stellar mass
for our model galaxies in Models 1 and 2 (see Section 5.1), and we
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deviation.

compare it to the best-fitting relation of Shen et al. (2003). In partic-
ular, we have used R /r, = 0.031 for Model 1 and R, /r,, = 0.042 for
Model 2, which are in reasonable agreement with the expectations
of Mo et al. (1998) and the results of Kravtsov (2013), given that
on average we find r,/ra >~ 0.82 in the simulated haloes. Overall,
Fig. 11 shows that the distribution of the z >~ 0 model galaxies in
the R.— M, plane is consistent with that of SDSS galaxies. In more
detail, Model 2, with a best-fitting R. oc M2, appears to repro-
duce better the SDSS data (best-fitting R. o« M%) than Model 1
(best-fitting R, ME'84).

When comparing our models to observations (see Section 5.3)
we will assume that the ratio R,/ is independent of M and z. We
will study only the redshift evolution of size ratios [namely, R.(z)
normalized to R.(z = 0)], so the results are independent of the actual
value of R, /ry,. We note that an underlying assumption of our models
is that baryons do not affect substantially the structural evolution of
DM haloes. The stellar and DM components are expected to affect
each other significantly, even in dissipationless mergers (see e.g.
Hilz et al. 2013). However, our results are not sensitive to this effect
as long as it is independent on halo mass.

5.3 Size evolution of early-type galaxies: comparing models
with observations

Here we compare the size evolution of our model galaxy sample
(built from the N-body data as described in Sections 5.1 and 5.2)

MNRAS 440, 610-623 (2014)

with that of the observed population of ETGs. In particular, we take
as reference observational sample the collection of ETGs in the
redshift range 0 < z < 3 presented by Cimatti, Nipoti & Cassata
(2012, hereafter CNC12). We show such comparison in Fig. 12: we
compute the average size of the model galaxy sample at different
times (16 snapshots of the N-body simulation in the range 0 < z <
3) and we normalize it to that at the mean redshift of the SDSS.
Following CNC12, we plot the evolution in three different mass
bins. In Fig. 12 we are showing a sort of backward evolution: we
are normalizing our models to be in agreement with the data at
z =~ 0 and we follow the evolution of the average size of the model
galaxies at higher redshift. Our choice is motivated by the fact that
we anchor the models to observations in the local Universe, which
are more numerous with respect to z >~ 2.5—3 data.

The distribution of our model galaxies significantly overlaps with
that of the observed ETGs of CNC12, but the models suffer from
a systematic underestimate of the size growth in all the mass bins,
in particular at z > 2. At z < 2 the models (especially Model 2,
which is based on L12) are consistent within the scatter with the
observational data, suggesting that the host haloes actually left their
footprint in the stellar density at the time of galaxy quenching and
that the after-quenching evolution of the galaxies mimicked that of
the haloes. To give reference numbers, for both models, we com-
puted the ratio R.(z ~ 2.5)/R.(z =~ 0) in the three different mass bins
finding that from z >~ 2.5 to 0 the average effective radius increases
by a factor of ~2 in the lowest mass bin (log M,/ Mg < 10.7) and
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Table 1. Summary of the best-fitting power laws R¢(z) o (1 + z)" and 04(z) (1 + z)? to our
models in the range 0 < z < 2.5, for different stellar mass bins (see Sections 5.3 and 5.4).

Model 1
Stellar mass y 8

Model 2
y )

logM../M¢ > 10.9
10.7 < logM+/M¢y < 10.9
10.5 <logM./M¢g < 10.7

—0.61+0.07 0.28 £0.05
—0.514+0.06 0.18 £0.05
—0.374+£0.06  0.04 £0.05

—0.65+0.09 0.43 +0.07
—0.61 +£0.06 0.20 +0.06
—0.45+0.06 0.01 £0.05
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by a factor of ~3 in the highest one (logM,/ Mg > 10.9). For
comparison, most observational data agree on an evolution of the
average effective radius of the ETG population of a factor of 2—5
from z 2 2 to the present (see e.g. CNC12).

In Table 1 we report the best-fitting values of y, where R. o (1 +
z)?, for both models in the range 0 < z < 2.5 and in the three
mass bins. We find values of y similar to those in CNC12 when
they exclude the z > 2 data, while the models fail at reproducing
the observed slopes which take into account also the higher redshift
points.

Our analysis shows that, provided that the galaxy formation pro-
cess produces a linear SHSR, the observed size evolution of the
population of ETGs up to z > 2 could be explained by the underly-
ing size evolution of the halo population, in the sense that quiescent
galaxies mimic the host halo evolution. At z > 2 the average size of
the observed population of ETGs evolves significantly faster than
predicted by our simple models (in agreement with CNC12; N12).
This difference at z = 2 can possibly give us some insights into
the role dissipative effects, such as star formation or active galactic
nuclei (AGN) feedback: it might not be a mere coincidence that at
z & 2 there are the peaks of the cosmic star formation rate (Lilly
etal. 1996; Madau et al. 1996) and of AGN activity (see e.g. Merloni
& Heinz 2008; Gruppioni et al. 2011).

Overall, our results are in agreement with those of previous in-
vestigations (CNC12; Newman et al. 2012; N12), which are in a
sense complementary to this work. For instance, we note that the
approach used here is different from that of CNC12, who (following
N12) treat in their model only the evolution of individual galaxies
and do not include the contribution of galaxies that have become
quiescent at relatively low redshift. In other words, when compar-
ing models to observations, CNC12 do not try to account for the
so-called progenitor bias (see e.g. Saglia et al. 2010; Carollo et al.
2013) because they assume that the observed population of high-
z ETGs is representative of the progenitors of present-day ETGs.
Our approach, though simple, should be more robust against the
progenitor bias: in our sample of simulated objects, at any red-
shift, we can have in principle both galaxies that have just stopped
forming stars (and that are identified for the first time as ETGs)
and galaxies that became quiescent much earlier. However, it must
be stressed that our model is limited by the fact that we are as-
suming that galaxies grow in size and mass so that the SHMR
and SHSR are reproduced at all redshifts, without having specified
any underlying physical model for such growth. In this respect, a
more physically justified approach is that of CNC12 and N12, who
assume that the size and mass growth of ETGs is driven by dry
mergers, finding that, under this hypothesis, the SHMR inferred
from observations is not necessarily reproduced (see N12). In sum-
mary, our results, combined with those of similar previous works,
suggest a scenario in which, at least up to z >~ 2, the observed
growth of ETGs reflects the underlying growth of their host DM
haloes.

5.4 Velocity dispersion evolution of early-type galaxies:
comparing models with observations

In this section we compare the stellar velocity dispersion evolution
of our model ETGs with that observed up to z ~ 2. For such
comparison we rely on the data collection of ETGs from Belli,
Newman & Ellis (2014) and van de Sande et al. (2013). We use a
very simple recipe to get the stellar velocity dispersion of the model
galaxies: consistent with our choice for the assignment of R. (i.e.
R. o ), we assume a scaling with the halo properties of the form
0*2 & M,.(M)/R(ry), where we use the SHMR (Section 5.1) and
SHSR (Section 5.2) from Model 1 and 2.

We check this recipe for ETGs at z >~ 0: in Fig. 13 it is plotted
the stellar mass—velocity dispersion relation at z 2~ 0 for our model
ETGs which we compare to SDSS observations data from Hyde &
Bernardi (2009). Overall, both models are able to represent fairly
well the SDSS data within their uncertainties. However, we notice
that Model 2 works systematically better than Model 1 in repro-
ducing the observed M,—o,: Model 1 is best fitted by o, oc M1,
while for Model 2 we find o, o M 2'2, closer to the Hyde & Bernardi
(2009) relation o, oc MO-236,

Fig. 14 shows the average velocity dispersion (backward) evo-
lution of our model galaxies in the redshift range 0 < z < 2. We
compute the average o, as a function of redshift, we anchor the data
from Belli et al. (2014) and van de Sande et al. (2013) to a reference
value for the local Universe taken from Hyde & Bernardi (2009) and
we directly compare the backward evolution with data available for
individual ETGs. Qualitatively we find a reasonable agreement with
observations of high-mass (i.e. log M./ M > 10.9) passive galax-
ies up to z =~ 2. The predictions, especially those of Model 2, are able
to reproduce the evolutionary trend in the observations, even though

log(s, kms™)

Model 2

log(s, /kms™)

______ i L Il Il  S— O
10.6 10.8 11 11.2 11.4
log(M,/M.,)

Figure 13. Same as Fig. 11, but in the stellar mass—velocity dispersion
plane. In both panels, the solid line is the best-fitting relation of Hyde
& Bernardi (2009), for SDSS galaxies, with the corresponding 1o scatter
(dashed lines).
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4.0

35} ¢ $ Observations: van de Sande+13, Belli+13
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2.5¢
2.0}

1.5}

U*(Z)/U* (ZSDSS)

1.0

0.5F

logh ,/M ., >10.9

%80 0.5

1.0 15 2.0

Redshift

Figure 14. Average velocity dispersion o, as a function of redshift for
simulated galaxies of Model 1 (grey bands) and Model 2 (red bands) of this
work and for observed ETGs of van de Sande et al. (2013) and Belli et al.
(2014, blue filled circles). Here we restrict to stellar masses log M, /M@ >
10.9. Overplotted are also the best-fitting power laws o, o (1 4 2)° (grey
dashed line and red solid line, respectively, to Model 1 and Model 2). The
models are anchored to the lowest-z (i.e. SDSS) observational points (see
the text), as in Fig. 12. The vertical bars and the widths of the bands indicate
one standard deviation.

there is significant scatter. Quantitatively, we find that Model 2 evo-
lution is well fitted by o, o< (1 + 2)%, with 8 = 0.43 £ 0.07, while
for Model 1 we find § = 0.28 & 0.05. For comparison, fitting the
individual observations with a similar power-law evolution gives us
8 =0.36 £ 0.02, which is consistent within the uncertainties at least
with Model 2. The model galaxies have decreased on average their
velocity dispersion by a factor of 0,(z ~ 2)/0.(z ~ 0) ~ 1.4—1.8;
for comparison van de Sande et al. (2013) quote an evolution in
their sample of data of a factor of ~1.4 — 1.7.

In Table 1 we summarize the results of fitting the velocity dis-
persion evolution in both models with simple power laws, in the
range 0 < z < 2.5 and in the three stellar mass bins considered in
Section 5. The numbers reported in Table 1 and the trends shown
by Figs 12 and 14 are also in good agreement with previous results
of the average size and velocity dispersion evolution of stellar sys-
tems in hydrodynamical cosmological simulations (see e.g. Oser
et al. 2012).

The above results on the velocity—dispersion evolution depend
on the assumed assignment of o, to haloes (i.e. af x M,/R.). A
different choice could be o, o o (where o is the halo velocity
dispersion); however, we have verified that assuming a scaling of
that type leads to a very poor comparison of the M, —o, relation with
data for the local Universe. This suggests that the evolution of the
velocity dispersion of the stellar component is somewhat decoupled
from that of the dark component: while o increases with time
for individual haloes in our sample (see Fig. 6), vice versa o, of
individual model galaxies tends to decrease as a function of time, if
one assumes > & M, /R..

The same trend of velocity dispersion decreasing with time for
individual galaxies is found in the cosmological hydrodynamical
simulations of Oser et al. (2012) and Oser (private communication).
However, it must be noted that Dubois et al. (2013), who also
studied the evolution of ETGs using cosmological hydrodynamical
simulations, found that the velocity dispersion of individual galaxies
increases with time.
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6 SUMMARY AND CONCLUSIONS

Motivated by the observational finding that ETGs are, on average,
more compact at higher redshift, we have explored the hypothesis
that such evolution is mainly driven by the systematic redshift de-
pendence of the structural properties of their host DM haloes. Using
a cosmological N-body simulation, we have followed the evolution
of the structural and kinematical properties of a DM halo population
in the ACDM framework, focusing on the halo mass range 10'! <
M/Mg S5 % 10'4. Starting from a sample of simulated haloes,
we have built a sample of model ETGs and we have compared the
redshift evolution of their sizes with that of observed galaxies.
The main results can be summarized as follows.

(i) Atz = 0 the haloes are well represented by oy oc M0-329+0.001
and r, oc MO320+E0002 ¢ » — 0, where r, is the half-mass radius
and o is the central velocity dispersion. These global correlations
are remarkably similar to those predicted for the virial quantities of
the haloes (namely, M 0\3, and M ri), meaning that there is no
significant non-homology in the halo population.

(ii) The slopes of the M —o( and M —ry, correlations depend only
slightly on z, but their normalizations evolve significantly with z in
the sense that, at fixed mass, higher-z haloes have smaller r, and
higher 0. For instance, at fixed M = 10'? Mg we find o oc (1 +
293 and ry o (1 4+ 2)~07".

(iii) The redshift evolution of the halo scaling laws is driven by
individual haloes growing in mass following evolutionary tracks
o9 o« M°2 and r, oc M*S. So, while individual haloes grow in
mass, their velocity dispersions increase slowly and their sizes grow
rapidly.

(iv) The size and velocity dispersion evolution of individual
haloes is successfully described by simple dissipationless merg-
ing models, in which a key ingredient is the (typically negative)
orbital energy of the encounters.

(v) We compare our N-body data with observations of ETGs
in the redshift range 0 < z < 3, by populating the DM haloes
with galaxies assigning to each halo a stellar mass, an effective
radius and a stellar velocity dispersion. We find that the size and
velocity dispersion evolution of our model galaxies is in reasonable
agreement with the evolution observed for ETGs at least up to z ~~ 2.
At z > 2 the observed size growth is stronger than predicted by our
simple models.

The above findings suggest a scenario in which the size and
velocity dispersion scaling laws of ETGs derive from underlying
scaling laws of the DM haloes. Overall, the results of this work
give further support to the idea of a halo-driven evolution of ETGs:
galaxy structural and dynamical properties are related to that of
their haloes at the time of quenching and the further ETG evolution
mimics that of haloes. Of course, the present approach is limited
by the fact that we do not include a self-consistent treatment of
baryonic physics. In a forthcoming study, we plan to investigate
this problem by adding the baryonic evolution in the simulations.
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