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A B S T R A C T

The aim of this work is to analyze the orbital evolution of the mean eccentricity given by the Two-Line
Elements (TLE) set of the Molniya satellites constellation. The approach is bottom-up, aiming at a synergy
between the observed dynamics and the mathematical modeling. Being the focus the long-term evolution of
the eccentricity, the dynamical model adopted is a doubly-averaged formulation of the third-body perturbation
due to Sun and Moon, coupled with the oblateness effect on the orientation of the satellite. The numerical
evolution of the eccentricity, obtained by a two-degree-of-freedom time dependent model assuming different
orders in the series expansion of the third-body effect, is compared against the mean evolution given by the
TLE. The results show that, despite being highly elliptical orbits, the second order expansion catches extremely
well the behavior. Also, the lunisolar effect turns out to be non-negligible for the behavior of the longitude of
the ascending node and the argument of pericenter. Finally, a frequency series analysis is proposed to show
the main contributions that can be detected from the observational data.

1. Introduction

Starting in the mid-’60s [1], the Molniya program (the name stand-
ing for the Russian word ‘‘Lightning’’) inaugurated the innovative
concept of ‘‘satellite constellation’’. For the first time, indeed, a reliable
communication service for military and civilian applications was set
in place by the Soviet Union across its extensive territory through
the coordinated action of a spacecraft network instead of relying on
individual space relays (see, e.g., [2–4] for recent formal settlements
of the general astrodynamical problem).

This combined strategy is nowadays a fully established way to
approach space servicing worldwide, especially in the Low Earth Orbit
regime, in order to enable a set of short-period spacecraft to provide
ground end-users with uninterrupted and reliable up/downlink as for
high-quality telephony and remote-sensing surveys.

The successful performance of the Molniya program also opened to
further applications, especially from the Soviet/Russian side, leading
in the early ’70s to a military constellation of Cosmos spacecraft (the

∗ Corresponding author.
E-mail address: elisamaria.alessi@cnr.it (E.M. Alessi).

1 In Russian, meaning ‘‘eye’’.
2 Of these, one satellite, namely Molniya 1-S was placed in geostationary orbit and it will therefore not be considered here.

so-called Oko1 system) on a ‘‘Molniya orbit’’ (so christened after the
name of the satellites) for early-warning detection of hostile ballistic
missiles [5]. In addition, since the early 2000s, a follow-up to the orig-
inal Molniya program was pursued by Commonwealth of Independent
States (CIS) with the Meridian constellation [6], currently consisting of
8 spacecraft in a similar Highly Eccentric Orbit (HEO), more explicitly
dedicated to military communication. A few cases of Molniya-like satel-
lites might also be recognized among American satellites for military
applications, in support to the Space-Based Infrared System (SBIRS).
Overall, a total of some 150 objects can be recognized in a Molniya
orbital regime from ground surveillance surveys [7,8], although this
might be a crude underestimate of the real population of orbiting
objects once the increasingly important fraction of space debris could
be properly included.

An extensive observing campaign of the full Molniya constellation
was carried out, between 2014 and 2017, by our group at Mexican and
Italian telescopes [9,10]. The accounted dataset actually included all
the 43 satellites still in orbit in 2014; since then, seven spacecraft have
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Fig. 1. An illustrative example of Molniya orbit ground track. Two 12-hr orbits
are displayed to span a full day. The nominal orbital parameters are assumed, for
illustrative scope, according to the template given in [12]. In particular, for our specific
choice, we set the relevant geometric orientation parameters (𝑖, 𝜔) = (63.4, 270) deg, with
orbit scale length parameters (in km) (𝑎, ℎ𝑝 , ℎ𝑎)𝑘𝑚 = (26560, 1000, 39360). This implies an
eccentricity 𝑒 = 0.72 and a period 𝑃 = 720 min. Note the extremely asymmetric location
of the ascending (‘‘AN’’) and descending (‘‘DN’’) nodes, due to the high eccentricity of
the orbit, and the perigee (‘‘P’’), always placed in the Southern hemisphere. Along
the two daily apogees (‘‘A’’), the satellite hovers first Russia and then Canada/US.
The visibility horizon (aka the ‘‘footprint’’) attained by the Molniya at its apogee over
Russia, is above the displayed yellow line. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

decayed so that, as of this writing, the survived Molniya constellation
consists of only 36 satellites, namely, 35 in HEO and 1 in geostationary
orbit (GEO).2 For all of them we actually deal with non-cooperative
spacecraft.

With this paper, the first of a series, we want to focus our analysis
on the relevant astrodynamical properties of the Molniya satellite con-
stellation in principle through a ‘‘heuristic’’ approach to the problem.
In other words, the aim is to infer a relevant dynamical model from
the data. The historical records from the TLE database [11] are used
as a reference, restraining our analysis to all the data available up to
January 1, 2019. We therefore rely on the past history of the survived
spacecraft constellation (spanning a four-decades interval as for the
oldest satellites) to set the ‘‘ground truth’’ for an accurate ex-post
dynamical analysis of each object, aimed at singling out the selective
action of the different physical players (e.g., lunisolar perturbations,
geopotential, solar radiation pressure, atmospheric drag, etc.) that may
modulate secular evolution of the orbit. In this work, we will focus es-
pecially on the behavior in eccentricity; the behavior of the semi-major
axis will be treated separately in a following work.

2. The Molniya orbit

From a dynamical point of view, the adopted Molniya orbit offered
a fully appealing alternative to the GEO option (see [13,14] for a
comparative discussion). A series of spacecraft routed along a HEO
much ‘‘closer’’ (𝑎 ∼ 26 500 km or equivalently an orbital period 𝑃 =
12 hr) than GEO and inclined (𝑖 ∼ 63 deg) orbital path [12], was
actually better suited to cover the high-latitude and wide-longitude
extension of the Soviet Union.3

The solution adopted was chosen because satisfying the mandatory
requirement of being in view of the Soviet territory as long as possible.
Such an ‘‘extended permanence’’ over Russia is eased by a HEO with a
convenient choice of the argument of perigee (a value of 𝜔 ∼ 270 deg
appeared to be a best option) such as to raise the satellite to nearly
GEO altitude at its apogee when hovering Russia. To safely maintain
this configuration, however, the orbital plane has to be twisted such as

3 The former Union of Soviet Socialist Republics (USSR) (and present CIS)
covered over 9600 km from east to west and over 4000 km from north to
south, reaching up to 83N deg in latitude.

to counteract the effect of Earth gravitational dipole (the so-called 𝐽2
geopotential term) on the 𝜔 drift [15]. To set 𝜔̇ ∼ 0, and thus ‘‘freeze’’
the line of apsides, one has to incline the orbit by 𝑖 = sin−1

(

2∕
√

5
)

∼
63.4 deg (in the prograde region) [16].

With these conditions, the resulting ground track of the nominal
Molniya orbit looks like in Fig. 1. Note that a (draconic) period of 𝑃 =
12 h allows the satellite to reach its apogee in the northern hemisphere
twice a day, and 180 deg apart in longitude. In addition to the ‘‘Russian
apogee’’ (that allowed each Molniya satellite to be on-sight from the
USSR for up to 10 h, [17]), the supplementary North-American pass
ensured, among others, a double visibility from the US and USSR and
a stable link between Russia and Cuba, indeed a strategic advantage
along the years of the Cold War.

2.1. Current theoretical framework

For its special interest, the Molniya orbit has been the subject of
a full range of studies in the astrodynamical literature, starting from
the ’60s. Quite remarkably, two opposite ways to assess the dynamical
problem have been pursued along the years. In fact, the prevailing
approach in most of the ’60s papers is to consider the Molniya satellites
as clean gravitational probes to firmly assess the 𝐽2 (and higher-order)
geopotential term [18], still poorly known at that time.

On the contrary, the focus reversed in the ’70s, when the Molniya
orbit itself became the subject of investigation by inspecting the differ-
ent sources of perturbation, especially dealing with the lunisolar action
as a source (together with 𝐽2) of long-term effects in the evolution of
orbital parameters and the intervening effect of the atmospheric drag
to severely constrain the satellite lifetime.

Both these aspects were first reviewed by [19] and [20], leading
to estimate for the Molniya satellites an expected lifetime within 7–
13 years, as a reference figure. The combined physical mechanism at
work is correctly envisaged in the studies, with lunisolar perturbations
as a main player to act on orbital eccentricity 𝑒 (leaving untouched,
however, the semi-major axis 𝑎 and therefore the period 𝑃 ). As a
consequence of a quasi-periodical change in 𝑒, the satellite perigee will
decrease until possibly magnifying the effect of atmospheric drag (es-
pecially under a favoring solar activity to ‘‘inflate’’ Earth’s ionosphere).
The drag will then dissipate orbital energy such as to circularize the
orbit at lower 𝑎 and shorter 𝑃 , thus enabling the satellite’s fatal re-entry
in the atmosphere as a wild fireball.

The effect of the Earth’s gravitational potential on the Molniya’s pe-
riod evolution was carefully considered in the general study presented
in [21]. The role of solar radiation pressure and of the Poynting–
Robertson effect on high area-to-mass satellites were considered in [22]
and [23], respectively.

The purpose of this paper is to investigate what reasonable approx-
imation of the models can ‘‘reconstruct’’ the mean evolution of the
orbital eccentricity given by the observational data. The approach is
bottom-up, aiming at a synergy between the observed dynamics and
the mathematical modeling. The results will support a future analysis
based on a dynamical systems theory approach and a practical contex-
tualization of chaotic dynamics. For this analysis, we will assume that
only natural perturbations act on the spacecraft. Following [24], the
operational lifetime of Molniya satellites may hardly exceed 6 years.
We found further support of this conclusion also from the inspection of
figs. 11-4 and 11-5 in [17]. Accordingly, it appears that, for the first
29 satellites, the operational life was never longer than 3 years.

2.2. Oblateness effect and third-body perturbation

Since the focus is the long-term evolution of the orbital elements
of the satellite, the Lagrange planetary equations [25] are applied to
various averaged perturbing contributions.
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The secular 𝐽2 Earth’s disturbing potential, ̄𝐽2 , is obtained by
averaging over the mean anomaly 𝑀 (fast variable), the 𝐽2 potential,
namely,

̄𝐽2 = 1
2𝜋 ∫

2𝜋

0
𝐽2d𝑀, (1)

where

𝐽2 =
𝐽2𝜇⊕𝑟2⊕

(

3 sin2 𝜙 − 1
)

2𝑟3
. (2)

Here 𝑟 denotes the geocentric distance, 𝜙 the geocentric latitude, 𝑟⊕
and 𝜇⊕ the mean equatorial radius and gravitational parameter, re-
spectively. The final expression written in terms of the orbital elements
reads [26]

̄𝐽2 =
𝐽2𝜇⊕𝑟2⊕

4𝑎3(1 − 𝑒2)3∕2
(

2 − 3 sin2 𝑖
)

. (3)

Concerning the third-body disturbing potential, following [27], the
solar non-averaged expression can be written as

⊙ = 𝜇⊙
∞
∑

𝑙=2

𝑙
∑

𝑚=0

𝑙
∑

𝑝=0

𝑙
∑

ℎ=0

∞
∑

𝑞=−∞

∞
∑

𝑗=−∞

𝑎𝑙

𝑎𝑙+1⊙

𝜖𝑚
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!

𝑙𝑚𝑝ℎ(𝑖, 𝑖⊙)×

𝐻𝑙𝑝𝑞(𝑒)𝐺𝑙ℎ𝑗 (𝑒⊙) cos𝜙𝑙𝑚𝑝ℎ𝑞𝑗 ,

(4)

where the geocentric orbital elements of the Sun (denoted by the as-
tronomical symbol ⊙) and the spacecraft are referred to the equatorial
plane, 𝑖 is the inclination, 𝑙𝑚𝑝ℎ(𝑖, 𝑖⊙) is the product of two Kaula’s
inclination functions, 𝐻𝑙𝑝𝑞(𝑒) and 𝐺𝑙ℎ𝑗 (𝑒⊙) are Hansen coefficients, and

𝜙𝑙𝑚𝑝ℎ𝑞𝑗 = (𝑙 − 2𝑝)𝜔 + (𝑙 − 2𝑝 + 𝑞)𝑀 − (𝑙 − 2ℎ)𝜔⊙ − (𝑙 − 2ℎ + 𝑗)𝑀⊙ + 𝑚𝛺,

with 𝜔 the argument of pericenter and 𝛺 the longitude of the ascending
node. For the Moon, the non-averaged disturbing potential can be
written as

 = 𝜇
∞
∑

𝑙=2

𝑙
∑

𝑚=0

𝑙
∑

𝑝=0
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∞
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𝜖𝑚𝜖𝑠

(𝑙 − 𝑠)!
2(𝑙 + 𝑚)!

𝑙𝑚𝑝(𝑖)×

𝑙𝑠𝑞(𝑖 )𝐻𝑙𝑝𝑗 (𝑒)𝐺𝑙𝑞𝑟(𝑒 )

×
(

(−1)𝑘2𝑈𝑙𝑚−𝑠 cos𝜙+
𝑙𝑚𝑝𝑗𝑠𝑞𝑟 + (−1)𝑘3𝑈𝑙𝑚𝑠 cos𝜙−

𝑙𝑚𝑝𝑗𝑠𝑞𝑟

)

,

(5)

where the geocentric orbital elements of the Moon (denoted by the
astronomical symbol ) are referred to the ecliptic plane, and

𝜙±
𝑙𝑚𝑝𝑗𝑠𝑞𝑟 = (𝑙 − 2𝑝)𝜔 + (𝑙 − 2𝑝 + 𝑗)𝑀 + 𝑚𝛺 ± (𝑙 − 2𝑞)𝜔

±(𝑙 − 2𝑞 + 𝑟)𝑀 ± 𝑠(𝛺 − 𝜋∕2) − 𝑦𝑠𝜋.

For further details on the functions  ,𝐻,𝐺,𝑈 , the coefficients 𝜖𝑚, 𝜖𝑠,
𝑘1, 𝑘2, 𝑘3 and 𝑦𝑠 and on the general expressions above, the reader can
refer to [27].

The singly-averaged equations of motion (i.e., averaged over 𝑀),
considering the second order of the third-body series expansion can be
found in [28]. In particular, the approximations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̄⊙ = 1
2𝜋 ∫

2𝜋

0
⊙ d𝑀,

̄ = 1
2𝜋 ∫

2𝜋

0
 d𝑀,

are obtained by retaining the uplets satisfying the constraints 𝑙−2𝑝+𝑞 =
0 and 𝑙−2𝑝+ 𝑗 = 0 in the Fourier-like expansions given by Eqs. (4) and
(5), respectively.

A specific analysis for HEO of singly and doubly-averaged equations
of motion was given in [29]. Similarly to the singly-averaged expres-
sions, the doubly-averaged disturbing functions (i.e., averaged over the

mean anomaly 𝑀 and the Sun’s and Moon’s anomalies, 𝑀⊙ and 𝑀 )

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̄̄⊙ = 1
2𝜋 ∫

2𝜋

0
̄⊙ d𝑀⊙,

̄̄ = 1
2𝜋 ∫

2𝜋

0
̄ d𝑀 ,

are obtained by selecting the uplets satisfying the constraints 𝑙−2ℎ+𝑗 =
0 and 𝑙 − 2𝑝 + 𝑟 = 0 in the expansions given by Eqs. (4) and (5),
besides the constraints on the uplets imposed by the singly-averaged
hypothesis.

In [27], the Molniya 1-81, 1-86 and 1-88 orbits (orbit #32, 35,
36, respectively, of the convention used in the next section) were
analyzed by computing the corresponding Fast Lyapunov Indicators
(finite time variational chaos indicators) in the (𝑒, 𝜔) plane focusing
on the resonance 2𝜔̇ = 0, by assuming a second order expansion
(i.e., truncating the expansions in Eqs. (4) and (5) to 𝑙 = 2), averaged
over the mean anomaly of the satellite and over the mean anomaly of
the third body. The so-defined doubly-averaged model will be used also
in the analysis of this work, but not limiting ourselves necessarily to the
second order expansion.

With regard to the lunisolar perturbation on Molniya orbits, [19]
and [30] identified in 𝛺 a critical parameter for the long-term evolution
of the orbits. This issue was thoughtfully considered also in later
studies (especially [31] and [32]). In particular, by means of numerical
investigations, considering special initial conditions for 𝛺, these studies
showed that the Molniya’s lifetime could be extended to a very long
timespan (of the order of 100–200 years). The importance of the role
of 𝛺 on the satellite’s lifetime was remarked also in several Medium
Earth Orbit studies, including Galileo’s parameters [33–35].

Finally, [36] and [37] analyzed the TLE sets of the same satellites
considered in this work, focusing on the dynamics associated with the
semi-major axis and on the dynamics associated with the eccentricity,
respectively. That is, they considered the effect of the tesseral harmon-
ics on the one hand, and of the lunisolar perturbations, on the other
hand. For the eccentricity, in particular, they developed a dynamical
model on the basis of the harmonics 2𝜔, 2𝜔 +𝛺, −2𝜔 +𝛺.

2.3. Mean evolution given by TLE sets

Table 1 reports the initial conditions in mean orbital elements for
the 42 HEO Molniya satellites of the 2014 actual constellation. In the
table, the spacecraft list is sorted in chronological sequence, according
to the launch date and North American Aerospace Defense Command
(NORAD) identification number, as labeled. The initial conditions dis-
played correspond to the first epoch (𝑡0 reported in modified Julian
Day, MJD) where both the frozen condition 𝜔̇𝐽2 ≈ 0 and the 2:1 mean
motion resonance are satisfied.4 Orbital parameters, in the table, are
reported in the usual notation, being 𝑎 the semi-major axis (km), 𝑒 the
eccentricity, 𝑖 the inclination (deg), 𝛺 the longitude of the ascending
node (deg), 𝜔 the argument of pericenter (deg). Finally, a flag in the
last column marks the seven cases of decayed satellites (with the year
of the re-entry event).

In Fig. 2, we show the time evolution of the mean semi-major
axis, eccentricity and pericenter altitude obtained from the TLE sets by
means of the SGP4 model [38] for a selected number of cases. All of
them are given in the series of figures displayed in the ‘‘SUPPLEMEN-
TARY MATERIAL 1’’. The spurious effects, that can be noticed in the
figures and that we have left for the sake of completeness, are due to
the TLE. For a more complete orbital characterization, the eccentricity
behavior, which is the main focus of the present analysis, is usefully

4 Except for Molniya 1-32, 1-56 and 1-62 (namely entries #7, 20, 21 in
the table) for which the initial semi-major axis 𝑎 is some 1% larger than the
nominal figure.
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Fig. 2. Semi-major axis (left; km), eccentricity (middle) and pericenter altitude (right; km) mean evolution from the TLE data of Molniya 2-09, 2-10, 2-13, 1-36, 3-13, 1-69 (#1,
2, 4, 9, 15, 25 of Table 1). On the right, the time is displayed in decimal year for the sake of clarity; also, the black horizontal line highlights 250 km of altitude.
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Table 1
Initial mean elements for the Molniya satellites considered. # identifies the sequential number of the orbit analyzed, the second, the third and fourth columns report the official
identification along with the launch date, 𝑡0 (MJD) the initial epoch when the orbital elements are referred to, 𝑎 is the semi-major axis (km), 𝑒 the eccentricity, 𝑖 the inclination
(deg), 𝛺 the longitude of the ascending node (deg), 𝜔 the argument of pericenter (deg). On the choice of these initial conditions, please refer to the text.

# Molniya NORAD Launch date 𝑡0 𝑎 𝑒 𝑖 𝛺 𝜔 Re-entry
ID [MJD] [km] [deg] [deg] [deg] (year)

1 2-09 7 276 04/26/1974 42 600.87 26 580.72 0.737 63.40 310.28 282.57 –
2 2-10 7 376 07/23/1974 44 307.83 26 574.82 0.722 64.13 355.47 274.96 –
3 1-29 7 780 04/29/1975 42 559.52 26 579.70 0.743 62.85 318.66 280.43 –
4 2-13 8 015 07/08/1975 42 748.56 26 578.61 0.739 63.08 288.70 281.34 2018
5 2-14 8 195 09/09/1975 42 674.15 26 578.36 0.743 62.94 300.76 280.33 –
6 3-03 8 425 11/14/1975 42 746.41 26 574.90 0.742 62.87 289.39 280.33 2017
7 1-32 8 601 01/22/1976 44 306.24 26 640.38 0.690 63.56 134.46 276.29 –
8 2-17 9 829 02/11/1977 43 218.70 26 579.66 0.741 62.87 310.63 280.30 2020
9 1-36 9 880 03/24/1977 43 239.65 26 574.08 0.742 62.80 307.57 280.11 –

10 3-07 9 941 04/28/1977 43 283.50 26 576.84 0.743 62.87 300.43 280.31 2019
11 3-08 10 455 10/28/1977 43 476.16 26 577.93 0.745 62.83 5.57 280.34 –
12 1-40 10 925 06/02/1978 43 683.63 26 574.82 0.744 62.88 19.94 280.55 –
13 3-10 11 057 10/13/1978 43 806.87 26 571.71 0.744 62.83 49.46 279.94 –
14 1-44 11 474 07/31/1979 44 109.27 26 579.59 0.743 62.85 313.41 280.27 2017
15 3-13 11 896 07/18/1980 44 457.07 26 579.28 0.743 62.85 42.71 280.34 –
16 1-49 12 156 01/30/1981 44 728.57 26 579.77 0.740 62.91 311.83 281.08 –
17 1-52 13 012 12/23/1981 44 969.94 26 577.53 0.741 62.86 322.50 279.82 –
18 1-53 13 070 02/26/1982 45 043.97 26 579.56 0.742 62.85 46.27 280.17 –
19 3-20 13 875 03/11/1983 45 411.79 26 573.94 0.743 62.89 349.73 280.17 –
20 1-56 13 890 03/16/1983 46 357.98 26 646.00 0.711 63.50 257.10 282.29 –
21 1-62 15 214 08/24/1984 48 000.94 26 997.02 0.686 63.81 143.51 272.19 –
22 1-63 15 429 12/14/1984 46 065.99 26 579.59 0.742 62.86 341.38 280.38 –
23 3-24 15 738 05/29/1985 46 269.33 26 579.95 0.740 62.85 303.47 280.63 –
24 3-27 16 393 12/24/1985 46 443.16 26 573.25 0.741 62.87 324.17 280.39 –
25 1-69 17 078 11/15/1986 46 765.04 26 579.50 0.742 62.87 326.26 280.24 –
26 3-31 17 328 01/22/1987 46 861.22 26 579.75 0.742 62.87 306.26 280.46 –
27 1-71 18 946 03/11/1988 47 238.66 26 571.85 0.742 63.06 300.55 280.30 –
28 1-75 19 807 02/15/1989 47 619.22 26 579.98 0.742 63.00 335.96 280.15 –
29 1-80 21 118 02/15/1991 48 366.38 26 575.88 0.742 62.86 314.71 280.84 –
30 3-40 21 196 03/22/1991 48 494.46 26 576.78 0.738 62.92 289.56 281.95 –
31 1-81 21 426 06/18/1991 48 433.04 26 578.37 0.743 62.90 352.12 280.51 –
32 3-41 21 706 09/17/1991 48 537.95 26 579.98 0.742 62.85 243.44 280.31 –
33 3-42 22 178 10/14/1992 48 929.95 26 579.97 0.742 62.86 269.96 280.45 –
34 1-86 22 671 05/26/1993 49 151.76 26 577.28 0.743 62.83 241.84 280.42 –
35 1-87 22 949 12/22/1993 49 476.39 26 575.27 0.741 62.96 329.29 281.60 –
36 1-88 23 420 12/14/1994 49 718.72 26 578.62 0.743 62.80 245.40 280.37 –
37 3-47 23 642 08/09/1995 49 977.66 26 579.35 0.742 62.89 295.99 280.59 –
38 1-90 24 960 09/24/1997 50 722.56 26 579.82 0.743 62.86 275.46 280.28 –
39 1-91 25 485 09/28/1998 51 092.15 26 576.12 0.744 62.86 311.80 280.45 –
40 3-50 25 847 07/08/1999 51 374.01 26 575.06 0.742 62.86 6.20 280.33 –
41 3-51 26 867 07/20/2001 52 130.26 26 571.97 0.743 62.86 248.91 280.46 2016
42 1-93 28 163 02/18/2004 53 061.85 26 559.84 0.736 62.86 202.79 288.20 2016

supported with the semi-major axis evolution. This is done to show
what kind of data we have at our disposal, and also to show when, in
each case, the assumption, that we will take that the semi-major axis
is constant, might fail.

Note that the chosen initial epoch 𝑡0 is usually displaced by about
1 month with respect to the launch date. The exceptions are Molniya
2-09, 2-10, 1-32, 1-56 and 1-62 (#1, 2, 7, 20, 21) due to a non-uniform
behavior in semi-major axis after the launch, that is clear from Fig. 2
and Fig. 4 displayed in the ‘‘SUPPLEMENTARY MATERIAL 1’’ for the
latter three cases. The case of Molniya 2-10 will be described in detail in
what follows, while for Molniya 2-09, though not visible from Fig. 2,
the semi-major axis decreased almost linearly up to MJD 42500 and
then started to oscillate: we have chosen to consider a good initial
condition a point after this date.

Moreover, we notice clear prodromic signs of an atmospheric re-
entry for Molniya 2-13, 3-03, 1-44,5 3-51 and 1-93 (i.e., orbits #4,
6, 14, 41, 42); while for Molniya 2-09, 2-14, 3-10, 1-49, 1-62, 3-24,
3-27, 1-80, 3-40, 3-41, 3-42, 1-86, 1-87, 1-88, 3-47, 1-90, 1-91 (#1,
5, 13, 16, 21, 23, 24, 29, 30, 32–39) a significant decrease in semi-
major axis occurs, but the satellite remains in orbit. In all the other
cases, the pericenter altitude never drops below 250 km, as also noticed

5 For a specific analysis on this reentry event, see [39].

by [37]. As a first estimate, the data shows that the atmospheric drag
can be effective to re-enter if the pericenter altitude lowers down to 210
km. In addition to these evident variations, we can also notice that the
amplitude of oscillation in 𝑎 may change during the observed timespan,
although in average it seems that the semi-major axis remains constant.
We will see how this feature can affect the eccentricity evolution.

3. Comparison between observational and numerical data

We start the analysis of the astrodynamics data given by the obser-
vations, by comparing their mean evolution with the evolution that can
be obtained by numerical propagation. The initial conditions in Table 1
are propagated assuming the secular oblateness effect given by Eq. (3)
and a doubly-averaged formulation of the lunisolar perturbation given
in Eqs. (4)–(5) under different approximations.

In particular, following the literature mentioned before, we have
tested the following physical models.

• Model 1 (referred in green in the color plots): for the time evo-
lution of the eccentricity and the inclination, the third-body per-
turbation is modeled using only the secular harmonics ±2𝜔, and
the long-period ones ±2𝜔+𝛺 and 𝛺, associated with the effect of
both Sun and Moon; for the time evolution of 𝛺 and 𝜔, only the
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oblateness effect is considered. This is, for 𝑒 and 𝑖, we consider

d𝑒
d𝑡 = −

√

1 − 𝑒2

𝑛𝑎2𝑒
𝜕̃3𝑏
𝜕𝜔

,

d𝑖
d𝑡 = − 1

𝑛𝑎2
√

1 − 𝑒2 sin 𝑖

(

𝜕̃3𝑏
𝜕𝛺

− cos 𝑖
𝜕̃3𝑏
𝜕𝜔

)

,
(6)

with

̃3𝑏 = ̃ + ̃⊙, (7)

where both ̃⊙ and ̃ are obtained from Eqs. (4) and (5) by
taking the doubly-averaged formulation and keeping the up-
lets detailed below. For the solar contribution, the set of index
(𝑙, 𝑚, 𝑝, ℎ, 𝑞, 𝑗) kept in the summation are such that6

𝑙 = 2, 𝑚 ∈ {0, 1}, 𝑝 ∈ {0, 1, 2}, ℎ = 1, 𝑞 = 2𝑝 − 2, 𝑗 = 0.

In similar way, for the lunar contribution, we are led to consider
the set7

𝑙 = 2, 𝑚 ∈ {0, 1}, 𝑝 ∈ {0, 1, 2}, 𝑠 = 0, 𝑞 = 1,

𝑗 = 2𝑝 − 2, 𝑟 = 0.

Since, for both Sun and Moon, we do not consider the full set
of uplets that can be obtained from Eqs. (4) and (5) by double
averaging, we refer to this choice as a ‘‘non-full’’ quadrupolar
model. This is the main difference of models 1 and 2 with respect
to model 3.
For 𝛺 and 𝜔, we assume the following rates

d𝛺
d𝑡 ≃𝛺̇𝐽2 ≡ −3

2
𝐽2𝑟2⊕𝑛

𝑎2(1 − 𝑒2)2
cos 𝑖,

d𝜔
d𝑡 ≃𝜔̇𝐽2 ≡ 3

4
𝐽2𝑟2⊕𝑛

𝑎2(1 − 𝑒2)2
(

5 cos2 𝑖 − 1
)

.

(8)

• Model 2 (referred in red in the color plots): as in model 1, but the
given lunisolar perturbations are applied also to 𝛺 and 𝜔, namely,

d𝛺
d𝑡 = 𝛺̇𝐽2 +

1

𝑛𝑎2
√

1 − 𝑒2 sin 𝑖

𝜕̃3𝑏
𝜕𝑖

,

d𝜔
d𝑡 = 𝜔̇𝐽2 +

√

1 − 𝑒2

𝑛𝑎2𝑒
𝜕̃3𝑏
𝜕𝑒

− cos 𝑖

𝑛𝑎2
√

1 − 𝑒2 sin 𝑖

𝜕̃3𝑏
𝜕𝑖

.

• Model 3 (referred in black in the color plots): the disturbing
potential consists of the secular 𝐽2 effect and the full quadrupolar
(𝑙 = 2) doubly-averaged model corresponding to both Sun and
Moon.

• Model 4 (referred in yellow in the color plots): for the time
evolution of the eccentricity and the inclination, we consider the
doubly-averaged octupolar (𝑙 = 3) approximation for the Moon,
the doubly-averaged quadrupolar approximation for the Sun; for
𝛺 and 𝜔, instead, we consider the oblateness effect and the
quadrupolar doubly-averaged approximation for the third-body
perturbations.

In all the propagations, the numerical integration method is Runge–
Kutta 7–8 and the ephemerides of Sun and Moon are obtained from JPL
DE405 [40]. Notice that, although the purpose here is not to develop
an efficient propagator for Molniya orbits, but to see what information
we can extract from the available data, it is important to account for
realistic lunisolar ephemerides to ensure that any discrepancies is not
due to them.

6 The condition ℎ = 1 is derived from the fact that the doubly-averaged
solar potential is independent of the argument 𝜔⊙ for 𝑙 = 2, leading to the
constraint 2 − 2ℎ = 0 in Eq. (4). We refer to [27], proposition 8, for omitted
details.

7 Again see [27], proposition 8, for omitted details.

Table 2
Initial conditions for the evolution given in Fig. 5.

# Molniya NORAD 𝑡0 𝑎 𝑒 𝑖 𝛺 𝜔
ID [MJD] [km] [deg] [deg] [deg]

2 2-10 7 376 47 628.06 26 573.53 0.742 62.06 277.27 260.24
23 3-24 15 738 48 200.85 26 576.61 0.712 63.49 65.71 278.18

Under all the possible hypotheses considered, the semi-major axis 𝑎
is constant and the problem is a two-degree-of-freedom8 system time
dependent. The different numerical evolutions are compared against
the evolution given by the TLE (in cyan). In Fig. 3, we show some
examples of the evolution of the eccentricity obtained as just described:
we show three cases where we can reproduce the long-term evolution
accurately and three cases where we cannot. In the figures shown
in the ‘‘SUPPLEMENTARY MATERIAL 2’’, the orbital evolution of the
eccentricity corresponding to all the satellites is provided.

First, we notice that almost no difference is appreciable between
the results of model 3 (black) and model 4 (yellow). As noticed in [41],
this can be explained by the low eccentricity of the lunar orbit, that
makes negligible the corresponding terms in the eccentricity evolution
for the spacecraft. Moreover, the role of the lunisolar perturbation in
𝛺 and 𝜔 plays a central role in catching the real evolution of the orbit.
This is appreciable comparing the cyan, green and red lines. A further
improvement is obtained by adopting model 3, that can match perfectly
the real evolution of the eccentricity in many cases (e.g., Molniya 1-32,
3-13 and 3-20 – orbits #7, 15, 19). In general, it seems sufficient to
consider 𝑙 = 2, 𝑚 = 0, 1, 𝑠 = 0, 1 for the Moon and 𝑙 = 2, 𝑚 = 0, 1 for the
Sun, that is, not a full quadrupolar approximation.

In Fig. 4 the behavior of 𝛺 and 𝜔, assuming different assumptions
for the associated dynamical model, is shown for two examples.

We have tested also the following extensions to model 4:

• 𝑙 = 3 also for the Sun for the propagation of 𝑒, 𝑖;
• 𝑙 = 4 both for Sun and Moon for the propagation of 𝑒, 𝑖;
• 𝑙 = 3 for the Moon also for the propagation of 𝛺,𝜔.

In these cases, we have not found any improvements in the qualitative
behavior of the orbit, in the orbital regime where the atmospheric drag
does not affect the evolution significantly.

The cases that cannot be explained with model 3 are Molniya 2-
10, 3-10 and 3-24 (i.e., orbits #2, 13, 23). For Molniya 3-10, in
particular, this is due to the significant reduction in semi-major axis
that takes place before MJD 50000 (see Fig. 3 in the ‘‘SUPPLEMEN-
TARY MATERIAL 1’’) and that is due to the atmospheric drag (the
pericenter altitude drops below 250 km). Other mismatching behaviors,
but less evident, can be seen in correspondence of a significant, but
less dramatic decrease in 𝑎, for example for Molniya 1-49 (orbit #16
in Fig. 3 in the ‘‘SUPPLEMENTARY MATERIAL 1’’). For Molniya 3-24
(orbit #23), from the corresponding eccentricity evolution shown in
Fig. 4 in the ‘‘SUPPLEMENTARY MATERIAL 1’’, we can notice that
the amplitude of oscillation of 𝑎 changes at about MJD 48100. A new
numerical propagation starting after this event has been performed
assuming model 3: the magenta curve in Fig. 5 now exhibits a perfect
agreement with the TLE mean evolution. Analogous considerations on
the role of the initial semi-major axis can be drawn for other cases, in
particular for those that show a change in the amplitude of oscillation
of 𝑎 (orbits #2, 5, 8, 9, 10, 11, namely Molniya 2-10, 2-14, 2-17, 1-36,
3-07 and 3-08). In Fig. 5, we also show as example the case of Molniya

8 More precisely, would the problem have been cast in a canonical frame-
work, the independent canonical actions would be related to the eccentricity
and inclination (e.g., we can think of the Delaunay variables 𝐺 and 𝐻 and
their associated canonical angles 𝑔, ℎ. The 2-DoF refer to the couples (𝐺, 𝑔)
and (𝐻,ℎ)).
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Fig. 3. Eccentricity evolution obtained by assuming different levels of third-body perturbation of 𝑒, 𝑖, 𝛺, 𝜔, compared against the TLE evolution for some specific examples. More
details in the text. Top: orbits #1 and #2: middle: #7 and #13; bottom: #15 and #19. All the other orbits are shown in the ‘‘SUPPLEMENTARY MATERIAL 2’’. The TLE evolution
is displayed in cyan; the evolution obtained by applying model 1 in green; the evolution obtained by applying model 2 in red; the evolution obtained by applying model 3 in black;
the evolution obtained by applying model 4 in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2-10 (orbit #2). The new initial conditions propagated for Molniya 3-
24 and 2-10 are given in Table 2. Note that by assuming for Molniya
2-10 an initial epoch closer to the launch date, e.g., at MJD 42500, we
obtain the same evolution depicted in black in Fig. 5.

As mentioned at the beginning, following [24] (see fig. 12.7, in
particular), the operational life of Molniya satellites was not longer
than 6 years, that is, we cannot associate the change in amplitude to
an intentional orbital maneuver. This is, however, an interesting feature
that can be observed in all the cases just mentioned and that is worth to
be investigated in detail in the future work focused on the semi-major
axis.

Assuming that the test above ensures model 3 to be reliable to
predict the eccentricity evolution, barring important semi-major axis
reductions, we have propagated the given initial conditions for a larger
timespan – 100 years – to see for what cases a drop in pericenter
altitude below 250 km can be attained. This is the value highlighted

at the beginning for which we can observe a significant decrease in
semi-major axis due to the atmospheric drag. Recall, again, that the
initial conditions have been propagated considering model 3, that is,
assuming 𝑎 constant. By excluding all the cases where it is already
observed a relatively significant change in 𝑎, the cases for which ℎ𝑝
lowers down to 250 km are Molniya 1-40 (orbit #12, with possible
re-entry in September 2058), Molniya 3-13 (orbit #15, July 2039),
Molniya 1-53 (orbit #18, about April 2042), Molniya 1-69 (orbit #25,
about April 2079) and Molniya 3-31 (orbit #26, about August 2053).
Since we are assuming a simplified model based on the oblateness effect
and the lunisolar perturbations, these final dates are upper limits for the
lifetime of the satellites just mentioned.

As a further consideration, the dynamics under study is known to
evolve in a rather chaotic way, by which is meant that they possess
the property to be sensitive to the initial condition (see, e.g., [27]). To
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Fig. 4. Longitude of the ascending node (left) and argument of pericenter evolution (right) evolution obtained by assuming different levels of third-body perturbation of 𝑒, 𝑖, 𝛺, 𝜔,
compared against the TLE evolution for some specific examples. More details in the text. Top: #2; middle: #7; bottom: #15. The TLE evolution is displayed in cyan; the evolution
obtained by applying model 1 in green; the evolution obtained by applying model 2 in red; the evolution obtained by applying model 3 in black. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

estimate their Lyapunov times9 𝜏, we have relied on the variational
equations derived from to the equations of motion10 associated to
model 3. We have estimated the Lyapunov times based on a 500 years
numerical propagation. For all of them, we have found 𝜏 to be roughly
speaking about 10 years. Thus, the 40 years long TLE data arcs at
hands represent about 4𝜏. Over this timescale, although existing, the
sensitivity to the initial condition does not manifest itself so strongly in
eccentricity as revealed by the following numerical experiment.

From the reconstructed nominal trajectory fitting the TLE data of
the oldest survived satellites Molniya 2-09 and 2-10 (orbit #1 and #2),

9 Recall that the Lyapunov times correspond to the time needed for two
nearby orbits to diverge by the Euler’s number.

10 Thus, to estimate the Lyapunov times, we do not use the data time-series
themselves by reconstructing, e.g., the phase space via Takens’ delay (or also
called lag) coordinates embedding theorem [42].

we have isolated an ensemble of 2𝐾 = 10 initial conditions for the
specific epoch 𝑡0 by selecting the points 𝑥𝑛 = 𝑥(𝑡𝑛), 𝑡𝑛 = 𝑡0 + 𝑛𝛥𝑡, 𝑛 ∈
{−𝐾,… , 𝐾}, 𝛥𝑡 = 1 day from the nominal trajectory (i.e., neighboring
points). Here 𝑥𝑛 denotes the Keplerian set (𝑎, 𝑒, 𝑖, 𝛺, 𝜔) of geometrical
elements at time 𝑡𝑛. Then, we have propagated this ensemble of initial
conditions forward in time over 200 years, assuming the same initial
epoch (ruling the Earth-Moon configuration) for all of them and the
same dynamical model. The resulting orbits, hardly distinguishable the
one from the other, are shown in Fig. 6. It can be noticed how the
divergence among different orbits can be appreciable, but very slightly,
only towards of the end of the interval of propagation of Molniya 2-10.

Finally, the eccentricity series have been processed by means of
the Lomb–Scargle algorithm11 [43,44] in order to identify the main

11 LombScargle from astropy; given that the data are not equally spaced.
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Fig. 5. On the left, in cyan the eccentricity evolution of the TLE for Molniya 2-10 (orbit #2) and the ones obtained by numerical propagation choosing two different initial
conditions (black Table 1 and magenta Table 2). On the right, a similar experiment performed for Molniya 3-24 (orbit #23). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Propagation of 11 neighboring initial conditions, given the same initial epoch and using model 3. The initial conditions have been taken from the propagation of the initial
condition in Tables 1 and 2 for orbit #1 (left) and #2 (right), respectively, by selecting the points 𝑥𝑛 = 𝑥(𝑡𝑛), 𝑡𝑛 = 𝑡0 + 𝑛𝛥𝑡, 𝑛 ∈ {−𝐾,… , 𝐾}, 𝛥𝑡 = 1 day from the nominal trajectory.
Such neighboring initial conditions are not discernible the one from the other. The divergence among different orbits can be appreciable, but very slightly, only towards of the
end of the interval of propagation of Molniya 2-10 on the right. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. Example of the results obtained by applying a Lomb–Scargle procedure to the eccentricity series. From left to right: Molniya 2-09, 2-10, 1-29 (orbit #1, 2, 3, respectively).
In red, the dominant terms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

long-term periods and compare them with the periods corresponding to
the quadrupolar and octupolar doubly-averaged approximations for the
third-body perturbations. Three examples are shown in Fig. 7. The main
periods detected are showed in Table 3 for all the orbits and are related
to the harmonics corresponding to 𝑙 = 2 in Eqs. (4)–(5) (excluding the
secular ones). In particular, the periods of about 7.5 years, 11 years
and 24 years that stand out correspond to 2𝜔 + 𝛺, 2𝜔 + 𝛺 − 𝛺 , and
2𝜔+𝛺 , respectively12. The correspondence between the observational
and the analytical approximation is obtained by assuming that the pre-
cession of 𝛺 and 𝜔 is due to the oblateness effect and the quadrupolar
doubly-averaged approximation for the third-body perturbation. The

12 Note that the corresponding information given in [9] was partially correct
and it was corrected in [10].

oscillations that can be noticed in the table with respect to the values
just reported are due to the different initial conditions.

4. Conclusions and future directions

In this work, we have analyzed the long-term evolution of the
mean eccentricity obtained from TLE sets of the Molniya historical
constellation. The analysis has considered the third-body effect as the
major perturbation on the orbital eccentricity. Different assumptions on
a two-degree-of-freedom time dependent dynamical model accounting
for the lunisolar perturbations coupled with the oblateness effect have
been compared against the observational data. The outcome shows that
a quadrupolar doubly-averaged formulation represents a reliable model
to depict a realistic evolution. Also, it has emerged the importance of
the role of the lunisolar perturbation in the time evolution of 𝛺 and 𝜔.
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Table 3
Main periods (years) detected by means of the Lomb–Scargle procedure for each orbit.
− means that the given frequency was not detected.

N 2𝜔̇ + 𝛺̇ 2𝜔̇ + 𝛺̇ − 𝛺̇ 2𝜔̇ + 𝛺̇

1 25.07 10.93 6.55
2 22.83 11.12 7.61
3 24.95 11.46 7.19
4 22.09 10.76 8.23
5 24.80 11.39 7.15
6 24.11 10.51 8.37
7 25.86 11.76 7.92
8 23.92 10.99 7.97
9 27.07 10.98 7.66

10 23.87 10.97 7.96
11 20.75 10.65 7.44
12 20.35 11.05 7.58
13 – – 7.11
14 – – 7.57
15 21.35 – 7.41
16 24.50 11.14 7.50
17 23.99 – 7.66
18 20.39 – 7.37
19 22.93 – 7.64
20 25.30 – 7.65
21 22.41 – 7.47
22 25.17 – 7.98
23 – 10.44 6.87
24 24.88 – 7.19
25 24.67 11.88 7.82
26 24.45 – 7.06
27 23.44 – 7.09
28 22.90 11.03 8.05
29 21.29 – 7.91
30 21.31 – 7.49
31 20.88 – 7.33
32 – – 7.77
33 – – 7.06
34 – – 8.21
35 – – 7.95
36 – – 7.24
37 – – 7.49
38 – 11.14 5.72
39 – – 6.48
40 – – 8.36
41 – – 7.28
42 – – 7.14

The role of the initial conditions turns out to be important for what
concerns the semi-major axis, not only in case of a significant reduction
(as expected), but also when the amplitude of oscillation varies. The
corresponding behavior and the reason of the change exhibited by
several satellites will be faced in a future work. In the same work, the
role of tesseral harmonics [45] and of the atmospheric drag, along with
a detailed analysis of the solar activity, will be presented.

Preliminary numerical experiments have been performed to under-
stand whether chaotic phenomena manifest in the timespan considered.
The conclusion is that in the considered time interval the chaotic nature
of the problem does not apparently affect so strongly the dynamics of
the eccentricity.

Finally, the work [41,46], just concluded, has analyzed amplitudes
and periods of the lunisolar doubly-averaged expansions up to the
octupolar approximation, with the purpose of identifying the major
contributions for a proper phase space description. Such Hamiltonian
description has been supported by the numerical comparison provided
here and will be published in a separate work. From that theoretical
description and the phase space analysis, the role of the initial 𝛺
pointed out in the past will be clarified and a more detailed analysis
on the role of chaos will be carried out.
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