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ABSTRACT

We examine the initial mass function (IMF) and time history of the stellar birthrate in the
solar neighborhood assuming a time-independent IMF. The present-day mass function is con-
structed from the luminosity function, and a discussion of all the relevant observational quantities
(luminosity function, mass-luminosity relation, scale heights, correction for non-main-sequence
stars, and correction for main-sequence brightening) and the associated uncertainties is given.
The observed total mass is not in serious disagreement with the dynamical mass (Oort limit)
when the uncertainties are considered, and so there is no strong evidence for a local *“missing
mass” problem. The primary constraint on the birthrate history is the requirement that the
derived IMF not exhibit an unphysical discontinuity at the mass where the main-sequence lifetime
equals the age of the galactic disk. Considering the above uncertainties, the average past birthrate
may be at most about 5 times larger or 3 times smaller than the present birthrate according to this
constraint, and we favor a variation of less than a factor of 2. A discussion of 12 secondary con-
straints on the birthrate history is given, and it is concluded that these constraints are either
consistent with the continuity constraint or else indeterminate. There is, in particular, no evidence
for a birthrate which depends on the square of the mean gas density. If the birthrate depends on
some power of the mean gas density, the exponent must be small (<0.5). Theoretical models for
the birthrate history are also examined. Most theories predict birthrates which are expected to be
constant or change by relatively small amounts over the history of the disk, in agreement with
the observational evidence.

IMFs are derived for a range of birthrate histories consistent with the continuity constraint.
The resulting IMFs are smooth and can be well approximated by a half-Gaussian distribution
in log M i.e., mass is distributed lognormally. The slope of the IMF at a given mass is d log ¢/
dlog M = —(1 + log M). Tables of various useful quantities such as cumulative number and
mass distributions, present birthrates, and mass consumption rates are given. The present total
rate of mass consumption is found to lie between 3 and 7 x 10~° M pc~2 yr~!. The correspond-
ing time scales for gas depletion suggest that star formation is balanced by infall and/or that the
star formation rate is partly controlled by stochastic factors such as supernova explosions or
galactic encounters. The derived field star IMF is compared with previous determinations, the
available data on open clusters and associations, and theoretical models for the IMF. Within
the observational uncertainties, the cluster IMF agrees with the field star IMF for 1 My S M <
10 M, but some clusters are deficient in lower-mass stars. The IMF of the Orion OB1 association
agrees well with the field star IMF for M Z 2.5 M,,. Various theoretical models for the mass
distribution resulting from fragmentation agree roughly with the shape of the IMF for M > 2 M.
The main deficiency of these models of fragmentation is their inability to account for the flattening
of the observed IMF at low masses or the low-mass turnovers seen in some open cluster IMFs.
Models in which the mass distribution is controlled by interactions of fragments with each other
and with ambient gas are more successful in accounting for these two features. Finally, we
summarize observational and theoretical arguments concerning the basic assumptions of this
paper that the IMF is independent of time and a continuous function of mass.

Subject headings: luminosity function — mass-luminosity relation — stars: evolution —
stars: formation — stars: stellar statistics

I. INTRODUCTION in a galaxy (the stellar birthrate) and the frequency
distribution of stellar masses at birth (the initial mass
X . . function, or IMF). Applications which depend on
star formation which are of fundamental importance these functions include analyses of the stellar contents

and which have application to many fields of current of . . . .
- ! . galaxies using photometric properties (e.g., Turnrose
research: the spatially averaged rate of star formation 1976; Williams 1976; Huchra 1977), chemical evolu-
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There are two functions related to the process of
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see Trimble 1975; Audouze and Tinsley 1976; Tinsley
1977a), models for metal-rich gas in clusters of
galaxies (De Young 1978), and constraints on the
evolutionary status of red giants with peculiar abun-
dances (Scalo and Milier 1978, 1979). Additionally,
determinations of the stellar birthrate and IMF are
fundamental constraints on theories of star formation.

Since the pioneering work of Salpeter (1955) and
Schmidt (1959), there have been numerous papers
(discussed below) on the birthrate and IMF; never-
theless, there exist in the literature conflicting state-
ments about, and misuse concerning, the form of these
functions and a disregard for the observational un-
certainties. This paper therefore has the following
goals: (1) to collect and discuss in one place the data
required for the determination of the IMF; (2) to
evaluate the uncertainties in the input data and their
effect on the results; (3) to examine the available
evidence concerning the history of the birthrate, in
order to firmly establish the range of the maximum
allowable time variation of the birthrate in the solar
neighborhood; (4) to derive self-consistent IMFs from
the above data.

We have sacrificed some conciseness in order to
make clear the sources of, and uncertainties in, the
observational input data and to make the presentation
reasonably complete and self-contained. An inde-
pendent review of evidence relating to the stellar
birthrate is given by Tinsley (1977a), and a general
review of the IMF in our Galaxy and other galaxies
is presented by Scalo (1979).

The organization of the paper is as follows. Section
I deals with the observational determination of the
present-day frequency distribution of stellar masses.
We discuss in turn each of the observed quantities
which enter the construction of this distribution,
emphasizing the possible sources of uncertainty. Con-
straints on the history of the stellar birthrate are dis-
cussed in § III. We first introduce the basic relations
between the present-day distribution of masses, the
history of the birthrate, and the IMF, and use several
different forms of the birthrate to illustrate the rela-
tion. Several of the basic ideas and methods of § 111
were introduced by Salpeter (1955) and Schmidt
(1959). Following Tinsley (1977a), we then examine
the constraints on the birthrate history imposed by the
requirement that the derived field star IMF not exhibit
an unphysical discontinuity. The allowed range of
birthrate histories which results is within, but smaller
than, the range given by Tinsley (1977a), and suggests
that the birthrate has been roughly constant to within
a factor of from 2 to 4 over the age of the galactic
disk. A number of secondary constraints on the birth-
rate history are examined next, and are found to be
either indeterminate or else consistent with the con-
tinuity constraint. Theoretical considerations related
to the time history of the birthrate are also discussed.
We emphasize that there is no evidence for a strongly
decreasing birthrate, and that even a birthrate which
increases somewhat with time cannot be ruled out on
eithier observational or theoretical grounds. In § IV we
derive field star IMFs for a range of birthrate histories
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consistent with the continuity constraint. It is found
that the IMF is smooth and can be approximated by a
half-Gaussian distribution. We present and discuss
some useful derived quantities, such as cumulative
number and mass distributions, present birthrates,
and mass consumption rates. The derived field star
IMFs are compared with previous determinations and
the available data on open cluster and association
IMFs and with theoretical models for the IMF. A
summary and discussion of the results and basic
assumptions are given in § V.

Throughout this paper it is assumed that the IMF
in the solar neighborhood has been independent of
time over the lifetime of the galactic disk. It should be
noted that there is no compelling observational or
theoretical evidence for or against this assumption. We
make this assumption for the purpose of using the
simplest theory to describe the observations. The
question of how (or whether) the IMF may have
changed over the age of the Galaxy has not been
resolved (see Trimble 1975; Audouze and Tinsley
1976; Ostriker and Thuan 1975), and arguments relat-
ing to this problem are discussed in § V.

This paper is concerned with the disk population in
the solar neighborhood, which has been taken to be a
cylindrical volume with its axis passing through the
Sun and perpendicular to the plane of the Galaxy.
Following, for example, Tinsley (1974a), in order to
attempt to satisfy the conflicting requirements of using
a volume large enough that any statistical fluctuations
are averaged out and a volume small enough that
observations are reliable and a mixture of other
population types is avoided, we take the radius of this
cylinder to be about 1kpc and to extend several
hundred parsecs on either side of the plane. All
quantities are integrated over the height of this cylinder
and given per square parsec.

I1. PRESENT-DAY MASS FUNCTION
a) Construction of the Present-Day Mass Function

The present-day mass function of main-sequence
field stars in the solar neighborhood (PDMF) is the
observational foundation of the present investigation.
In this section the observational data leading to the
PDMF are examined in detail. The uncertainties in-
volved are estimated in order to find the resulting un-
certainties in the birthrate and IMF and also to
indicate areas where improved observations are
needed. The PDMF ¢, (log M) is defined as the
number of main-sequence stars per unit logarithmic
mass interval per square parsec in the solar neighbor-
hood. Note that ¢, (log M) is given per square
parsec, that is, integrated perpendicular to the disk,
in order to account for the fact that high-mass stars
are strongly concentrated toward the disk while low-
mass stars are found several hundred parsecs outside
the disk. The relative numbers of the low-mass stars
in the solar neighborhood would be underestimated
if the PDMF were defined in terms of space densities
in the galactic plane.

The PDMF of main-sequence field stars is related
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to the luminosity function of field stars ¢(M,), which
gives the number of stars of all types (not just main
sequence) per unit absolute magnitude and per cubic
parsec in the plane of the Galaxy. The PDMF is
derived from the luminosity function by

dM,
dlog M

9Sms(10g M) = ¢(Mv)

2H(M,)fms(My) . (1)

In equation (1), dM,/dlog M is the slope of the
(absolute magnitude, mass)-relation and converts the
luminosity function to a mass function. The term
2H(M,) is the result of integrating the luminosity
function perpendicular to the plane of the Galaxy,
assuming an exponential distribution with scale height
H(M.,). The factor f,(M,) gives the fraction of stars
at a given magnitude which are on the main sequence.
The observations relevant to each of these factors are
discussed below.

b) Luminosity Function

All methods for determining the luminosity function
of field stars involve counting the number of stars as a
function of apparent magnitude and determining
distances to the stars by various means. From this,
the absolute magnitudes and volume density can be
calculated. An excellent review of the methods and
results of early investigations is given by McCuskey
(1966). A brief summary and update are given here.

The basic data used in obtaining star densities from
the method of trigonometric parallax are a catalog of
the number of stars as a function of apparent magni-
tude, proper motion, and parallax. Corrections are
applied for incompleteness and random errors in the
parallaxes and for incompleteness in proper motions
(see McCuskey 1966 for details). This method was
used by van Rhijn (1925) and more recently by Muzzio
(1973). Wielen (1974) and Mazzitelli (1972) have
derived the luminosity function by this method, but
have circumvented the need for the incompleteness
factors by using the most complete catalog of stars
available (Gliese 1957, 1969) and using small enough
distances (5-20 pc) that the catalog is not seriously
incomplete. On the other hand, the determinations of
Wielen (1974) and Mazzitelli (1972) do not include
intrinsically bright stars. Another method for the
determination of the luminosity function, which was
developed by J. C. Kapteyn and P. J. van Rhijn in the
first third of this century, is the use of mean (statistical
and secular) parallaxes to obtain distances. At that
time, there were few stars with measured trigonometric
parallaxes and distances were inferred from proper
motions and radial velocities. The method of determin-
ing the luminosity function from ‘“mean absolute
magnitudes’ was also developed because of the small
number of trigonometric parallaxes available to early
investigators. It is based observationally on blink
surveys of proper motion and has been applied by
Luyten (1938, 1968) and Wanner (1972). Wanner
presented a lucid discussion of this method. He also
considered the uncertainties produced by the details
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of the computational methods and found that such
consideration results in an uncertainty of about + 307,
in the derived luminosity function. The methods of
spectroscopic and photometric parallax use spectral
class and color, respectively, as a measure of absolute
magnitude. McCuskey (1956, 1966) has used spectro-
scopic parallax to investigate variations of the lumi-
nosity function in the galactic plane, while Upgren
(1963) has examined the luminosity function at
different heights above the plane. Weistrop’s (1972)
luminosity function uses the method of photometric
parallaxes.

The results of these myriad investigations are in
surprisingly good agreement. In Figure 1 the lumi-
nosity functions of McCuskey (1966), Wielen (1974),
and Luyten (1968) are shown, along with the lumi-
nosity function adopted in the present paper. The
luminosity functions of Wielen and McCuskey show
a small dip around M, = 7. We attach no physical
significance to this dip because its size is within the
errors of the determination of the luminosity function
and this dip is not found by all investigators. The
turnover or flattening at M, ~ 15 appears to be a real
effect, although its precise location is not known. It
should be noted that the luminosity function is un-
certain for stars with M, < —3 because of the scarcity
of these stars. Further uncertainties for these bright
stars are discussed in §IIf below. The luminosity
functions in Figure 1 agree well with the luminosity
functions of others, except for those of Wanner (1972)
and Weistrop (1972). Wanner finds a slightly larger
value for the luminosity function for the stars with
M, < 11 and a slightly smaller value for fainter stars.
He states that his computational methods tend to
overestimate the number of intrinsically bright stars
and underestimate the number of faint stars. Weistrop’s
(1972) luminosity function is in disagreement with
those given in Figure 1 only for stars fainter than M, =
10, and the resolution of this discrepancy is discussed
below. Because of the agreement between luminosity
functions derived by different methods and for
different volumes of space, it can be concluded that
there exists a meaningful average luminosity function
which represents the disk population in the solar
neighborhood.

In her determination of the luminosity function,
Weistrop (1972) found that the reddest M dwarfs were
5-10 times more numerous than indicated in Figure 1
and that they were concentrated in a narrow layer in
the galactic plane. Several other concurrent papers
also gave evidence for an enhanced low-velocity M
dwarf population: Murray and Sanduleak (1972),
Pesch (1972), Gliese (1972), and Jones (1972). Subse-
quent investigations have not supported these results.
Faber et al. (1976) and Weistrop (1976a) found errors
in Weistrop’s (1972) photographic photometry. Colors
were systematically measured to be too red, so the
absolute magnitudes assigned were too faint. The stars
were thought to be closer than they actually are, with
a resulting increase in the derived density. Addition-
ally, investigations by Weistrop (19765, 1977a, b), Koo
and Kron (1975), Jones and Klemola (1977), and
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F1G. 1.—The luminosity function ¢(M,) given as the number of stars per unit absolute visual magnitude M, and per pc® in the
plane of the Galaxy. @, McCuskey (1966); O, Luyten (1968); x, Wielen (1974); solid line, adopted relation.

Warren (1976) show that there is no evidence for a
large number of low-velocity M dwarfs. It is con-
cluded that Figure 1 is a good representation of the
faint end of the luminosity function.

The luminosity function has been given for stars as
faint as M, = 16 (corresponding to 0.1 M,). Although
determinations of the luminosity function for fainter
stars do exist (e.g., Luyten 1968 goes to M, = 24!),
these data cannot be used to infer a mass spectrum for
several reasons. First, the observational mass-lumi-
nosity relation is unknown for such faint stars and any
theoretical relation would be extremely uncertain
because of difficulties in model construction and un-
certain bolometric corrections. Second, the scale
height of faint dwarfs is unknown. Third, the fraction
of these very faint stars which are white dwarfs and
objects too small to ever fuse hydrogen (rather than
main-sequence stars) is unknown. Finally, as em-
phasized by Hartmann (1970), there are incomplete-
ness problems caused in part by the fact that these
stars were discovered in proper motion surveys, so
stars of small proper motion may not have been
adequately accounted for. It is clear that the PDMF
cannot be established by the present methods below
about 0.1 M. It should be noted that M, = 16, or
0.1 Mo, is in rough agreement with theoretical predic-
tions of the lowest possible mass for a main-sequence
star (~0.08 My [Grossman and Graboske 1971]) and
the lowest observed masses (~0.06 M [Heintz 1972;
Lippincott and Hershey 1972]).

Hartmann (1970) pointed out that the existence of
unresolved multiple stars affects the definition of the
luminosity function (and derived IMF), which must
refer to all discrete mass entities whether or not they
are found in multiple systems. Since unresolved
multiple systems conceal stars of low luminosity, the
apparent luminosity function needs to be weighted
toward the fainter stars if one is to obtain the “true”
luminosity function (F. L. Whipple 1978, personal
communication). In principle such a correction could

be attempted, but the uncertainties would be large
because of our lack of knowledge concerning the
distributions of mass ratios and separations for binary
stars. Fortunately, Hartmann’s (1970) comparison of
the luminosity function of nearby and distant stars
suggests that the effect is small.

¢) Mass-Luminosity Relation

Having justified the validity of the adopted lumi-
nosity function, we now proceed to convert this
luminosity function to a mass distribution. In order to
accomplish this, the relationship between mass and
mean absolute visual magnitude on the main sequence
is needed. Figure 2 shows masses and magnitudes for
visual and eclipsing main-sequence binaries as com-
piled by Lacy (1977) and for main-sequence spectro-
scopic binaries (Cester 1965). The dashed line is the
magnitude-mass relation derived from Stothers’s
(1974) theoretical mass-luminosity relation and Code’s
(1975) bolometric corrections. The relation adopted in
the present work is shown by the solid line. For low
masses (0.6 M) the adopted relation is the same
as the theoretical relation of Copeland, Hensen, and
Jorgensen (1970) as given by Lacy (1977).

The adopted (mass, absolute magnitude)-relation
requires further explanation. The magnitude of a main-
sequence star decreases as the age of the star increases,
so it is necessary to specify the age of the stars to
which the (mass, absolute magnitude)-relation applies,
e.g., the (mass, zero-age main-sequence magnitude)-
relation. The relation we have chosen (denoted the
[mass, mean absolute magnitude]-relation) is for a
star of average age, that is, the relation between mass
and the average absolute magnitude of main-sequence
stars of all ages at a given mass. For stars with main-
sequence lifetimes less than the age of the Galaxy, the
mean relation is roughly 0.5 mag below that of the
zero-age relation since stars brighten by roughly 1 mag
during their lifetime. For stars with main-sequence
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I —T T 1 T used by Joy and Abt (1974) for M stars and Woolley
Py / 05 (1976) for F7-K7 stars.
x Ho7
AT % 80 d) Scale Heights
2| o 8@ It is well known that the spatial distribution of stars
% ,’%’ 84 perpendicular to the plane of the Galaxy varies with
ol Q;X - 87 spectral type. O stars are only found relatively close
7 740 to the plane, while M stars are found in substantial
2+ & e numbers at much greater distances. If no attempt were
M, 1 ';2 made to account for this effect in deriving the PDMF,
4 lea the numbers of massive stars would be overestimated
relative to the number of low-mass stars. It is usually
6 jia assumed that the luminosity function of stars per-
] Ki pendicular to the plane is given by an exponential
8 VO function
o 1., #e) = 9z = 01, @
i M4 where z is the distance from the plane, ¢(z) is the
number of stars per cubic parsec at height z (and per
b M5 magnitude or mass interval), and H is the scale height.
Examination of the existing literature on the distri-
. e bution of stars perpendicular to the plane (see below)
, , ] L | , shows that an exponential distribution is at best a

log M
FiG. 2.—Relationship between absolute visual magnitude
M, and mass M (My) for main-sequence stars. @, visual
binaries (Lacy 1977); O, eclipsing binaries (Lacy 1977); x,
spectroscopic binaries (Cester 1965); dashed line, theoretical
mass-luminosity relation (Stothers 1974); solid line, adopted
relation.

lifetimes greater than the age of the Galaxy, the mean
and zero-age relations are nearly equal. The motivation
for this choice is as follows. The brightening of a star
during its main-sequence lifetime has an effect on the
PDMF and IMF. Above 1 M, more stars are seen at
a given luminosity than would be seen if no brighten-
ing occurred. The effects of brightening are considered
in detail in the Appendix, where it is shown that the
use of the (mass, mean absolute magnitude)-relation
compensates for the effects of main-sequence brighten-
ing on the PDMF and IMF.

The relationship between spectral class and mean
absolute visual magnitude on the main sequence, which
enters in a variety of applications, is also shown in
Figure 2. This was found by plotting published
determinations of the (spectral class, magnitude)-
relation (listed below) as well as the individual stars
of Lacy (1977) and Cester (1965), and drawing a mean
relation by hand. The absolute magnitudes of O stars
which are members of clusters with reliably deter-
mined distances were determined by Upton and
Bohannan (1971), Conti and Alschuler (1971), and
Walborn (1973). Blaauw (1963) gives absolute magni-
tudes covering most of the main sequence. Distances
were found by zero-age main-sequence fitting for stars
earlier than A2 and from trigonometric and mean
parallaxes for stars later than B7. Blaauw (1973) gives
improved values for B8-G8 stars based on secular
parallaxes (Jung 1970). Trigonometric parallaxes were

crude representation of the true ome. The existing
observations do not, however, allow a better repre-
sentation either numerically or analytically, so an
exponential distribution is used.

Figure 3 shows scale heights from Schmidt (1959,
1963), Allen (1973), Weistrop (1972), McCuskey
(1966), Upgren (1963), and the work of Elvius (1951,
1962) and Bok and MacRae (1941) (as given in Elvius
1965). Only Schmidt and Allen published values for the
scale height. For the other papers, scale heights were
found from graphs of log ¢(z) versus z by taking a
mean slope. The adopted relation is shown by the
solid line in Figure 3. The conversion from spectral
type to mass was performed using the relation in
Figure 2. Figure 3 shows that the scale heights of all
but the brightest stars are not well determined. Addi-
tionally, the values of the scale heights for the faintest
stars are extrapolations. The distribution of faint
main-sequence stars perpendicular to the galactic
plane is not known. (The determination by Weistrop
1972 cannot be used because of the errors in her
photometry for faint stars.) In the absence of observa-
tions for these stars, we adopt an extrapolation similar
to that of Schmidt (1959, 1963) and Allen (1973). It
should be noted that the uncertainty introduced by
integrating over the (poorly determined) z distribution
of stars is not as large as the error that would be
introduced if only stellar densities in the galactic
plane were considered.

Table 1 summarizes the values of the luminosity
function, masses, dM,/dlog M, and scale heights
adopted in the present investigations. Also given in
Table 1 are main-sequence lifetimes extracted from the
theoretical calculations of Iben (19654, b, 1966,
1967a, b, c), Thomas (1967), Hofmeister, Kippenhahn,
and Weigert (1964aq, b, c), Hofmeister (1967), Kippen-
hahn, Thomas, and Weigert (1965), and Faulkner and
Cannon (1973). These lifetimes will be needed to
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TABLE 1

ADOPTED RELATIONSHIPS

$(M,) —dM, 2H 108 Tms
M, (stars pc~2 mag~1) log M/ M, dlog M (pc) (yr)
-6 1.78 (—8) +1.79 4.0 180 6.50
-5 7.94 (—8) +1.55 4.2 180 6.57
~4. 3.55(—7) +1.33 4.6 180 6.76
=3 1.58 (—6) +1.11 4.9 180 7.02
—2 7.08 (—6) +0.91 5.3 180 7.32
e DU 3.16 (—5) +0.72 5.8 180 7.68
0........... 1.20 (—4) +0.54 6.4 180 8.11
+1........... 3.31 (—4) +0.40 7.1 185 8.50
+2. 7.24 (—4) +0.27 8.1 210 8.90
+3. 1.41 (—3) +0.16 9.2 300 9.28
+4.. ... 2,19 (—3) +0.07 10.6 465 9.63
+5. 2.95(—3) —0.01 12.8 590 9.93
+6.. ... 3.98 (—3) —0.08 15.4 635 10.18
+7 5.25(=3) —0.14 15.6 650
+8. ... 6.61 (—3) —0.21 15.0 650
+9. 8.13 (-3) —-0.27 13.5 650
+10........... 9.55(—3) —0.35 11.6 650
+11......... .. 1.12(=2) —0.44 104 650
+12......... .. 1.26 (—2) —0.54 10.0 650
+13........ ... 1.41 (—-2) —0.65 10.0 650
+14........ ... 1.41 (—-2) —-0.75 10.0 650
+15......... .. 1.38 (—2) —0.85 10.0 650
+16........... 1.26 (—2) —0.96 10.0 650

convert the PDMF to the IMF. It is important to
realize that a great deal of faith must be placed on
these theoretical lifetimes because of the lack of
observational constraints. Roxburgh (1978) has sug-
gested that the lifetimes of stars with substantial
convective cores (M = 2-3 M) are uncertain by
about 70%, because of uncertainties in convection
theory.

e) Correction for Non-Main-Sequence Stars

The last term in equation (1) is fy,s, the fraction of
stars at a given magnitude that are on the main
sequence. This quantity is needed to correct the
luminosity function for the presence of evolved stars.

T T & BT T T
400 x 00000000 O0O0 0 -
W
w A A A
300 t+ WW.--..-...UA
H(pc) /
200 ]
N o
oooooogAé'x ]
100 |- _".‘—b_b_h_.—B_. .
RLE *
A X x x
I 1 I L !
- 4 8 12 16
4 o] M,

F1G. 3.—Relationship between scale height H (pc) and ab-
solute visual magnitude M,. @, Schmidt (1963); O, Schmidt
(1959); x, Upgren (1963); A, McCuskey (1966); W, Weistrop
(1972); B, Bok and MacRae (1941); E, Elvius (1951, 1962);
A, Allen (1973); solid line, adopted relation.

For example, both an A0V star and a K2 III star
contribute to the luminosity function at M, = 0.
Table 2 lists several determinations of f,,, and it can
be seen that there is some disagreement for brighter
stars. Salpeter (1955) and Sandage (1957) determined
fms from data in Trumpler and Weaver (1953);
Schmidt (1959) used Trumpler and Weaver (1953)
and McCuskey (1956); Upgren (1963) determined
Jfms from his own observations of spectral types; and
McCuskey (1966) used the observations of Starikova
(1960).

The fr, relation of Sandage will be used for M, < 3,
and a check on the accuracy of this relation is given
below. For fainter stars, f,s = 1.0 will be adopted.
At magnitudes fainter than M, ~ 10, f,, must be
less than 1.0 because of the presence of white dwarfs.
As the relative fraction of white dwarfs is small in

TABLE 2

FRACTION (fi,s) OF STARS OF A GIVEN ABSOLUTE
MAGNITUDE ON THE MAIN SEQUENCE

Salpeter Sandage Schmidt Upgren McCuskey

M, 1955 1957 1959 1963 1966
—6...... S 0.46 ce . 0.40
~5...... S 0.48 0.41 . 0.42
—4...... 0.18 0.48 0.41 oo 0.43
—3...... 036 0.50 0.46 . 0.44
-2, 0.50 0.51 0.48 S 0.45
—1...... 0.47 0.53 0.52 0.12 0.47

0...... 041 0.56 0.46 0.29 0.51
+1...... 047 0.62 0.33 0.62 0.56
+2...... 0.65 0.71 0.69 0.91 0.66
+3...... 076 0.86 0.87 1.00 0.82
+4...... 095 1.00 1.00 1.00 0.98
+5...... 1.00 1.00 1.00 1.00 1.00
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TABLE 3
PDMF oF MAIN-SEQUENCE FIELD STARS

log M/M, $ms(log M)*
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e Y T T Yo Y Y Ve T S L S S S

e L L e e e e = L L X S E N
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N N e it et et e e’ “wat’ “wu

* In units of main-sequence starspc~2log M ~ 1.

comparison to the uncertainties (f,; ~ 0.9 [Salpeter
1955]) and is very poorly determined, the contribution
of white dwarfs will be neglected.

f) Resulting PDMF and Uncertainties

Having examined the observations relevant to each
term in equation (1), we give the PDMF in Table 3
and Figure 4.

It is important to estimate the uncertainties in the
PDMF due to the uncertainties in the observational
data discussed above. This is a difficult task since most
authors either do not estimate errors or else consider
only the internal accuracy of their results. What is
needed here is an estimate of the total uncertainty in
the adopted PDMF. The uncertainties for large masses
are considered first.

The above calculation of the PDMF is based on
counts of the number of stars at a given absolute
magnitude. This procedure may be thought of as
taking horizontal “slices” of the H-R diagram and
counting stars in each slice. When this is done, a
sizable correction must be applied at bright magnitudes
for the presence of evolved stars because these slices
of constant magnitude intersect the giant and super-
giant regions as well as the main sequence. Asindicated
above, this correction (f;,s) is not well determined. The
need for this correction can be avoided by counting
stars as a function of spectral type, that is, by taking
vertical slices of the H-R diagram, since most O and
early B stars are on the main sequence. Three recent
investigations have examined the numbers of O and
early B stars, and therefore offer a check on the
PDMF given in Table 3.

In an investigation of the ionization of the inter-
stellar medium by O and early B stars, Torres-
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log ¢ns(log M)
o

1 L 1 1 1
-5 0 5 1.0 1.5
log M

FiG. 4.—The PDMF of main-sequence field stars ¢, .(log M)
given as the number of stars pc~2 log M ~* in the solar neigh-
borhood. Uncertainty bars are from Table 5.

Peimbert, Lazcano-Araujo, and Peimbert (1974)
examined 2883 stars in the catalog of Blanco et al.
(1968). They derived the space densities of these stars
and also compared their results with those of Prentice
and ter Haar (1969). Prentice and ter Haar’s space
densities of early-type stars were based on the catalog
of Becvar (1964). In a paper on the birthrate of massive
stars, Ostriker, Richstone, and Thuan (1974, hereafter
ORT) give densities of O and early B stars based on
the work of Richstone and Davidson (1972), who
counted 350 stars from various catalogs. By use of the
relations given in this section, the numbers given in
these papers have been converted to the PDMF and
are shown in Figure 5 along with our PDMF. The
agreement between the results of Prentice and ter Haar,

log ¢msliog M)

log M

Fi1G. 5.—Comparison of the adopted PDMF and counts of
stars versus spectral class. A, Torres-Peimbert et al.; A,
Prentice and ter Haar (1969); x, ORT; solid line, adopted
PDMF; dashed line, uncertainty limits.
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Torres-Peimbert et al. and the PDMF adopted here
confirms the validity of the adopted relation for the
earliest-type stars. The PDMF of ORT for these
massive stars is consistently smaller than that of the
others but is marginally within the lower uncertainty
limit. More important, the PDMF of ORT has a
substantially different shape. This discrepancy may
be due to the small number of stars in their sample or
to problems in correction for extinction. ORT’s
estimates of the birthrate of massive stars based on
these numbers are also affected. Note also that the
probably incorrect turnover apparent in the data of
ORT explains the plateau in the IMF given by Audouze
and Tinsley (1976).

ORT also calculate the PDMF and birthrate for
stars with M < 12 My, and a comparison with the
PDMF of this paper is warranted. For these stars,
ORT derive the PDMF from the luminosity function
as discussed in § [Ia. Their input data are similar to
ours except for the values of f,;. ORT used the f
relation of Upgren (1963), which is about a factor of
4 smaller than that adopted here, resulting in a corre-
spondingly smaller PDMF. In estimating the uncer-
tainties in our PDMF below, we have taken into
account this uncertainty in f,;, with the result that
for 3 My < M 512 My, the PDMF of ORT is
within the lower uncertainty limit of the PDMF of
this paper; in particular, they have similar shapes.

There are two additional sources of uncertainty
concerning the luminosity function of high-mass stars.
Massive stars are observed to be losing mass (e.g.,
Snow and Morton 1976). If the mass-loss rates are
very large, as adopted in some of the evolutionary
calculations of Dearborn and Eggleton (1977), many
of these stars will be observed at luminosities smaller
than the luminosity corresponding to the initial masses
of the stars. Such a “pileup” of high-mass stars at
lower luminosities seems unlikely because then the
smooth behavior of the luminosity function at high
masses will require a very peculiar form of the “real”
IMPF. If mass loss is not so rapid, then high-mass stars
may evolve at roughly constant luminosity as in the
calculations of Chiosi, Nasi, and Sreenivasan (1978).
In this case the only error in'the IMF will be the correc-
tion of the luminosity function for the fraction of stars
which are not main-sequence stars, fys. Since this
fraction is usually estimated as about % for high-mass
stars, this effect can only increase the IMF by a factor
of 2. We therefore consider it unlikely that mass loss
has disguised many initially high-mass stars.

Another possibility is that high-mass stars remain
hidden within molecular clouds or circumstellar dust
shells for most of their lives since luminous infrared
sources are commonly interpreted as newly born O
stars embedded in placental dust shrouds. The
problem may not be too severe because an O star
should rapidly ionize an H 1 region, which can be
detected at radio wavelengths. Mezger and Smith
(1976) have used the observed numbers and other
properties of H 11 regions to estimate that only 20%, +
5%, of O and early B stars are unobserved owing to
surrounding dust.
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Table 4 gives our estimates of the uncertainties in the
luminosity function, (mass, absolute magnitude)-rela-
tion, scale heights, and f,,, correction. These uncer-
tainties are chiefly a measure of the agreement between
different authors or of the scatter in the observations.
The combined uncertainty in log ¢ and logf,, for
log M > 0.8 was estimated from Figure 5, while the
uncertainties in logé and log f,; for lower masses
were found from Figure 1 and Table 2, respectively.
The uncertainties in the (M,, M)-relation and in
dM,/d log M were found from Figure 2. The uncer-
tainties in the scale heights were estimated from Figure
3. Note that this uncertainty takes into account the
possibility that the scale heights of low-mass stars
could be substantially larger than adopted. The total
uncertainty in the logarithm of the PDMF is taken as
the square root of the sum of the squares of the
individual uncertainties. These uncertainty limits are
also shown in Figures 4 and 5. For low-mass stars the
largest uncertainty is introduced by the scale heights,
while for the high-mass stars most of the quoted
uncertainty is due to the (mass, absolute magnitude)-
relation and luminosity function. It is to be emphasized
that these are generous uncertainty estimates and that
in the absence of any gross errors in the constituent
observations the uncertainties derived for the PDMF
represent the extremes allowed by the observations.

A referee has pointed out that scatter and systematic
variations in chemical composition should be con-
sidered as a source of uncertainty in our calculations.
The most important effects are on the mass-luminosity
relation and the (mass, main-sequence lifetime)-rela-
tion. Since we are concerned only with the mean
PDMF and IMF, scatter in composition will not affect
our results as long as we have used luminosities and
lifetimes corresponding to the appropriate mean com-
position. A purely empirical mass-luminosity relation
defined by a large number of stars would automatically
reflect the correct mean composition. However, the
relation adopted here (Fig. 2) employs a relatively
small number of stars and places some weight on a
theoretical relation, so it is of interest to estimate
the magnitude of the uncertainty. A dependence of
mean composition, and hence luminosity, on time of
formation in the history of the disk is another source
of uncertainty since this affects the slope of the
mass-luminosity relation. Again, empirical relations
automatically include this effect. On the other hand,
theoretical models for the spectrum of stellar masses
refer to a single composition, and so a comparison of
theory with the empirical IMF must allow for this
difference if it is significant. In what follows we assume
a standard composition X = 0.75, Z = 0.02, and
consider effects of changes in X by +0.05 and in Z by
+0.01.

[t is convenient to use the standard technique of
differential corrections (e.g., Stein 1966; Sears and
Brownlee 1965) to estimate the magnitude of the above
effects. We assume that the rate of nuclear energy
generation varies as XZ for M > 2 M and as X2 for
M < 2 Mg, and that the opacity varies as (I + X)
for M > 10 My and [Z + (X + Y)/60)(1 + X) for
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TABLE 4
UNCERTAINTIES IN THE PDMF
UNCERTAINTY
ToTAL
log — aM, MM UNCERTAINTY
log M M, log ¢(M,) log fus dlog M  Relation log H iN PDMF
+1.79 —6
+0.15, —0.38 +0.07 +0.50 +0.10 +0.54, —0.64
+0.80 —1.5
+0.10 +0.15 +0.04 +0.04 +0.10 +0.21
+0.27 +2
+0.10 +0.04 +0.04 +0.30,—-0.12 +0.32, —0.17
—0.08 +6
+0.10 +0.07 +0.08 +0.38, —0.03 +0.40, —0.15
—-0.35 +10
+0.15 +0.07 +0.08 +0.38, —0.03 +0.42,-0.19
—0.96 +16

M < 10 M. These assumptions allow us to calculate
olog L/olog X and 0 log L/olog Z. The resulting un-
certainties in M, at a given mass are less than 0.5 mag
due to Z and less than 0.4 mag due to X, both uncer-
tainties decreasing with increasing mass. The effects
on dM,/dlog M, which enters the PDMF directly,
and on the proper identification of each mass with a
luminosity in constructing the PDMF are in all cases
at least a factor of 2 smaller than the uncertainties we
already attached to the (M, log M)-relation (Fig. 2)
due to observational scatter. We therefore feel that
uncertainties in composition will not significantly
affect our PDMF within the estimated uncertainties.

The corresponding uncertainties in main-sequence
lifetime T, at a given mass, which affect only the
IMF and not the PDMF, can be estimated by assum-
ing Tpe o¢ L™ The uncertainties in log Ty, are less
than +0.18 for M < 10 M, and less than +0.08 for
M > 10 M. The effect of these uncertainties on the
IMF will be accounted for in § IIIb.

g) Comparison with Qort Limit

The PDMF can be used to calculate the mass of
main-sequence stars in the solar neighborhood, which
can be compared with the local mass density derived
from dynamical considerations (the “Oort limit”).
The Oort limit is the total amount of matter in the
solar neighborhood, as deduced from the observed
motions of stars perpendicular to the galactic plane.
At various times in the past, determinations of the
Oort limit have resulted in densities considerably in
excess of the amount of matter that resides in stars,
gas and dust. This leaves the “missing mass” and
allows one’s imagination to invent repositories for this
mass (low-velocity M dwarfs, planets, rocks, etc.).
Krisciunas (1977) has shown that the Oort limit is not
well known (to about +20%)) and concludes that,
considering uncertainties in the observed densities and
in the Oort limit, the discrepancy may not be serious.
Joeveer and Einasto (1977) have emphasized that the
Oort limit is subject to large systematic and accidental
errors, and they conclude that there is no local missing

mass. Krisciunas (1977) finds that the Oort limit lies
between 0.11 and 0.17 Mypc~23, and he favors
0.14 M, pc~2 as the most likely value. We find that
the total amount of mass contained in the PDMF is
27 Mg pc~2, and the uncertainties give a range from
20 to 68 M, pc~2. Since the largest contribution to
this comes from stars with masses less than about
1 M, dividing by twice the scale height 2H = 650 pc
for these stars, see Table 1) gives 0.04 M, pc—3
(ranging from 0.03 to 0.10 My pc~2). According to
Wielen (1974) and Tinsley (1977a) interstellar gas
accounts for 0.02 M, pc~2, and Krisciunas has esti-
mated that 0.02 M, pc~2 can be accounted for in the
form of undetected M3-M8 dwarfs. (Note that this is
not the large, low-velocity population once advocated
by Weistrop 1972 and others [see § I1b].) Therefore,
about 0.07-0.14 My pc~2 can be accounted for, in
good agreement with the estimate of Krisciunas. Our
results are seen to support the conclusion of Krisciunas
and of Jdeveer and Einasto that any discrepancy
between the observed mass and the Oort limit is not
serious.

III. HISTORY OF THE BIRTHRATE IN THE
SOLAR NEIGHBORHOOD

a) Relation between PDMF, Birthrate, and IMF

The stellar creation function C(log M, t)d log Mdt
is defined as the number of field stars born per unit
area in the galactic disk in the mass range log M to
log M + dlog M during the time interval ¢ to ¢ + dt.
The term stellar creation function, suggested to us by
Dr. T. Barnes, is used to emphasize the dependence
on both mass and time and also to distinguish it from
the stellar birthrate defined below.

The creation function can be related to an observable
quantity, the PDMF of main-sequence field stars
dms(log M), which gives the number of main-sequence
stars in the solar neighborhood per square parsec and
per unit logarithmic mass interval (§ II). For stars
with main-sequence lifetimes Ty, less than the age of
the Galaxy T, we observe only those stars born within
the last Ty, years because all stars born between ¢ = 0
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and t = T, — Ty have evolved off the main sequence.
Thus the observed number of main-sequence field
stars ¢ (log M) is related to the creation function by

To
Bmsllog M) = j Cllog M, 1)dt, Tws < Tp.

To—Tms

3)

All stars with main-sequence lifetimes greater than the
age of the Galaxy are still on the main sequence, so
the observed number of stars is obtained by integrating
the creation function over all times:

To
$ms(log M) = f Cllog M, )dt, Toy>To. (&)
o]

Equations (3) and (4) are not useful as they stand
because of the unknown nature of the creation func-
tion. The equations can be simplified by assuming
that the creation function can be separated into the
product of a function of mass and a function of time,
or equivalently that the mass spectrum of newly formed
stars is independent of time. We emphasize that the
assumption of a separable creation function is made
purely for the sake of convenience and simplicity at
this point; the validity of this assumption is discussed
in § V. Proceeding to separate the creation function,
we define the field star IMF, é(log M), as the total
number of field stars that have ever formed per square
parsec and per unit logarithmic mass. If the age of the
Galaxy is T, then the time-averaged birthrate per unit
logarithmic mass is

Cy = f " Cllog M, )di|T, = ¢(log M)T,.  (5)

The absolute total birthrate (total number of stars
born per unit area per unit time) is

B(t) =J C(log M, t)dlog M, 6)
and the absolute time-averaged total birthrate is

(B) = f " B(t)d1|T, . ™

Then for a separable creation function we have

C(log M, 1) = (CHC[KC)
= <C>F CdlogM/fw (C>dlog M

_ &(log M) B(r)
TTn B ©
or
C(log M, 1) = &(log M)b(t)/T, ©)

where the relative birthrate b(t) gives the absolute

Vol. 41

birthrate at time ¢ in units of the average birthrate.
In what follows we refer to b(z) as the birthrate.

Schmidt (1959) first suggested the notation of
equation (9), and we have given the above derivation
to show the motivation behind this notation. The
definition of the field star IMF in terms of all stars
ever formed may seem confusing at first. However, in
the case of a time-constant IMF (as assumed here),
the IMF at any given time has the same shape as the
IMF at any other time and therefore the same shape
as the IMF of all stars ever formed. Note that the
field star IMF as defined here and the IMF of stars in
open clusters are similar quantities in that both give
the mass distribution of stars at birth. In the case of a
field star IMF which varies with time (creation function
not separable), the mass distribution of all stars ever
formed is not the field star IMF and cannot be
directly compared to the cluster IMF.

Using the separable creation function, equations (3)
and (4) become

busllog ) = SCEM [y 1, < 1,
0 TO_Tms
(10)
busllog 1) = EEHD | Cb)dt,  Tae > To.
0 0
(1)

Stars with main-sequence lifetimes greater than the age
of the Galaxy will be found on the main sequence
today regardless of when they were formed. For these
stars the PDMF and the IMF are identical:

pms(log M) = {(log M), Tns=2T,. (12)

Equations (11) and (12) place the following normaliza-
tion condition on the birthrate:

bt = T, | (13)

(o]

It is important to note the relationship between the
IMF and the birthrate, as illustrated by equations (10)
and (12). Since the PDMF, age of the Galaxy, and
main-sequence lifetimes are assumed known, it can
be seen from these equations that either the IMF can
be determined if the birthrate is known or the birthrate
can be determined if the IMF is known. In other
words, a choice of an IMF combined with an arbitrary
birthrate will not, in general, satisfy the fundamental
constraint presented by the observed numbers of main-
sequence stars. This consistency requirement is often
overlooked. For example, Neckel (1975) used an IMF
derived assuming a constant birthrate (Sandage 1957)
and combined this IMF with a birthrate that was a
rapidly decreasing function of time (Schmidt 1959).

In order to illustrate the relationship between the
IMF, birthrate, and PDMF, we have derived the IMF
assuming several analytic functions for the birthrate.
Figure 6 shows the birthrates used, which range from
sharply decreasing to sharply increasing functions of
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/T,

FiG. 6.—Trial birthrates; b(z) gives the ratio of the birth-
rate at time ¢ to the average birthrate. (@) Schmidt » = 2;
(b) decreasing exponential; (c¢) constant; (d) increasing
expope]ntial; (e) asymptotic increasing exponential; (f) poly-
nomial.

time. These do not exhaust all possible birthrates, of
course, but they do cover a wide range of behavior.
Three of these functions have often been used in past
studies of the evolution of the solar neighborhood and
galaxies, while three of these are novel.

The first birthrate is taken from Schmidt (1959), who
assumed that the time dependence of the birthrate of
field stars is proportional to some power # of the aver-
age gas density. He presented evidence that the value
of n was 2. (This evidence is reexamined in § IIIc(ix)
and is found not to support a value of n = 2 or in fact
any simple dependence of the birthrate on gas density.)
In this case the birthrate takes the form

by(t) = b1(0)(1 + ﬁ)—z ,

P

T =T

1-P
by(0) = [(1 — P)r]~* (14)

if a closed model for the solar neighborhood is as-
sumed. The subscript 1 denotes the first of the six
birthrates considered here, and P is the present-day
ratio of the mass of interstellar gas and dust to the
total mass in the solar neighborhood, believed to be
between 0.05 and 0.20 (Tinsley 1977a). The value
P = 0.1 was adopted. It should be noted that this
birthrate satisfies the normalization requirement,
equation (13). The second birthrate considered here is
exponentially decreasing:

b(t) = By exp (—t[7),

= TO .
7[1 — exp (—To/7)]

B, is the normalization constant determined from

equation (13), and = is the e-folding time. This birth-

rate is the one most widely found in the literature
(e.g., Tinsley 1974a). The value of = is taken as T,/2

B, (15)
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here. It should be noted that an exponentially decreas-
ing birthrate is obtained in Schmidt’s (1959) formula-
tion when n = 1, i.e., when the birthrate is assumed
to be directly proportional to the average gas density.
In this case the e-folding time is fixed by P, the present-
day ratio of the mass of interstellar gas and dust to the
total mass in the solar neighborhood (= = —T/In P).
Again, it should be emphasized that there is no firm
observational or theoretical evidence supporting such
a birthrate, but it is convenient to use in analytic com-
putations. The third birthrate is constant with time:

by(r) = 1. (16)

This is the birthrate used by Salpeter (1955).

The remaining three birthrates are novel in that they
increase with time. The fourth is simply an exponen-
tially increasing function of time:

by(t) = Byexp (t/7),

— To
Be= e @ =11 an

where 7 is taken as T,/2. This birthrate increases with-
out bound as time increases and is in this respect an
unphysical choice. This presents no difficulties, how-
ever, because the function is used only for times no
greater than T, where it is well behaved. The fifth
birthrate is given by

bs(t) = Bs[l — exp(—¢/7)],

T,

Bs = e Ty =117 1®

where 7 is T,/2. This birthrate asymptotically ap-
proaches B as a maximum value and is referred to as
the asymptotic exponential birthrate. The last birth-
rate has the form

_p "t
be(t) = Bg T’

mT,
Bs= i+ Tol™1° (19)

where m = 4 and = = 2T,/3. This function, referred
to as the polynomial birthrate, was selected because it
increases rapidly for small ¢ (like #™~1), reaches a
maximum, and then decreases. Its behavior is similar
to Larson’s (1976) models for disk galaxies with infall.

Figure 7 shows the IMFs derived from equations
(10) and (12) for the assumed birthrates. The age of the
Galaxy has been taken as 12 x 10° years, but the
results are insensitive to this choice over the range of
9-15 x 10° years. To prevent the diagram from being
cluttered, the IMFs resulting from the polynomial and
asymptotic exponential birthrates are not shown.
These IMFs lie between the IMFs of the constant and
increasing exponential birthrates. For stars of low
mass (Tms > T,) the IMF is identically equal to the
PDMF and is the same for all birthrates.
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PET Y
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- (e} | 2
log M

FiG. 7.—The IMFs resulting from the trial birthrates; ¢ has
units of stars pc~2 log M ~*. (a) Schmidt n = 2; (b) decreasing
exponential; (¢) constant; (d) increasing exponential. The
IMFs resulting from the asymptotic exponential and poly-
nomial birthrates lie between curves ¢ and d and are not shown
for clarity.

It is apparent from Figure 7 that the high-mass ends
of the IMFs have the same shape regardless of the
birthrate. This is a direct result of the fact that the
main-sequence lifetimes of massive stars are small
compared to the age of the Galaxy. These stars are
therefore found in numbers proportional to the present
birthrate and not the integrated past birthrate. This
can be seen from equation (10) by using a Taylor
series to first order:

bus(M) Ty
Tms b(TO)

The shape of the IMF is given by the ratio of the
PDMF to the main-sequence lifetime, while the nor-
malization is given by the ratio of the age of the disk
to the present birthrate.

The IMFs derived from Schmidt’s n = 2 birthrate
and the decreasing exponential birthrate show a dis-
continuity at the mass where the main-sequence life-
time equals the age of the Galaxy. Several authors,
starting with Schmidt (1959), have called attention to
the fact that a birthrate which decreases by too large
an amount over the age of the disk results in the dis-
continuity shown in Figure 7. The existence of a dis-
continuity in the IMF for rapidly decreasing birthrates
can be understood as follows: The IMF is the number
of stars (per square parsec per log mass) ever formed,
while the PDMF is the number of stars (per square
parsec per log mass) observed today. For stars with
main-sequence lifetimes less than the age of the
Galaxy, the PDMF must be increased by some
amount to account for stars that have died before the
present time. This increase depends on the birthrate.
For a birthrate that is a rapidly decreasing function of
time, a larger fraction of all stars ever formed were

EM) =

Tos < T . 20)
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born longer than one main-sequence lifetime ago and
are not found on the main sequence today. The correc-
tion to the PDMF to obtain the IMF will be large. If
the birthrate is a rapidly increasing function of time
(smallest in the past), i.e., a large fraction of all stars
ever formed were born less than one main-sequence
lifetime ago, the PDMF will be only slightly smaller
than the IMF and the correction to the PDMF to
obtain the IMF will be correspondingly small. Now
consider the mass M’ where the main-sequence life-
time equals the age of the Galaxy. The IMF for masses
smaller than M’ is fixed by the PDMF. The IMF for
masses greater than M’ is determined by increasing
the PDMF by some amount determined by the birth-
rate. For a birthrate that is rapidly decreasing with
time, this increase will be so large that the IMF for
masses slightly greater than M’ will be much greater
than the IMF for masses slightly smaller than M’,
giving rise to the discontinuity.

The existence of a discontinuity in a model often
indicates that such a modelisincorrect. To astronomers
in particular, it is especially unsettling that this dis-
continuity occurs at the mass where the main-sequence
lifetime equals the age of the Galaxy because this
implies that the present time is unique. Rather than
believe in the physical reality of this discontinuity and
invent theories to account for it, it is more reasonable
to reject the discontinuity and the birthrate which
gives rise to it. Further discussion of this choice is
given in § V. Tinsley (1977a) has emphasized that the
requirement of a continuous IMF gives more quantita-
tive information on the time history of the stellar
birthrate than any other available method, and we
therefore proceed to examine this constraint in more
detail in § I1I» while additional, weaker constraints
will be discussed in § Illc. In addition, the limits on
the birthrate imposed by the continuity constraint will
provide limits on the form of the IMF, a quantity of
fundamental interest.

b) Continuity Constraint

The requirement that the IMF be continuous can be
cast in a more quantitative form (Tinsley 1977a). The
task is to choose birthrates that result in a smooth
transition between the IMF of low-mass and high-mass
stars, considering the uncertainties in the PDMF and
main-sequence lifetimes. The IMF of stars with T,,; >
T, is fixed by the PDMF. The shape of the IMF of
stars with short lifetimes (7,,; <« T,) can be found
from the PDMF and main-sequence lifetimes. It can
be seen from equation (20) that the constant factor
T,/b6(T,) determines how the IMFs of the low-mass
and high-mass stars are joined. If T,/b(T,) is too large,
the IMF of high-mass stars will exceed the IMF of
low-mass stars, giving rise to a discontinuity—the
“bump” in the IMF. If T,/b(T,) is too small, a dis-
continuous “dip” will occur.

Approximate limits to T,/b(T,) can be set by using
Figure 8. The left-hand side of Figure 8 shows the
PDMF for stars with lifetimes in excess of the age of
the Galaxy, while the right-hand side shows the PDMF
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FiG. 8.—Limits on the present birthrates from the continu-
ity constraint. The left-hand side of the figure gives the PDMF
éms for stars with main-sequence lifetimes Trs in excess of
the galactic age T,. For these stars the PDMF equals the IMF.
The right-hand side gives the PDMF divided by Ty, for stars
with Tps <« To. For these stars the IMF is given by the product
of bms/Tms and To/b(T,). The scale shows the results of this
multiplication for different values of T,/b(T,) (in units of 10° yr).
A smooth transition between the two groups, and thus a con-
tinuous IMF, is obtained for 6 x 10° yr < Ty/b(T,) < 50 x

10° yr.

for high-mass stars divided by their main-sequence
lifetime. The range of uncertainty in the PDMF
(§ II) is also indicated. Superposed on Figure 8 is a
scale which gives the value T,/b(T,) required to in-
crease the point in Figure 8 at log M = 0.40 to the
indicated point on the scale. In other words, equation
(20) shows that ¢,/ T, must be multiplied by To/b(T)
to obtain the IMF. The scale in Figure 8 shows the
result of this multiplication, which may be thought of
as sliding the right-hand side of Figure 8 vertically with
respect to the left-hand side. In addition to the uncer-
tainty in the PDMF indicated in Figure 8, the main-
sequence lifetimes and thus the right-hand ordinate
are uncertain. In § IIf the uncertainty in log Ty, is
estimated to be less than +0.18 for M < 10 M.

Allowing for these two uncertainties, one can see
that a smooth fit is obtained for

To/b(Ts) < 50 x 10° yr . @1

Recall that in the discussion of uncertainties in the
PDMF, the major uncertainty for low-mass stars was
in the scale heights, which may be substantially larger
than adopted here. If the scale heights of these stars
are close to the values adopted here, then the upper
limit on T,/b(T,) is reduced. Tinsley (1977a) finds an
upper limit on this quantity (which she calls H) of
80 x 10° yr, and favors 20 x 10° yr as a more realistic
upper bound, in good agreement with our value.

Just as a birthrate that decreases too much over the
age of the Galaxy gives a discontinuous IMF, a birth-
rate that increases too much also gives a discontinuity.
From Figure 8 it can be seen that we require

To/b(Ty) = 6 x 10°yr. (22)

Tinsley (1977a) required that the birthrate be a
decreasing (or constant) function of time, which
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TABLE 5
PRESENT RELATIVE BIRTHRATE

PRESENT RELATIVE BIRTHRATE H(T))

AGE OF THE T T
Garaxy To e =6x10° 72 =50 x10°
) B(To) BTy~ 0 *10
9x10°......... 1.5 0.18
12x10°.......... 2.0 0.24
15%x10%......... 2.5 0.30

implies that T,/b(T,) > T,. In contrast, we find that
an increasing birthrate can satisfy the continuity con-
straint on the IMF, and is not inconsistent with other
observational constraints or theoretical considerations
discussed below. Table 5 gives the value of the present
birthrate b(7,) corresponding to the upper and lower
limits on T,/b(T,) for three values of the age of the
Galaxy. The maximum allowable range of b(¢) is

0.18 < B(T,) < 2.5. 23)

In other words, the average past birthrate may be at
most about 5 times larger or 3 times smaller than the
present birthrate. We emphasize that these limits are
extremes, and we favor a birthrate whose past average
differs from the present value by less than a factor
of 2.

¢) Additional Constraints

Having discussed the continuity constraint, we now
critically examine other lines of observational evidence
relating to the history of the birthrate. This examina-
tion is important because various authors have pre-
sented apparent evidence for a rapidly decreasing
birthrate, which is inconsistent with the continuity
constraint. It will be seen from the following discus-
sion, however, that all other constraints are either
consistent with the continuity constraint or plagued
by so many uncertainties as to render them indeter-
minate, thereby strengthening the validity of the IMFs
derived in § IV below. An earlier summary of some of
the evidence pertaining to the history of the birthrate
has been given by Tinsley (1977a).

i) Initial Mass Functions of Stellar Birth Sites

Star formation occurs in several domains: open
clusters; OB, T, and R associations; low-mass aggre-
gates identified by Aveni and Hunter (1969); and
perhaps as isolated field stars (Aveni and Hunter
1967). Upon dissipation of stellar groups (which on
the average occurs in times small compared to the age
of the Galaxy), their members become field stars. The
field star IMF could therefore be determined from the
average of the IMFs of these stellar birth sites, weighted
by their relative contributions. If the IMF were known
in this manner, the history of the birthrate could be
found.

The IMF of a group of stars is found by converting
the luminosity function below the main-sequence
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turnoff to a mass function. Unfortunately, only open
clusters have IMFs which are reasonably well deter-
mined over a large range of masses. There is no in-
formation on the luminosity function or frequency of
occurrence of stars born in the field or of low-mass
aggregates. The association luminosity function can be
determined for only the brightest stars (see § IVc for
Ori OB1) for two reasons: (1) Accurate proper motions
and radial velocities are required to distinguish
association members from field stars, and a prohibitive
amount of time would be necessary to obtain such
data for faint stars. (2) Associations are so young that
the fainter members are still contracting to the main
sequence. Converting the luminosity function to a
mass function for these stars is not possible because
the masses of pre~-main-sequence stars are not known.

In § I1a it was shown that the birthrate, IMF, and
PDMF are uniquely related. Since the PDMF is
observationally determined, the IMF can be found if
the history of the birthrate is known or the history of
the birthrate can be determined if the IMF is known.
The former approach has been described in § 11la and
is applied in § IV, while the latter approach was used
by Ebert, von Hoerner, and Temesvdary (1960). For
lack of knowledge of other stellar birth sites, they
assumed that the field star IMF has the same form as
the cluster IMF.

In order to calculate the birthrate when the IMF is
known, define a quantity R

R = Topns(log M)/écr(log M), 24

where ¢, is the cluster IMF, assumed identical in
shape to the field star IMF. The birthrate is then given
by

B(To — T = s Ty < Ty (25)

In principle, this method is equivalent to assuming a
birthrate and deriving the IMF; i.e., given the same
constraint, both methods give identical results. In
practice, however, this approach is more difficult to
apply because the differentiation necessary in equation
(25) makes the results sensitive to small errors in the
input data and also makes it more difficult to ascertain
the effects of the observational uncertainties on the
results.

Using this method, Ebert ef al. found a birthrate
which moderately decreased over the first few 10° years
of galactic history and was approximately constant
afterward. This birthrate could be approximated by
an exponentially decreasing function of time. The
decreasing birthrate at early times appears to be a
result of their adopted (mass, main-sequence lifetime)-
relation. Although they do not give sufficiently detailed
information to reconstruct their relation, it appears
that they adopted a relation near 1 M less steep than
the relation of the present paper, which is based on
(we hope) more accurate theoretical main-scquence
lifetime calculations. In other words, Ebert et al. used a
smaller dT,, in equation (25), resulting in an increase
in the birthrate for early times. We have solved
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equation (25) for different power-law IMFs consistent
with the average cluster IMFs determined by Taff
(1974), Piskunov (1976), and Burki (1977), and find a
birthrate which is constant at early times, increases
gradually, and then increases very rapidly within the
last 10° years or so, depending on the adopted power
law and age of the disk. However, the results are so
sensitive to small errors in main-sequence lifetimes
that we place no weight on them. The important point
is that the conclusion of Ebert ef al. that the cluster
IMF implies a decreasing birthrate is incorrect.

ii) Stellar Age Distributions

The distribution of stellar ages would offer a direct
means of determining the history of the birthrate
since a larger or smaller birthrate in the past would be
reflected by larger or smaller numbers of old stars
relative to the number of young stars. Ages of stars
can be inferred from comparison of the positions of
stars in the H-R diagram with theoretical isochrones
(Dixon 1970; Cayrel de Strobel 1974; Clegg and Bell
1973), from an adopted calibration of the relation
between velocity dispersion and age (Mayor and
Martinet 1977), or from an adopted calibration of the
Ca 1 emission strength and age (Wielen 1974). All of
the papers just mentioned find a birthrate which is
roughly constant or has even increased somewhat.
Tinsley (1974b) demonstrated that the age distribution
does not directly reflect the time dependence of the
birthrate because stellar lifetimes vary with mass;
i.e., a flat age distribution does not imply a constant
birthrate. Tinsley derived the relationship between the
birthrate and age distribution for main-sequence stars
and concluded that the age distributions of Clegg and
Bell (1973) and Cayrel de Strobel (1974) require a
decreasing birthrate. However, Clegg (1977, private
communication) has pointed out that the observed age
distributions are for subgiants and not main-sequence
stars. Accounting for the effects of subgiant lifetimes
shows that the observed age distributions actually
imply an increasing birthrate. Clegg has also em-
phasized that the parallax errors are substantial and
should be accounted for in any attempt to obtain age
distributions from theoretical isochrones. Considering
this, possible selection effects and uncertainties in the
relation of velocity dispersion and Ca 11 strength with
age, this method can only be considered a consistency
check on the birthrate. At present, all that can be said
is that stellar age distributions are consistent with a
roughly constant birthrate.

Tinsley (1978) has shown that the distribution of
initial masses of planetary nebula progenitors depends
on the past history of the birthrate. With a decreasing
birthrate the distribution drops off more rapidly with
increasing mass because of the smaller contribution
from more massive progenitors which were recently
formed. For this reason Tinsley points out that the
kinematics of planetary nebulae could in principle be
used to constrain the age distribution of planetary
nebula progenitors, and hence the birthrate history.
Although the available data may not be sufficient to
distinguish between the two birthrates examined by
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Tinsley (constant and ratio of average birthrate to
present birthrate equal to 3), it appears that the kine-
matics and also spatial distribution of planetary
nebulae and white dwarfs do rule out a birthrate which
has increased by more than a factor of 2 or 3, or else
the mean initial mass would be fairly large. If the
identification by Grieg (1971) and Cudworth (1974)
of two kinematic classes of planetary nebulaeis correct,
then a rapidly decreasing birthrate is also ruled out
since in that case nearly all the progenitors would have
initial masses around 1 M. .

iii) Radioactive Nuclides

Fowler and Hoyle (1960) and Fowler (1972) in-
vestigated models for r-process nucleosynthesis in
which the rate of nucleosynthesis in the solar neighbor-
hood was an exponential function of time with time
constant T, occurring over a duration A, terminated
by a “spike” at a time 6 before the formation of
meteorites in the early solar system. The meteoritic
isotopic ratios 232Th/?38UJ, 235J/2%81J, and 24*Pu/23®U
then allow a determination of the best values of the
parameters T, A, and 8. Using “standard values™ of
the isotopic ratios and production ratios, Fowler
(1972) obtained Tp ~ 3 x 10° yr, but various uncer-
tainties in the input data allow T to range from
negative (increasing rate of nucleosynthesis), to zero
(no nucleosynthesis previous to the spike), to infinity
(constant rate of nucleosynthesis). Furthermore, the
time scale for the rate of star formation, which is what
is of interest here, cannot be inferred from Ty without
assuming a relation between birthrate and gas mass.
As discussed below, there is no firm evidence that any
such relation exists. A more detailed discussion of the
problems involved can be found in Tinsley (1976,
1977a). It appears that r-process chronologies cannot
presently provide any information on the history of
the birthrate.

iv) Yields of Nucleosynthesis

In a recent paper Arnett (1978) has estimated the
yields of nucleosynthesis in massive stars (> 10 My).
As a check on the consistency of these stellar evolution
models, Arnett combined his estimated yields per star
of given mass with the present birthrate of massive
stars given by ORT to derive the present rate of
nucleosynthesis. He finds that the present rate of
nucleosynthesis must be only about 10%, of the past
average rate in order to account for the present
galactic metal abundance, and he notes that this is
consistent with models of the chemical evolution of the
solar neighborhood in which the present rate of star
formation is about this fraction of the average rate (e.g.,
star formation proportional to the square of the gas
density.) Because the continuity constraint and other
constraints discussed in this section do not allow
such a large decrease in the birthrate, it is important
to examine the uncertainties in Arnett’s estimate. As
discussed in § IIf, the PDMF and therefore the present
stellar birthrate of ORT lie roughly on the lower uncer-
tainty limit of those of the present work. Using the
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birthrate calculated in § IV and Arnett’s Table 4, we
find a present rate of nucleosynthesis larger than
Arnett’s. This rate requires the average birthrate to be
only about a factor of 3 larger than the present birth-
rate, which is entirely consistent with the other con-
straints. We note that some models of chemical
evolution in the solar neighborhood call for an initial
metallicity substantially greater than zero to explain the
paucity of metal-poor stars (e.g., Tinsley 1974a);if such
models are correct, the average birthrate must have been
even smaller in order to be consistent with the observed
metallicity in the solar neighborhood. Consider-
ing the above uncertainties and the additional uncer-
tainties in Arnett’s stellar models, we conclude that this
constraint is consistent with the continuity constraint.

v) H 11 Regions

H 1 regions mark the sites of recent star formation,
so observations of H 11 regions can be used to estimate
the present birthrate. This approach has been applied
by Mezger and Smith (1976) and Smith, Biermann, and
Mezger (1978) to observations of radio H 1 regions.
They express the present birthrate (in units of the mass
of stars formed in the entire Galaxy per year) as

dMy[dt = No<{MD(NTrum) - (26)

Ny is the total number of Lyman continuum photons
emitted by stars ionizing radio H 11 regions in the
Galaxy, {N[{M> is the ratio of the number of
Lyman continuum photons emitted by the ionizing
star to the total mass of stars formed concurrently
with the ionizing star, and gz is the length of time
an H mregion is detectable at radio frequencies. From
radio observations Smith et al. estimate Ny = 5.5 x
10°2 photons s~1. Mezger, Smith, and Churchwell
(1974) and Smith er al. used radio observations to
determine the number of Lyman continuum photons
emitted by the ionizing star of an H 1 region and
combined this with the Salpeter (1955) IMF to find
(NSIK{M» = 2.2 x 10*® photons s~ My"*. To find
the lifetime of an H i1 region as a detectable radio
source, Mezger and Smith compared the number of
radio H 11 regions and optically visible O stars in the
solar neighborhood and found that the ionizing stars
of radio H 11 regions constitute 20 + 5%, of all O stars.
From this they inferred the lifetime of a radio H n
region to be 20%, of an O-star lifetime. Adopting
3.2 x 108 yr as the lifetime of an average O star in an
H 11 region, they concluded that the lifetime of a radio
H 1 region is 6.5 x 10° yr. Smith et al. revised this
figure to 5 + 0.5 x 10° yr.

Combining these values yields a present birthrate of
5 Mg yr~! in the Galaxy, with an uncertainty of a
factor of 3 due to uncertainties in gy, and Ny. It is
difficult to estimate the uncertainty in (N >/[<{M>.
Using the IMFs of the present paper, we find (N .>/<{M >
smaller by a factor of 1.5 and take this as a measure
of the uncertainty. This does not include any uncer-
tainty in the Lyman continuum flux of OB stars.
Mezger and Smith attach a factor of 1.25 uncertainty
in the fraction of all O stars in radio H 11 regions. The
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uncertainty in the average O-star lifetime contributes
another factor of 1.5. The combined uncertainty in the
present total galactic birthrate derived by this method
is therefore about a factor of 4. The average galactic
birthrate is just the stellar mass, 2 x 10! M, divided
by the age of the disk, 9-15 x 10° yr. Comparing
dM./dt with the average rate and allowing for the
uncertainties, we obtain

b(To) = g%’)% =03(+1.24, —-024). (7

Although the ““best™ value of 0.3 is just consistent
with the continuity constraint, the uncertainties allow
a time-averaged birthrate which is about 15 times
smaller or 1.5 times larger than the present birthrate.
Therefore, while this method provides an upper limit
on b(T,), the uncertainties render it much less useful
than the continuity constraint in estimating a lower
limit on b(Ty).

vi) Formation Rate of Supernovae

The rate of supernova explosions in the Galaxy con-
tains information on the present death rate of stars.
Combined with the mass range of stars which make
supernovae and the IMF, the present supernova rate
can be used to calculate the present rate of formation
of all stars. Comparison with the average birthrate
then gives some idea of the time dependence of the
birthrate. Such a calculation was carried out by
Truran and Cameron (1971, see also Truran 1973),
who found a rate of about 2 M, yr~! in the entire
Galaxy. The rate of supernova explosions calculated
from the IMFs of the present paper (§ IV) is given in
Figure 9. We have assumed that all stars more massive
than some mass M, (see Tinsley 1977b for a review)
become supernovae, and vary M, between4 and 10 M.
Since these stars have lifetimes much less than the age
of the Galaxy, the present death rate of these stars
equals the present birthrate, which can be calculated
for the solar neighborhood from equation (37) below.
To calculate the supernova rate in the Galaxy, the
rate in the solar neighborhood (per square parsec)
must be multiplied by the effective area of the Galaxy
(which takes into account both the geometrical area of
the Galaxy and the ratio of the average rate in the
Galaxy to the rate in the solar neighborhood). The
distribution of pulsars found by Taylor and Manchester
(1977) can be used to calculate the effective area,
assuming that pulsars and supernovae occur in stars
of similar mass range. They find that the local pulsar
birthrate is 3 x 107° to 1 x 10~*yr~! kpc~2 for
mean electron densities of 0.02 and 0.03 cm ~3, respec-
tively. The corresponding pulsar birthrates in the
Galaxy are 0.167 and 0.025 yr~*. The effective area of
the Galaxy then lies between 800 and 1600 kpc?. A
value of 1000 kpc? was adopted. Note that the present
total birthrate corresponding to each supernova rate
must be computed using an IMF which is consistently
derived from the adopted form of A(¢). The extreme
two curves in Figure 9 were calculated using birthrates
which satisfy the extremes of the continuity constraint
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Fic. 9.—Calculated supernova rate in the Galaxy (years
per supernova) versus the lower mass limit for supernovae
M. The three curves are for three different birthrates and
corresponding IMFs. The maximum increasing (MI) and
maximum decreasing (MD) birthrates are the two which
satisfy the extremes of the continuity constraint. The constant
(C) birthrate is intermediate. Tammann’s (1977) observation-
ally estimated supernova rate for the Galaxy is also indicated.

(eq. [23]), while the center curve was calculated using
a constant birthrate.

Tammann (1977) states that the observed Type II
supernova rates in Sb galaxies are about 9 times higher
than in Sc galaxies and suggests an interpolated overall
rate of 20 (420, —10) yr per event for our Galaxy,
which is believed to be intermediate in type between
Sb and Sc. Given the uncertainty in this interpolation
and the uncertainty in M, we see from Figure 9 that
the observed supernova rates do not give a useful
constraint on the present birthrate.

vii) Formation Rates of White Dwarfs
and Planetary Nebulae

A similar, but more direct, procedure can be
followed using white dwarfs and planetary nebulae.
Both observational (Weidemann 1977) and theoretical
(Wood and Cahn 1977, Hills 1978) arguments yield a
white dwarf formation rate of about 2-3 x 10-12
pc~®yr~!. The planctary nebula formation rate is
less certain, but most estimates (e.g., Alloin, Cruz-
Gonzdlez, and Peimbert 1976; Cahn and Wyatt 1976)
are consistent with the rate for white dwarfs. Smith’s
(1976) revision of the planetary nebula distance scale
gives a larger rate of about 1 x 10711 pc=9yr—1.
Adopting a scale height of 300 pc for both types of
objects from their observed z distribution (Blaauw
1965) and the scale height of G dwarfs, which are
expected to be the progenitors of most of these
objects, we find the formation rates to lie in the range
1-6 x 10~® pc~2yr~1. The present formation rate
reflects only an average birthrate which is weighted
toward a time in the past corresponding to the mean
main-sequence lifetime of the progenitors (see eq. [1]
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of Tinsley 1978). The distribution of initial masses of
progenitors has been calculated by Tinsley (1978). For
a ratio of past average birthrate to present birthrate
of about 3 the distribution is sharply peaked at
~1 Mg, while for a constant birthrate the distribution
decreases less rapidly above 1 M. In any case the
white dwarf-planetary nebula formation rate must
reflect the birthrate averaged over some time interval
between about 5 and 10 x 10° yr ago. The present
birthrate consistent with the continuity constraint,
derived in §IV below, is 410 x 10~ ®pc~2yr—1,
Therefore, the white dwarf and planetary nebula
formation rates are consistent with a birthrate which
is roughly constant with time. The present approach
and our conclusions are different than those of Tinsley
(1978), who calculated the planetary nebula rate for
two different forms of birthrate, because her adopted
normalization gives different present birthrates in
each case.

viii) Chemical Evolution Constraints

Smith, Biermann, and Mezger (1978) have para-
metrized the time dependence of the birthrate as
B(t) o mg,s", where my,, is the column density of gas
and n is a parameter. Using this birthrate, Smith ez al.
sought the value of n which best reproduces the follow-
ing three quantities: (1) the present *‘observed” rate
of star formation as inferred from local H 11 regions
(§ HIc[v)); (2) the increase in metal and helium abun-
dances over the age of the disk, Z + AY; and (3) the
present deuterium abundance of 2.5 x 105, assuming
a primordial abundance of 5 x 1075, Although Smith
et al. suggest that n = } can fit the adopted constraints,
it is clear than n = O gives a better fit. Smith et al.
dismiss » = 0 on the grounds that a constant birth-
rate is physically unrealistic and the model colors are
too blue with such a birthrate. The first point will be
discussed in § IIlc(ix) below. The colors depend not
only on the birthrate, but on the slope of the IMF at
high masses (which Smith et al. took as —1.35) and on
the upper limit to stellar masses. A steeper IMF, as
found in the present paper, would result in redder
colors. Unfortunately, the number of parameters be-
sides » which must be specified is large and includes the
lower and upper limits to the masses of stars, the slope
of the IMF, and the age of the disk T,,. The results also
depend on the particular model adopted for the solar
neighborhood. Also, the rate of star formation inferred
from H 1 regions is uncertain by a factor of 3, and one
cannot really say what the primordial deuterium
abundance was without major cosmological assump-
tions. We therefore feel that the problem is over-
determined and cannot presently provide a useful
constraint on the history of the birthrate.

ix) Lack of Evidence for a Dependence of
the Birthrate on Mean Gas Density
Mathis (1959), Schmidt (1959), and Salpeter (1959)
introduced the idea that the birthrate of field stars
might be proportional to some power of the average
gas density, B(t) oc {p>" Schmidt presented several
arguments that # &~ 2. Such a parametrization of the
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birthrate has become prevalent in the literature, and it
is therefore important to reexamine Schmidt’s argu-
ments in light of more recent work.

Some of the arguments have already been discussed.
The requirement that the IMF not exhibit a “bump”
shows that the birthrate could not decrease as rapidly
as would be the case for n = 2. The bump can also
be seen in Figure 1 of Schmidt (1959). Schmidt also
compared the initial luminosity function (ILF) pre-
dicted by his models for various values of n with the
[uminosity functions of open clusters. Although he
states that the agreement for » = 1 and 2 is satis-
factory, it is more correct to say that none of the ILFs
are in good agreement with the cluster luminosity
functions. The method is basically a graphical version
of the method discussed in § IIlc(i) above, where we
found no evidence for a rapidly decreasing birthrate.
Schmidt suggested that the present abundance of
helium could be accounted for by his models if » were
at least 2, assuming that the initial helium abundance
of the Galaxy was zero. Currently it is widely held
that helium is cosmologically produced; therefore,
this constraint would now favor lower values of n.
However, even for n = 0, the fractional abundance of
helium by mass would have increased by 0.12 over the
age of the Galaxy in Schmidt’s models, which is too
large an increase to be compatible with the observed
limits on the helium abundance (Trimble 1975). This
overproduction results from the fact that Schmidt
overestimated the amount of helium released to the
interstellar medium by dying stars by about a factor
of 2 compared to more modern values.

The idea that B(z) o« {p)", with n = 2, had received
the strongest apparent support from several inde-
pendent studies of correlations between gas densities
and densities of luminous stars of H 1 regions in
galaxies. A useful summary of this work is given in
Table 1 of Madore (1977). It is now clear that n =~ 2
does not follow from the correlation analyses for a
number of reasons. First, the correlations are based on
neutral hydrogen, while it is known, at least in our
Galaxy, that stars form preferentially in molecular
clouds. Second, many of the data reflect only local
correlations between gas and star densities, not the
spatial and time averages relevant to the proposed
form of the birthrate. Some additional difficulties
with the correlation approach were discussed by
Talbot (1971). For example, counts of H 1 regions
and young stars may not be similarly correlated with
gas density if the number of stars exciting the H i
regions depends on gas density.

The most serious objection to the value n x 2
usually inferred from correlation analyses has been
given by Madore (1977), who points out that the
theoretical relationship predicts a correlation only
between gas density and the rate of star formation, not
between gas density and the number of stars formed,
which is the observed quantity. Madore then demon-
strates by simulations of star formation with various
rates that the values of n inferred from correlation
analyses are much larger than the actual values of n
in the simulation, and that an ““actual »”’ in the range
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0.25-1.0 agrees with the observed correlations. The
“actual n”’ deduced still depends on the assumption
that the number of stars formed in a region is pro-
portional to the mass of that region and refers to the
local gas density. In any case, the conclusion that
correlation analyses can grossly overestimate the value
of n [assuming that B(¢) does indeed depend on {p)>"]
seems firm.

A similar correlation analysis can be carried out for
our own Galaxy. It has become apparent in recent
years that the surface density of objects related to star
formation (molecular hydrogen, H 1 regions, CO
clouds, etc.), averaged over annuli concentric with the
galactic center, shows a pronounced minimum at
galactocentric radii between about 1 and 4 kpc, and
a maximum at about 6 kpc (see Burton and Gordon
1978). Since this feature exists in the total gas surface
density, a birthrate which depends on gas density
should also exhibit this feature. Smith ef al. have
estimated the birthrate as a function of galactocentric
radius from H 11 regions, using the method described
in §IH¢(v), and find that it shows the pronounced
minimum at 1-4 kpc. With B(#) oc pg,s", Smith et al.
show that, as expected, the case » = 0 gives no mini-
mum at 1-4 kpc but n = 0.5 does. The fit is insensitive
to n as long as n 2 0.5. The correlation therefore
supports the idea that the birthrate depends on the
gas density. A value of n =~ 0.5 will give a birthrate
whose decrease is just small enough that the continuity
constraint is not violated, and is consistent with
Madore’s (1977) simulations of star formation.

Black and Kellman (1974) point out that, assuming
the supernova rate to be proportional to the birthrate,
the fact that the supernova rate in Sc galaxies appears
to be several times larger than in Sb galaxies implies
a significantly larger mean gas density in Sc than in Sb
galaxies if B(t) oc {p>™. Since the mean H 1 density
does not show systematic variations from Sb to Sc
galaxies, Black and Kellman conclude that gas density
is not the primary factor controlling the birthrate.

Schmidt noted that the distribution of young objects
perpendicular to the galactic plane could be used to
determine the exponent n. because, if n > 1, young
objects should form a disk thinner than that of the
gas by a factor n'/2 if the gas distribution is Gaussian.
Schmidt adopted the dispersions of neutral hydrogen,
Cepheids, and young galactic clusters as 144, 80, and
58 pc, respectively, and thus concluded that n = 2-3.
One problem with this interpretation is that, if star
formation is proportional to the average gas density,
then the above argument should be based on the z
dispersion of the gas out of which stars condense.
Stars in our Galaxy are not born in regions of neutral
hydrogen but in regions of dense molecular clouds.
Burton (1976) states that the layer of CO in the
Galaxy is substantially thinner in the z direction than
the neutral hydrogen, lowering the deduced value of n.
A more recent and detailed comparison of vertical and
radial distributions of gas and young stellar objects
has been given by Guibert, Lequeux, and Viallefond
(1978). Assuming that the z distributions of young
objects do in fact offer a consistent method of testing
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the hypothesis that B oc p”, their paper demonstrates
the sensitivity of the derived value of » to the assumed
relation between the abundances of CO and H, in our
Galaxy. Guibert et al. found that only one of their
three trial models for the CO/H, ratio gave results
consistent with the hypothesized birthrate if 1.3 <
n < 2.0.

One problem with this approach, as in some of the
correlation studies discussed earlier, is that it assumes
that the number of stars formed is proportional to
some power of the gas density (e.g., €eq. [2] of Guibert
et al.) whereas the assumption ostensibly being tested
involves the rate of star formation, not the number of
stars. The simulations of Madore (1977) clearly
demonstrate that this inconsistency can seriously
affect the derived values of the exponent .

Another general problem with this approach is that
the statement that the dispersion in z of these con-
stituents indicates a particular value of » contains the
implicit assumption that star formation is indeed
proportional to some power of the average gas density.
If the rate of star formation does not depend on the
average gas density but on some other physical
quantity, as discussed below, or if z dispersions are
controlled by other processes, then relationships
between the z dispersions of various galactic con-
stituents may not be physically meaningful in this
context. These comments also apply to Schmidt’s
evidence based on the hydrogen distribution in the
plane. For example, Talbot (1978) has pointed out
that even if the scale height of young stars actually is
smaller than that of H 1 gas, this may show only that
star formation occurs in material which has a smaller
velocity dispersion than the H 1 gas. This interpreta-
tion is physically reasonable because stars form from
massive, dense clouds and because there are two
processes which tend to give a larger velocity disper-
sion to the H 1 gas than to molecular clouds: (1) H 1
clouds are less massive, and inelastic cloud collisions
can lead to a quasi-Maxwellian velocity distribution
(Penston et al. 1969; Pumphrey and Scalo 1979);
(2) supernova remnants can more easily affect the
velocities of lower-mass H 1 clouds than of massive
molecular clouds.

d) Theoretical Models for the Birthrate History

There are many suggestions, but no general agree-
ment, concerning the dominant processes which
control the rate of star formation. Since each of these
processes may lead to a different time dependence of
the stellar birthrate and because it is likely that more
than one process contributes, we should expect no
simple expression for the birthrate history. Never-
theless, it 1s still of interest to enumerate some of the
theoretical possibilities. Excellent reviews of the conse-
quences of various star formation processes on the
stellar birthrate have been given recently by Larson
(1977) and Talbot (1978), and so the present discussion
will be brief. Our purpose is to show that there are a
number of proposals which are consistent with a
roughly constant birthrate.
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The most common assumption for the birthrate
history is that b(¢) depends on some power n of the
gas volume or surface density. We have already seen
in § I1lc(ix) that observational constraints require # to
be small if such a relation holds at all. The physical
motivation for the assumed gas density dependence
seems extremely weak to us. At the beginning of the
evolution of the galactic disk most of the matter was
in the form of gas and the birthrate had some finite
value, while at some time in the future the gas will be
completely locked up in low-mass stars and stellar
remnants, at which time the star formation rate must
drop to zero. It is usually assumed that the birthrate
will be a monotonically decreasing function of time
in this interval, hence the assumed dependence of
birthrate on gas density. We see no reason that the
birthrate should be a monotonic function of time. For
example, if star formation requires some threshold
value of the mean interstellar density, as is the case if
gravity must overcome galactic tidal forces (Goldreich
and Lynden-Bell 1965), the birthrate may have a time
dependence (either decreasing or increasing) which is
physically unrelated to the average gas density until
this density drops below the threshold value. Further-
more, the intuitive notion that the rate of star forma-
tion should depend on the mass or density of available
gas is not generally valid. The birthrate might depend
on the local gas density through the free-fall time,
Jeans mass, or cooling rate, but such a relation would
not necessarily apply to the larger regions of space
(length scale ~ 1 kpc) relevant to the global birthrate.

It may also be invalid to assume that the gas density
is a monotonically decreasing function of time. For
example, Larson’s (1976) model for disk galaxies
assumes a local birthrate proportional to the square
of the gas density, yet because of infall, the average
birthrate predicted by the model for galactocentric
distances similar to the Sun’s first increases, then later
decreases with time, similar to the form shown in
Figure 6f. A galactic model in which the global star
formation rate in the disk is controlled by the rate of
infall from the halo was originally suggested by Larson
(1972). The mass consumption rates derived in § IVb
below are consistent with limits on the infall rate, but
whether infall actually occurs at the present time is
uncertain.

One physical mechanism which may predict a
strong dependence of birthrate on gas density is cloud-
cloud collisions (see Field and Saslaw 1965; Talbot
1978). If the number density of clouds is proportional
to the average gas density, this model gives b(#) oc {p>2.
Although there is observational evidence that cloud
collisions can initiate star formation (Loren 1977), the
observational constraints on b(¢) given earlier suggest
either that cloud collisions are not the dominant
process controlling the birthrate or that the number of
clouds does not depend much on the average gas
density.

Larson (1977) has pointed out that several mechan-
isms for initiating star formation should depend on
the total mass or density, not just that of the gas.
Examples are the dissipation-settling process described
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by Talbot and Arnett (1975) and compression due to
spiral density waves, whose frequency depends on the
mass interior to the point of interest and hence is
expected to be roughly constant with time. In the case
of density waves, the birthrate would also depend on
the time dependence of the wave amplitude. Although
this dependence is unknown, it is possible that the
amplitude is controlled by external disturbances such
as encounters with other galaxies. Larson and Tinsley
(1978) have presented convincing evidence that bursts
of star formation in other galaxies are the result of
galactic encounters.

There are observational and theoretical reasons for
thinking that compression due to supernova explosions
and OB stars may cause star formation (see Woodward
1978 for references). Kaufman (1978) has derived an
expression for the birthrate for supernova-induced
star formation which is an exponential function of
time. The sign of the time constant depends on the
product of the number of stars formed per supernova
and the fraction of all stars which become supernovae.
If this product is less than (greater than) unity, the
birthrate decreases (increases) with time. In the models
investigated by Kaufman the supernova-induced birth-
rate is periodically “revived” by a spiral density wave
so that even though her preferred values for the time
constant are quite small (<108 yr), the total birthrate
changes only by modest amounts (less than about a
factor of 3), consistent with the limits on the birthrate
found in the present paper.

It is seen that, contrary to the popular view, most
theories for the initiation of star formation predict
birthrates which are expected to be constant or to
change by relatively small amounts over the history
of the disk.

IV. INITIAL MASS FUNCTION
a) Calculation and Results

From the discussion in § III we have placed observa-
tional constraints on the ratio of the present to average
birthrate b(T,) (see Table 5). In this section IMFs
consistent with these constraints are derived. However,
in order to derive the IMF, the birthrate for all past
times must be known, not just the ratio of present to
average birthrate. Because such information is lacking,
the approach used here is to assume analytical func-
tions for the birthrate and require these functions to be
consistent with the continuity constraint. We have
verified that the resulting IMFs are not sensitive to the
particular analytical function adopted but depend
primarily on b(T%).

Three birthrates are considered: (1) the birthrate
which increases by the largest amount over the age of
the disk and still satisfies the continuity constraint,
termed the maximum increasing (MI) birthrate; (2) a
constant birthrate; and (3) the birthrate which de-
creases by the largest amount and still satisfies the
continuity constraint, termed the maximum decreasing
(MD) birthrate. We repeat that unless the observa-
tional errors have conspired against us the constant
birthrate should give the best representation. For the

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979ApJS...41..513M&amp;db_key=AST

JS. C A1 C5T3MD

]

rTI79A

532 MILLER AND SCALO

TABLE 6

CONSTANTS FOR THE MAXIMUM INCREASING
AND DECREASING BIRTHRATES

MI MD
BIRTHRATE
To(10° yr) 9 12 15 9 12 15
7(10%yr)...... +103 +75 +6.7 -32 —-50 -73
B............ 0.63 041 0.27 3.0 2.6 2.4

MI and MD birthrates, an exponential function is
assumed:

b(t) = Bexp (t/7), (28a)

where 7 is the time constant and B is the normaliza-
tion, determined from equation (13) to be

T,
b= o @m =11

Table 6 gives the values of =, which are determined
from the requirement that the present birthrate 5(7,)
agrees with that from the continuity constraint on the
IMF (Table 5). In this and what follows, the age of
the Galaxy has been taken as 9, 12, and 15 x 10° yr.

We emphasize that the exponential function is
merely a convenient parametrization of the birthrate
and that no physical significance should be attached.
The exponential function adopted for the MI birthrate
increases without bound. This causes no difficulties
because this function is used only to describe the past
behavior of the birthrate. It is clear that if the true
birthrate has been increasing with time, it must reach
a maximum and decline as the interstellar medium is
consumed.

The IMFs resulting from these birthrates have been
derived using equations (10) and (12) and are shown
in Figure 10. The IMFs for the MI and MD birthrates
are each independent of the age of the Galaxy. For
these birthrates the PDMF was adjusted to the
extremes of the estimated uncertainties. The adjust-
ment was necessary to maintain consistency since the
MI and MD birthrates were derived from the extremes
found for T,/b(T,) (eqgs. [21] and [22]), which in turn
were found by pushing the PDMF to the limits of the
uncertainties. In the case of the MD birthrate, log ¢,
was therefore increased by 0.40 for log M < —0.08
and decreased by 0.21 for log M > 0.40. Similarly, in
the case of the MI birthrate, log ¢, was decreased by
0.15 for log M < —0.08 and increased by 0.21 for
log M > 0.40.

In order to facilitate the use of these IMFs, an
analytic function (parabola) has been fitted to log ¢:

log é(log M) = Ay + A, log M + Ay(log M)?2. (29)

This relation is shown as the solid line in Figure 10,
and the coefficients are given in Table 7. An equivalent
expression is the Gaussian function

é(log M) = Co exp [ Ci(log M — Co)’],  (30)

(28b)

where

Co = exp{ln (10)[4, — 4,%/(44,)]} ,
C; =—-4,In(10),
C, = —A4,/(24,) .

These coefficients are also given in Table 7. The IMF
can thus be represented by a half-Gaussian in terms
of log M or a half-lognormal in terms of M.

In many applications the slope of the IMF (defined
as dlog £/d log M) is the quantity of interest. From
Figure 10 it can be seen that results for the different
birthrates have similar shapes; i.e., the slope of the
IMF at a given mass is largely independent of the
birthrate. When the constant birthrate with 7, =
12 x 10° yr is taken as a representative case, equation
(29) can be used to give a useful formula for the slope
of the IMF:

dlog ((log M)/dlog M = —(1 + log M). (31)

The slope varies from 0 at 0.1 Mg, to —1.0 at 1 Mo,
to —1.9 at 10 My, to —2.6 at 50 M. Although the
slope of the IMF is insensitive to the birthrate history,
the actual value of the IMF does depend on the birth-
rate. Therefore, the importance of using an IMF and
its corresponding birthrate in any application involv-
ing the solar neighborhood cannot be overemphasized.

Another analytic representation for the IMFs,
which contains the slope of the IMF explicitly and is
often more convenient in analytical calculations than
equation (29), is a power-law formula

¢(log M) = DoMP:. (32)

D, is the slope of the IMF. Three separate power laws
have been fitted to the IMFs, with the transitions
arbitrarily taken at 1 and 10 M. The coefficients are
given in Table 7. Since the IMFs are similar in shape,
D, was taken to be independent of the birthrate
history.

The IMFs of the present paper give the number of
stars per unit logarithmic mass, while some other
investigations have used the IMF per unit mass,
denoted &£(M). The two are related by

dlogM.

£(M) = &(log M) “—gE;

(33)

From this expression it can be seen that if the slope of
&(log M) is Dy, the slope of é(M)is D, — 1.

b) Derived Quantities

Several useful quantities can now be calculated
from the IMF. The first is the cumulative number
distribution of the IMF,

N(>M) = f T log Mydlog M, (34)

M

where M., is the maximum mass of stars. The actual
value of M, is probably greater than ~ 100 M (see
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TABLE 7
PARAMETERS FOR ANALYTIC FITS TO THE IMF

CONSTANT
BIRTHRATE MI MD
To (10° yr) 9,12, 15 9 12 15 9,12,15
Quadratic Fit to log £(log M)
Aoeee i 1.43 1.47 1.53 1.59 1.96
Ay —0.88 —-1.02 —-096 —-0.87 —0.92
. P —0.50 —-044 —-0.47 -0.50 —0.49
Half-Gaussian Fit to é&(log M)
Coeeen e 66.2 113.3 106.0 93.2 242.4
Clovee e 1.15 1.02 1.09 1.14 1.14
Coueeiiie i —0.88 —1.15 —-1.02 -0.88 —-0.93
Three-Segment Power-Law Fit to {(log M)

0.1 < M/M, < 1:

Do, 32 36 42 42 100

Dy, —-04 —-04 —-04 —-0.4 —-0.4
1< M/M, <10

Do.ovvvi .. 32 36 42 42 100

Dy, —1.5 —1.5 —1.5 -1.5 —1.5
10 < M/Mo,

Doovvvvvnnn.. 180 200 240 240 560

Dy —2.3 -2.3 —2.3 —23 —2.3

Scalo 1979), but because of lack of knowledge con-
cerning the luminosity function for very massive stars,
we arbitrarily take M., = 62 My for the purposes
of these calculations. The derived quantities are in-
sensitive to this choice. The value of N(> M) at any
mass M gives the number of stars in the IMF, i.e., all
stars ever born (per square parsec) more massive than
M. Since 0.1 My is the minimum mass of main-
sequence stars used in the present investigation,
N(>0.1) gives the total number of stars in the IMF
per square parsec. For reasons detailed in § I1b, this
choice of the minimum mass of main-sequence stars
is the result of the lack of knowledge of stellar prop-
erties for M, > 16. It should be emphasized that the
IMFs of the present paper and any derived quantities
therefore refer only to main-sequence stars more
massive than 0.1 M., although objects with (initial)
masses less than 0.1 My may contribute significantly
to the total mass of the solar neighborhood. However,
if our presently derived IMF is extrapolated to smaller
masses, it can be seen that the contribution of lower-
mass objects is not significant. Of course, it is con-
ceivable that the IMF steepens again for masses less
than 0.1 M,. The lack of a serious discrepancy
between the observed mass in the solar neighborhood
and the Oort limit (§ IIg) also provides (admittedly
weak) evidence that such objects do not make a large
contribution.

Table 8 gives N(>0.1) for the different birthrates.
The value of N(>0.1) for the MD birthrate is much
larger than that of the other birthrates since the MD
birthrate was derived by pushing the PDMF for low-
mass stars to the upper extreme of the uncertainty

limits. The fractional number of stars more massive
than a mass M, F,(> M), is

Foy(>M) = N(>M)/N(>0.1). (35)

Since the shapes of the IMFs for the different birth-
rates are similar, to a good approximation F,(> M)
is independent of the birthrate and age of the Galaxy
and is given in Table 9.

It is often useful to know the present birthrate of
stars in units of stars yr~! pc~2. The birthrate b(z)
gives the absolute birthrate at a time ¢ in terms of the
average absolute birthrate. The average birthrate per
unit mass is simply the IMF (all stars ever born)
divided by the age of the Galaxy. So the present birth-
rate of stars in stars yr~* pc"2 log M ~!is

b(TJ;O) Eé(log M) . (36)

TABLE 8

ToTAL NUMBER OF STARS AND TOTAL AMOUNT OF MASS
IN THE INITIAL MAss FUNCTION

Birthrate N (>0.1)* M (>0.Dt
Maximum increasing........ 62.4 429
Constant T, =9 x10°....... 82.2 46.7
Constant T, =12 x 10°. ... .. 85.4 54.7
Constant T, =15 x10°,..... 88.6 62.3
Maximum decreasing. ...... 218.8 144.1

* Total number of stars ever formed (pc™2).
T Total mass in stars ever formed (Mo pc™3).
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TABLE 9 The fraction of mass in stars more massive than M,
VALUES OF F, AND F, F.(>M),is
log M/ Mo Tog Fu(> M) log F(> M) . F.(>M) = R(>M)/?(>0.1). 39
Since the shapes of the IMFs for the different birth-
+1.6. . —4.03 -2.15 rates are similar, F,,(> M) is approximately independ-
i}g --------------- :3-‘9‘1; :}-gg ent of the birthrate and age of the Galaxy and is given
100 —2.49 -1.07 in Table 9. .
408 —2.09 —0.84 It is also useful to know the present birthrate of
+06............... —-1.73 —0.65 stars in terms of how much mass is being converted to
1’8-‘2‘ -------------- :}-‘1‘(1) :8-‘312 stars. To distinguish this from the birthrate B,(> M)
o0 085 — 024 in units of stars yr~! pc~2, the present mass consump-
—0.2. ~0.62 —0.16 tion rate B,(> M) is defined as the amount of matter
—g.g ............... —8.4% —0.10 being turned into stars more massive than M at the
Cos i Ion By present time (in Mo pe™* yr™*) and is given by
—1.0........... ... 0.00 0.00

NoOTE.—F,(> M) gives the fraction of stars in the IMF (all
stars ever formed) more massive than M. F,(> M) gives the
fraction of mass in the IMF contained in stars more massive
than M.

The present birthrate of stars more massive than some
mass M, B,(> M) (in stars yr~! pc™2), is just

B,(> M) = f’%’) f " tlog M)d log M
M

b(TO) N(>0.D)F,(> M)

= GnFn( > M), (37

where G, gives the total present birthrate of stars.
B, (> M) can be found using the values of G, in Table
10. B,(> M) is often used in interpretations of the
galactic supernova rate, as discussed in § I1Ic(vi)
above.

The cumulative mass distribution of the IMF is

Mmax

M(> M) = j Mé(log M)dlog M.  (38)

M

The value of (> M) at any mass M gives the amount
of mass in the IMF contained in stars more massive
than M (in My pc™2). M(>0.1) gives the total amount
of mass contained in the IMF and is given in Table §.

TABLE 10

ToTAL PRESENT BIRTHRATE, TOTAL PRESENT MASS
CoONSUMPTION RATE, AND TIME SCALE FOR
CONSUMPTION OF THE INTERSTELLAR GAS

Birthrate G.* Gnt 7ot
Maximum increasing. . .. 1x10-% 7x10-° 1x10°
Constant To, =9 x 10°. ... 9x10-° 5x10-° 2x10°
Constant 7o =12 x 10°. .. 7x10-® 5x10-° 2x10°
Constant 7o =15 x 10°. .. 6x10- 4x10-° 2 x 10°
Maximum decreasing. . .. 4x10-° 3x10-° 3x10°

* Total present birthrate (stars yr=! pc~2).
+ Total present mass consumption rate (Mg yr~! pc~32).
1 Time scale for consumption of gas (yr).

Mmax
Bu(>M) = %1%2 f M¢(log M)d log M
M

b(T BT pr(>0.0)F,(> M)

= G,,,F,,,( >M). (40)

G,, gives the total amount of mass being converted to
stars at the present time (Table 10) and varies between
3 and 7 x 10-° Mg pc~2 yr~2. Tinsley (1977a) finds
a range of 1-16 x 1072 M, pc~? yr~*. The means of
these determinations are in agreement, but the range
found by Tinsley is larger for several reasons. Both
Tinsley and the present investigation find a roughly
similar range for b(T,)/T,. Since b(T,) gives the
present birthrate in units of the average birthrate, the
average birthrate must be known in order to obtain
the present mass consumption rate from the ratio
b(T,)/T,. It is in the evaluation of the average rate that
the present method differs from that of Tinsley.
Tinsley uses the total amount of matter in the solar
neighborhood derived from dynamical arguments (the
“Qort limit ) to derive the average mass consumption
rate. As discussed in § IIg, the dynamically derived
value for the total mass in the solar neighborhood
exceeds the amount of mass that can be accounted for
by observed stars and gas, although we have argued
that this difference is probably not significant. How-
ever, if this discrepancy is real and if the missing mass
is not in the form of (presently undetected) stars and
gas, then Tinsley’s method will not give the average
mass consumption rate for field stars. The present
investigation uses the amount of matter in observed
stars to find the average field star mass consumption
rate. Further, we find that the value of b(7Y) is related
to the value of the average birthrate; namely, the
larger the b(T,), the smaller the average rate. The
result is that the range in the present birthrate is
smaller than the range in b(T,). Another reason that
the range found by Tinsley is larger is that her method
requires knowledge of the average mass fraction of
material which formed stars that is eventually returned
to the interstellar medium, and uncertainties in this
fraction increase the range in the values of the present
mass consumption rate over that of the present
method, which does not require this fraction.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1979ApJS...41..513M&amp;db_key=AST

JS. C A1 C5T3MD

o]

rTI79A

536 MILLER AND SCALO

The present mass consumption rate G,, can be used
to find the amount of time necessary to consume the
interstellar gas in the solar neighborhood 7,. Tinsley
(1977a) states that there is 6-9 M pc™2 of interstellar
material in the solar neighborhood. Dividing this
value by the total present birthrate gives the time for
consumption of the interstellar gas (see Table 10).
These times range from 1 to 3 x 10° years, a smaller
range than found by Tinsley (0.6 to 10 x 10° yr) for
the same reasons as explained above. Such small
values of 7, are consistent with three general models
for the evolution of our Galaxy. (1) Gas may be
replenished by infall. A galactic model in which the
star formation rate is controlled by the infall rate was
suggested by Larson (1972). Estimates for the local
infall rate are around 2 x 107° My pc~2yr~1, only a
factor of 1.5-3 times smaller than the mass consump-
tion rates given in Table 10. (2) Gas in the solar
neighborhood may be replenished by radial flows.
(3) The birthrate may fluctuate on relatively small
time scales with the present birthrate larger than
average. Such a situation could arise if galactic en-
counters caused bursts of star formation (Larson and
Tinsley 1978). The gas depletion time scale derived
here is also similar to some of Kaufman’s (1978)
values for supernova-induced star formation “revived”
by density waves.

¢) Comparison with Other Work

In Figure 11 we compare the IMFs of the present
investigation with those of previous authors. The
pioneering study was made by Salpeter (1955), who
derived the IMF assuming a constant birthrate. He
found that the IMF follows a power law of slope
—1.35 from 0.4 to 10 M, with a steeper slope for
larger masses. This value for the slope of the IMF has
been used throughout the literature. Comparison with
the results of the present investigation as well as with
other determinations shows that the Salpeter slope is
roughly applicable from about 2 to 10 M, but that it
does not hold outside this range: the upper IMF is
steeper, while the lower IMF is flatter. Audouze and
Tinsley (1976) have also cautioned against the use of
the Salpeter slope outside this range. The differences
between the present results and those of Salpeter are
due mainly to improved main-sequence lifetimes and
because Salpeter considered star densitiesin the galactic
plane and not integrated perpendicular to the plane.
Sandage (1957) derived the initial luminosity function
assuming a constant birthrate, and Warner (1961)
converted it to an IMF. Schmidt (1959) relaxed the
assumption of a constant birthrate (see also Mathis
1959; Salpeter 1959) by assuming that the rate of star
formation varies as some power r of the average inter-
stellar gas density (§ Illc[ix]). Schmidt’s IMF for a
constant (n = 0) birthrate (derived from his tabulated
ILF and his mass-luminosity relation) is shown in
Figure 11. His IMFs for n = 1 and 2 exhibit the
“bump”’, or discontinuity, at about 1 M. Limber’s
(1960) IMF is the mean of Sandage’s (1957) IMF,
Sandage’s (1957) cluster IMF, and van den Bergh’s

(1957) cluster IMF. The IMF of Hartmann (1970) is a
combination of the cluster IMF (a power law of slope
—1.2 fitted to the Pleiades, Hyades, and NGC 2264)
from 1 to 8 Mg and essentially an IMF derived assum-
ing a constant birthrate for higher masses. Audouze
and Tinsley (1976) give the slope of the IMF for stars
more massive than 3 Mg and less massive than 1 M.
Their slopes for the upper IMF are taken from ORT,
while their lower IMF is derived from Wielen’s (1974)
luminosity function assuming a decreasing birthrate.
As discussed in §IIf, ORT have probably under-
estimated the number of high-mass stars, although
the slope of their PDMF for M > 25 M, (and thus
the slope of the IMF) agrees with others (see Fig. 5).
The plateau (slope —0.6) in the IMF of Audouze and
Tinsley at about 25 M is apparently due to the
transition of ORT from one source of data (counts of
OB stars by Richstone and Davidson 1972) to another
(McCuskey’s 1966 luminosity function), and should
not be viewed as real since it appears in no other
determinations. In conclusion, it is seen from Figure
11 that the IMFs of various authors are in qualitative
agreement, especially considering differences in the
input data and improvement in main-sequence life-
times over the years. However, there are significant
quantitative differences.

A significant fraction of, if not all, field stars are
formed in open clusters and associations which subse-
quently dissipate (see Miller and Scalo 1978 and
references therein). Accordingly, it is of interest to
compare the cluster and association IMFs with the
field star IMF. Figure 11 shows the average cluster
IMF of 62 open clusters (average slope —1.7) as
determined by Taff (1974), which is roughly repre-
sentative of other recent investigations (Piskunov
1976; Burki 1977; see Scalo 1979 for a comparison).
(The same slope is obtained using our [absolute
magnitude, mass]-relation and Taff’s cluster lumi-
nosity function.) Within the uncertainties, the cluster
IMF agrees with the field star IMF for M > 1 M.
However, several authors have noted that at least some
clusters are deficient in stars below 1 M, relative to
the field IMF. A reexamination of the problem is
necessary to determine the cause and extent of this
deficiency. A more detailed review of the cluster IMF
is given by Scalo (1979).

Because of formidable observational difficulties (see
§ I1), only the high-mass end of the association IMF
can be determined. In Figure 11¢ we show the IMF
of the most extensively observed association, Ori OBI.
This IMF was determined from the luminosity func-
tion given in Warren and Hesser (1978, Tables 5-11)
using the (absolute magnitude, mass)-relation given
in Table 1 of the present paper. For M > 2.5 M,
the Ori OBI association IMF is in good agreement
with the field star IMF. Warren and Hesser state that
incompleteness becomes significant for lower masses,
thus explaining the rapid decline relative to the field.
The published luminosity functions for other OB and
also R associations contain too few stars for meaning-
ful comparison. The IMF of T Tauri associations
cannot be determined from the luminosity function
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since the (absolute magnitude, mass)-relation for
these stars is extremely uncertain.

We conclude that there is no evidence for depar-
tures from the field star IMF in local clusters for M >
1 M, and in associations for M 2 2.5 M.

d) Comparison with Theory

A primary goal in establishing the observed form
of the IMF is to provide a constraint on theories of
star formation. Such an approach has proved fruitful
in areas like comparative ecology (e.g., May 1975),
where the observed distribution of the total popula-
tions of species in a closed environment can be used
to infer how these species divide up resources and how
the species interact. In general studies of size distri-
butions (e.g., aerosol physics), a lognormal distri-
bution signifies the operation of several independent
mass alteration processes. For the problem at hand
there are essentially only two general types of theories
to be considered. First, the IMF (or at least some
portion of it) may reflect the initial distribution of
protostellar fragment masses, with fragments evolving
independently of each other. We refer to this type of
interpretation as a fragmentation model. The second
possibility is that the form of the IMF may be a
signature of certain interactions of protostellar frag-
ments with ambient gas and with each other. This type
of interpretation is referred to as a fragment interaction
model. In §§1Vd(i) and 1Vd(ii) we briefly list the
predicted form of the IMF in several variants of each
type of model. Our description of the theories is brief
and is intended only to give the reader the basic
assumptions on which each theory is based ; no attempt
is made at detailed analysis or criticism. The reader is
referred to Silk (1979) for a more detailed discussion
of some of these mechanisms.

i) Fragmentation Models

Geometrical and probabilistic models.—Belserene
(1970) calculated the mass function which would
result if a homogeneous cloud completed its fragmenta-
tion all in one step, in such a way that no particular
size would be favored, with smaller fragments forming
freely between the larger ones. The IMF slope is — 3.
Auluck and Kothari (1954) considered the random
fragmentation of a volume, modeled as a homo-
geneous parallelepiped subdivided by planes parallel
to its sides, and found a mass function

M) oc (%)' exp [~ 3(MIM)'?],  (41)

where M, is the average fragment mass and the
formula is only valid for M > M,. This result was
compared with the mass function in the Hyades
cluster by Kushwaha and Kothari (1960). This model
also views the fragmentation as occurring in one step.
Auluck and Kothari (1965) generalized the derivation
to include smaller masses. Kruszewski (1961) assumed
that the density perturbations in a cloud have a white-
noise spectrum, with a distribution of linear sizes / in
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one dimension (number per unit length) proportional
to /78 Assuming that the three dimensions of a
fragment are independent, Kruszewski finds a mass
function essentially proportional to M ~2. Another
random fragmentation model, which, however, gives
a very poor fit to the stellar IMF, has been discussed
by Kiang (1966).

Reddish (1962, 1966) considered the distribution of
gravitational potential energies of fragmentsfora given
power-law distribution of radii. Assuming equi-
partition of gravitational energy of fragments in equal
ranges of fragment size, Reddish finds a mass function
with slope —4/3. Fowler and Hoyle (1963) considered
a hierarchical fragmentation process in which all
fragments at step » have the same mass M, and they
assumed that the mass of fragments of step » that
survive without further fragmentation to become stars
of mass M, is the same at each step (“equipartition
of mass™). The resulting mass function, if approxi-
mated by a power law, has a slope which varies from
about — 1.1 at 107! My to — 1.4 at 10 M, steepening
thereafter.

Larson (1972) presented a model for random frag-
mentation which considered the process to occur in
stages, starting with a cloud of mass M,, and ending
with fragments of a minimum size or equivalently a
total number of fragmentation stages N. At each stage
the fragments are supposed to split into two equal
subcondensations, each with half of the initial mass.
Larson assumes that the minimum Jeans mass is
reduced by a factor of 2 at each stage and assigns a
fragmentation probability p to the process; p is a free
parameter. Since Larson’s model yields a Gaussian
distribution, it can be made to agree with the IMF
of the present work by a suitable choice of the param-
eters, for example, for M, = 105, p = 0.62 and N =
22 and for M, = 104, p = 0.69 and N = 24. However,
the slope of the IMF is very sensitive to p. For example,
if My, = 10* and N = 24, a decrease in p from 0.69
to 0.5 changes d log ¢/d log M from —1.9 to —0.5 at
M = 10 M. Since one expects at [east modest varia-
tions of p (and other parameters) from cloud to cloud,
it is difficult for this theory to account for the observed
degree of uniformity of cluster mass spectra, as found
by Taff (1974).

Physical Mechanisms.—Larson (1978) has presented
three-dimensional hydrodynamic collapse calculations
which suggest a hierarchical model in which “accretion
domains™ of various sizes occur. A massive sub-
condensation accretes some fraction of the surround-
ing gas which depends on the effective viscosity, and
the leftover gas tends to arrange itself in accreting
subcondensations of a smaller scale. Larson gives a
simple geometrical construction to illustrate that if the
same fraction of gas is accreted at each level of the
hierarchy, the resulting mass spectrum should be a
power law. For a very small accretion efficiency the
slope of the resulting IMF is — 1.

Reddish (1975), following a similar idea by Reddish
and Wickramasinghe (1969), suggested that insta-
bilities associated with a changing mean molecular
weight will occur when molecular hydrogen forms via
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grain surface reactions. Reddish argues that the rate
of H, formation depends sensitively on grain tempera-
ture, which should fluctuate on a length scale corre-
sponding to unit grain optical depth, leading to a
cellular structure. The predicted fragment IMF has a
slope between —1.0 and —1.5, depending on the
assumed central condensation of the individual frag-
ments. This mechanism has been criticized by Silk
(1979).

Arny (1971) has pointed out that if the interiors of
clouds are turbulent, one expects the critical mass for
gravitational instability to be controlled by the tur-
bulent velocity rather than by the temperature.
Assuming a turbulent spectrum of the form

pv* = I°f(r), (42)

where p is the density of a region of size /, « and S are
constants, and f(r) gives the radial dependence of the
spectrum, and that the fragments satisfy v2 = GM/I,
Arny shows that the mass function will be a power law
of slope n=—c(1 + 1/2«), where ¢ = 3(3 + 1/2¢ + B) L.
For constant angular momentum density, pv/ is
constant, « = 1, B = —1, and » = —9/5. For con-
stant kinetic energy density, pv? is constant, o = 2,
B =0, and n = —3/2. A Kolmogorov spectrum also
givesn = —3/2.

Takebe, Unno, and Hatanaka (1962) assumed that
the stellar mass spectrum is set simply by the spatial
distribution of the local Jeans mass throughout the
cloud, which is controlled by the cloud’s temperature
and density distribution. Takebe er al. calculate the
cloud structure which will give the observed stellar
mass spectrum. The required density distribution
resembles a polytrope of index 5 with a gradient in
turbulent velocity. It is difficult to imagine that all
clouds have structures similar enough to account for
the degree of uniformity in the observed mass spectrum
of various clusters.

Silk (1977) has derived the form of the IMF which
would result from the following continuous hier-
archical fragmentation scheme: The dominant frag-
ment mass in a region of the cloud is equal to the
Jeans mass corresponding to fragment optical depth
unity, since larger masses contract adiabatically and
do not fragment further while smaller masses cannot
contract at all. The energy input from the contracting
fragments heats up the rest of the gas, leading to a
larger dominant mass as fragmentation proceeds since
the Jeans mass increases with temperature. For lower-
mass stars the main energy input should be radiation
and the calculated IMF is a power law with index
—1.3 to —1.6 for any reasonable grain opacity. Silk
suggests that dissipation of turbulence will be a more
effective heat input at larger masses and that the mass
spectrum should steepen, with an index of about
—2.9. The critical mass separating these two regimes
is uncertain, but Silk estimates a value of around
0.6 M.

Mass spectra resulting from some plausible physical
mechanisms have not yet been derived. For example,
Oppenheimer (1977) has shown that isentropic insta-
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bilities can occur in dense interstellar clouds, possibly
leading to the formation of protostars and maser
condensations. Oppenheimer suggests a spectrum of
sizes which increases toward small sizes. Mestel (1972
and references therein) has long advocated the view
that the masses of fragments should be controlled by
magnetic fields, and Nakano (1973) has examined a
similar fragmentation model in which the fragment
mass gradually decreases as the field leaks out. Since
the rate of field relaxation depends on the ion density,
a magnetic model might lead to an interesting de-
pendence of the mass function of metallicity. On the
other hand, recent determinations of electron densities
in clouds (e.g., Snyder et al. 1977; Wootten 1978)
suggest that the magnetic field may not be so important
in this regard.

Figure 12 compares the various fragment IMFs
described above with each other and with the field
star mass function. All IMFs are arbitrarily nor-
malized at M = M,. The predicted spectra of
Belserene (1970, n = —1) and Arny (1971, n &~ —1.5
to —1.8) are not shown for the sake of clarity. The
dark solid line represents the field star IMF of the
present paper for a constant birthrate and T, =
12 x 10° yr. Agreement or disagreement of theoretical
models with the observations over the entire spectrum
should not necessarily be taken as evidence for or

M/Mg

log ¢ (stars p¢'2 log M™")

1 I 1 Al
-1 o) +1 +2
M/Mg

Fi1G. 12.—Predicted mass functions according to various
fragmentation hypotheses (light lines) are compared with the
IMF of field stars (dark solid line). All the mass functions are
normalized at 1 M. The theoretical curves are from Reddish
(1966, 1975, R), Fowler and Hoyle (1963, FH), Auluck and
Kothari (1965, AK), Kruszewski (1961, K), and Silk (1977, S).
The Auluck and Kothari curve can be shifted arbitrarily.
Larson’s (1972) prediction can be made to fit the solid line
exactly with a suitable choice of parameters.
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against a particular model, since more than one
process may be important and/or different mass
ranges may be controlled by different processes; also,
many of the theories are so nonphysical that any
agreement with observations is probably coincidental.

Considering the simplicity of the theoretical models,
it is rather surprising that most of them crudely
resemble the observations. However, all the predic-
tions except that of Auluck and Kothari (1965,
“random fragmentation’’) are far too steep at the
low-mass end. Auluck and Kothari’s spectrum can be
shifted by changing the adopted mean mass (1 M in
the figure). Larson’s (1972) model is not shown since
it can be made to agree with the observations by
adjusting parameters. None of the other theoretical
spectra can be altered significantly by varying param-
eters, although the mass at the slope change in Silk’s
(1977) model, taken as 0.6 M, is uncertain. We
conclude that the main deficiency of most fragmenta-
tion models is their inability to account for the
flattening of the IMF at low masses.

ii) Fragment Interaction Models

It seems likely that protostellar fragments within a
cloud do not evolve independently. Nakano (1966)
showed that under reasonable conditions the mean
collision time scale for fragments can be smaller than
the fragment free-fall time and that strong radiative
cooling should result in coalescence during fragment
collisions. Recent observations of large density fluctua-
tions in clouds (e.g., Mahoney, McCutcheon, and
Shuter 1976; Clark, Giguere, and Crutcher 1977;
Clark and Johnson 1978) also suggest the importance
of fragment interactions. Nakano (1966) numerically
calculated the mass function of coalescing fragments
and found that for a given assumed collision rate the
mass function approached an asymptotic form similar
to that observed in some open clusters and to the IMF
derived in the present work. Silk and Takahashi (1979)
presented approximate analytic solutions to the coales-
cence equations which agree well with Nakano’s results
and which show explicitly the dependence of the form
of the mass function on collision rates. Both of these
works neglected the influence of the fragment velocity
distribution and protostellar collapse and assumed
essentially a 8 function for the initial distribution of
fragment masses.

Arny and Weissman (1973) took into account the
velocity distribution and collapse in N-body simula-
tions designed primarily to answer criticisms of
gravitational fragmentation by Layzer (1963), but the
number of bodies is too small for one to infer a
resulting mass function. Pumphrey and Scalo (1979)
have performed similar simulations with 2000 bodies,
in which interaction between fragments and ambient
cloud gas is accounted for. The important result for
the present work is that the high-mass end of the
predicted mass functions is independent of the initial
fragment mass distribution if the initial fragment
spectrum has no preferred mass, as in a power-law
spectrum (see Scalo 1979, Fig. 4), while the flattening
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of the low-mass end due to accretion of ambient gas
depends largely on the ambient gas density. It is
reasonable to assume that the higher star densities in
clusters relative to associations reflect higher initial
gas densities for the subclouds out of which clusters
have condensed. Therefore, such a fragment inter-
action model can account for both the uniformity of
the upper portion of the mass functions of clusters and
field stars and the variation of the low-mass end among
clusters and between clusters and field stars (most of
which were probably formed in associations). Al-
though these results make fragment interaction theories
appealing, much more quantitative theoretical work
and many more observational comparisons are re-
quired before any stronger statement can be made.

V. DISCUSSION AND SUMMARY
a) Is the IMF Time Independent ?

A fundamental assumption of this paper is that the
IMF is constant in time, and we now attempt to argue
that there is no compelling evidence to the contrary,
and even that some weak evidence in favor of this
assumption exists. We reiterate that we are concerned
with the IMF only in the solar neighborhood; evidence
for and against variations in the IMF in other galaxies
is reviewed by Scalo (1979).

It is often stated that from a theoretical point of
view it would be naive to expect a constant IMF
because the process of star formation may depend on
anumber of variables—in particular, metal abundance.
On the other hand, many specific idealized models for
the fragmentation of interstellar clouds, as discussed
in § IVd and reviewed by Silk (1979), predict IMFs
whose form is not sensitive to such quantities. The
fragment interaction models discussed above make the
same prediction. Furthermore, it appears that the mean
metal abundance has not increased significantly over
most of the history of the galactic disk, although
spatial fluctuations probably do occur (see Audouze
and Tinsley 1976). There is consequently no apparent
reason for assuming that the spatially averaged local
IMF has varied with time on the basis of metal
abundance.

Several authors (e.g., Schmidt 1963; Truran and
Cameron 1971; Biermann and Tinsley 1974) have
suggested that the IMF was enhanced in high-mass
stars in the past, in order to account for the small
number of metal-poor dwarfs in the solar neighbor-
hood relative to the predictions of simple chemical
evolution models. However, so many other mechan-
isms exist which could account for this discrepancy
(for references see Trimble 1975; Audouze and
Tinsley 1976) that this indirect argument for a time
variation of the IMF is considerably weakened.

The apparent differences between the field star IMF
and some open cluster IMFs, as mentioned in § IVe
and discussed in more detail by Scalo (1979), have
occasionally been interpreted in terms of a time-
dependent IMF. The age distribution of open clusters
(Wielen 1971) shows that most clusters have ages of
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about 108 yr or less so that the mean cluster mass
function reflects essentially present-day conditions in
the solar neighborhood, whereas low-mass field stars
have a considerably larger mean age. This result has
led several authors to suggest that the differences
between cluster and field star IMFs reflect a change
in the IMF during the last few 10° yr, with the fraction
of low-mass stars being larger in the past. We feel that
this interpretation is incorrect because there is no
tendency for the deficiency of low-mass stars to appear
only in the young clusters. For example, the low-mass
deficiency occurs not only in the (young) clusters
NGC 6193 and the Pleiades, but also in the old cluster
M67; it does not occur in the Hyades, which is inter-
mediate in age. A more likely explanation is that the
low-mass end of the mass function depends on initial
conditions, or equivalently that the mass function of
associations (where most field stars are born [Miller
and Scalo 1978]) is different from that of some clusters
for M < 1 M, a possibility which was noted by van
den Bergh (1972). A theoretical model which accounts
for this behavior is given by Pumphrey and Scalo
(1979) as discussed earlier.

Besides the weakness of previous arguments against
a time-dependent IMF, we also point out some
positive support for a constant IMF. First, Reeves
and Johns (1976) have inferred that the abundances
and production ratios of long-lived radio activities are
consistent with a constant IMF and a constant gas
depletion lifetime (which depends on the birthrate)
over the last few 10° years. Second, an often overlooked
paper by Dixon (1970) sought evidence for temporal
variations in the IMF from variations in the fraction
of stars of different masses in two different age groups.
For example, if the IMF was flatter in the past, one
should see more higher-mass stars in the older group.
By using only two age groups, Dixon’s work is some-
what less prone to the uncertainties involved in estimat-
ing age distributions from space motions and the
color-magnitude diagram. Although the results are
still uncertain, it may be significant that Dixon found
no variations in this fraction.

Two of the subsidiary constraints on the birthrate
history discussed in § IIlc also yield an important,
albeit uncertain, consistency check on the assumption
that the IMF is independent of time. The comparison
of the present white dwarf-planetary nebula formation
rate with the present total stellar birthrate indicates
that the birthrate of stars in the range 1-2 M, has not
changed much over the life of the galactic disk. The
yields of nucleosynthesis from Arnett’s (1978) calcula-
tions suggest that the birthrate of massive stars has
also been fairly uniform, although this conclusion is
model dependent. Taken together, these two results
imply that the ratio of the birthrate of low-mass and
high-mass stars has not varied strongly over the
history of the galactic disk. One does not expect this
result if the mass spectrum of newly formed stars has
changed drastically during the last 10 x 10° years
or so. As far as we know, this is the only unambiguous
argument for or against the constancy of the local
IMF over a large mass range.
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b) Is the IMF Continuous ?

Another fundamental assumption we have made in
constraining the time history of the birthrate is that
the IMF is continuous. Several papers (e.g., Quirk and
Tinsley 1973; Ostriker and Thuan 1975; Smith,
Biermann, and Mezger 1978) have speculated that the
discontinuity in the IMF which results from adopting
a rapidly decreasing or increasing birthrate is actually
a physical discontinuity resulting from different
mechanisms for star formation above and below about
1 M,. While it is entirely possible that different
processes of star formation control the high- and low-
mass ends of the IMF, we find it difficult to believe
that one set of processes cuts off at some upper mass
limit while the other set cuts off at some lower mass
limit and that both limits are roughly equal, as required
to produce the discontinuity. It would seem more
natural to expect that if there are two processes at
work, there is some intermediate mass at which they
contribute about equally to the star formation rate,
providing for a continuous mass function. Similar
situations are encountered in many studies of mass
distribution functions. An important example occurs
in terrestrial cloud microphysics: the mass spectrum
of droplets in a cloud is controlled by nucleation-and
condensation at the low-mass end but by coalescence
at the high-mass end, yet the observed and theoretical
mass spectra are continuous and usually monotonic.

Eggen (1976) has suggested that stars brighter than
M, =—1(M Z 5 M) and those fainter than M, = 0
(M < 4 M) are formed by independent processes,
and that stars of intermediate luminosity may not be
produced at all in the solar neighborhood. His two
lines of evidence are apparent gaps in the color-
luminosity diagram of a few clusters, and his finding
that no stars in the Bright Star Catalog with —1.0 <
M, < +0.5 and ages less than about 107 yr exist. The
gaps, assuming that they are not fluctuations, would
produce a dip in the field star IMF in a small mass
range if field stars were all formed in such clusters
(they are not), not a discontinuity of the type implied
by a rapidly decreasing birthrate. Indeed, the dip
would be at a significantly higher mass than the mass
corresponding to the discontinuity. Additionally, the
gaps certainly are not apparent in the color-magnitude
diagram of most clusters. We give little weight to
Eggen’s conclusion concerning the lack of stars in the
range —1.0 < M, < +0.5 with ages less than 107 yr
in the solar neighborhood since it rests almost entirely
on his adopted zero-age main sequence (ZAMS) in
this luminosity range, which is much different from
the ZAMS determined by other authors and which
strongly disagrees with the theoretical ZAMS. We
also note that if Eggen’s ZAMS and his claim about
the lack of young stars in the “special” luminosity
range were correct, then at larger and smaller lumi-
nosities the lower limit to the observed luminosity
distribution of Bright Star Catalog stars (Eggen 1977,
Fig. 8) should agree with his ZAMS, yet Eggen does
not present data for such stars.

Another observation which might be interpreted in
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terms of a discontinuous IMF is the absence of OB
stars in some T Tauri associations (Herbig 1962) and
the lack of infrared sources in the Taurus cloud
complex. Although this interpretation may be the
correct explanation, it is equally probable that massive
stars are simply the last to form, as suggested by
Herbig (1962) and supported by the comparison of
color-magnitude diagrams of young clusters with
theoretical isochrones (e.g., Iben and Talbot 1966).

¢) Summary

In this paper we have examined the observational
and theoretical considerations pertaining to the history
of the stellar birthrate and the IMF in the solar
neighborhood. Our major conclusions are as follows:

1. Independent determinations of the present-day
luminosity function using different methods and for
different volumes of space show that there exists a
meaningful average luminosity function for the disk
population in the solar neighborhood. Within the
observational uncertainties this luminosity function
smoothly increases with increasing magnitude to
M, ~ 15. Rough estimates of the uncertainties,
especially for high-luminosity stars, have been given.

2. The conversion of the present-day luminosity
function into the present-day mass function of main-
sequence stars (PDMF) introduces uncertainties which
we have attempted to estimate. These include the mass-
luminosity relation, the distribution of stars perpen-
dicular to the galactic plane, the calibration of mass
and spectral type, correction for main-sequence
brightening, and correction for non-main-sequence
stars. Corrections which we are presently unable to
estimate quantitatively include the effect of mass loss
in massive stars on the apparent luminosity function,
the fraction of OB stars hidden within dense inter-
stellar clouds, the effect of unresolved multiple star
systems, and the effect of variations in chemical
composition. Although we suspect that the last two
effects are relatively small, they all deserve further
investigation.

3. We have emphasized that the determination of
the IMF from the PDMF is inextricably tied to the
adopted history of the stellar birthrate. The primary
constraint on the birthrate history, the continuity
constraint, is the requirement that the IMF not exhibit
an unphysical discontinuity at the mass where the
main-sequence lifetime equals the age of the disk.
Maximizing all observational uncertainties, we find
that the average past birthrate may be at most about
5 times larger or 3 times smaller than the present
birthrate according to this constraint, and we favor a
variation of less than a factor of 2.

4. Consideration of 12 secondary constraints on
the birthrate shows that these constraints either are
consistent with the continuity constraint with a much
larger uncertainty or else are indeterminate.

5. There is no evidence that the birthrate depends
on the square of the mean gas density. If the birthrate
depends on some power of the mean gas density, the
exponent must be small (<0.5).
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6. Most theoretical scenarios for the birthrate
history are consistent with a roughly constant birth-
rate.

7. The allowed range of birthrate histories con-
sistent with the continuity constraint yields IMFs
which are smooth and can be well approximated by a
half-Gaussian distribution in log M from 0.1 M, to
about 50 M. Within the observational uncertainties,
the cluster IMF agrees with our derived field star IMF
for 1 My < M <10 Mg, but some clusters are deficient
in low-mass stars. The IMF of the Ori OB1 association
agrees well with the field star IMF for M > 2.5 M.

8. The main deficiency of theoretical pure frag-
mentation models for the IMF is their inability to
account for the flattening of the observed IMF at low
masses or the low-mass turnovers seen in some open
cluster IMFs. Fragment interaction models are more
successful in accounting for these features.

9. The present mass consumption rate is calculated
as 3-7 x 107 Mg pc~2 yr~*. The corresponding time
scales for gas depletion suggest that star formation is
balanced by infall and/or that the birthrate is controlled
by stochastic factors.

10. Two basic assumptions used in this paper are
that the IMF is independent of time and a continuous
function of mass. Our discussion of both observa-
tional and theoretical considerations related to these
questions indicates that the assumptions are not un-
reasonable.
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Note added in manuscript, 1979 February 18.—After
this work was completed, we received a preprint from
J. Lequeux on the IMF for stars more massive than
2 M. Using several recent catalogs, he calculated the
surface density of stars as a function of spectral type
and luminosity class. He used theoretical evolu-
tionary tracks to assign masses and calculated the
PDMF. Comparison with the PDMF of the present
paper shows that Lequeux’s PDMF is systematically
smaller by about 0.4 in the log and quite similar in
shape. For log M > 0.8 this is within our uncertainty
limits, while for smaller masses the disagreement is
somewhat larger than our uncertainty estimate.
Lequeux cites evidence that roughly half of all O stars
(M z 15 M) are not on the main sequence; i.e., they
are evolved stars of lower mass. In our check on the
upper PDMF using counts of stars versus spectral
class (§ IIf), we assumed that all O stars were main-
sequence stars, and this assumption may not be justi-
fied. However, this factor of 2 is substantially less than
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the total uncertainty and therefore does not alter any
conclusions. The IMF as defined by Lequeux is
dms/Tms In the notation of the present paper. For these
short-lived stars, this is equivalent to the present
birthrate &b(T,)/T,. Since the (mass, main-sequence
lifetime)-relation used by Lequeux is similar to ours,
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the IMFs of his study and ours have essentially the
same relationship as the PDMFs: Lequeux’s IMF
is below ours and similar in shape. Lequeux finds a
slope of —2 for M > 2, while the power-law repre-
sentation of our IMF has slope —1.5for1 < M < 10
and —2.3 for M > 10.

APPENDIX
MAIN-SEQUENCE BRIGHTENING CORRECTION

In § II of the text it was noted that the decrease in absolute magnitude of a star during its main-sequence lifetime
has an effect on the PDMF and IMF, and that to a good approximation the use of the (mass, mean absolute
magnitude)-relation rather than the (mass, zero-age absolute magnitude)-relation in the derivation of the PDMF
corrects for main-sequence brightening. In this Appendix the effects of main-sequence brightening are first examined
in detail because the effects of brightening are not negligible and because no complete discussion exists in the
literature. With this background, the approximation employed is then justified.

In deriving the PDMF, the main-sequence Iuminosity function (observed distribution of present absolute
magnitudes) was converted to a mass distribution via a (mass, absolute magnitude)-relation. This assumes a unique
relation between mass and absolute magnitude on the main sequence. However, the present absolute magnitude of
a main-sequence star is determined by its age in addition to its mass, so at any given absolute magnitude there is a
contribution from stars over a range in mass. Let ¢,,(M,) denote the present-day main-sequence luminosity
function (stars pc~2 mag~1!). Then the IMF uncorrected for brightening £* was derived from (see eq. [10])

aM,
dlog M

T

£4(log M) = l bume(M)To / L :_Tm(w b(t)d . (A1)

The first term on the right-hand side is the slope of the (mass, absolute visual magnitude)-relation and converts the
luminosity function to a mass distribution.

The true but as yet unknown IMF, ¢, is given by the same equation when the distribution of initial (or zero-age)
absolute magnitudes, ¢,,(M,°), is used:

&log M) = | o

To
I mstOT/f b(r)dt . A2
legM ¢ ( ) [ o = T ( ) ( )

(Strictly speaking, dM,°/d log M should be substituted for dM,/d log M, but the differences are small and are not
considered further.) The ratio of the true IMF to the uncorrected IMF, x(log M), is just

_ £(og M) _ $(M)
X108 M) = Folog 1) ~ G ()

Once the correction factor y is shown as a function of mass, the true IMF can be found from the uncorrected
IMF. It is necessary then to evaluate ¢,(M,°) and ¢,(M,). The quantity ¢,,,(M,°) is simply (see eq. [A2])

dlog M
M,

basM) = |

£(log M)] J RO (Ad)

To—Tms T,

The term in brackets gives the number of stars of original magnitude M,° ever born (per square parsec per magni-
tude), while the integral gives the fraction of all such stars which are still on the main sequence.

The derivation of ¢,,(M,) is considerably more complicated. The quantity ¢,.(M,) gives the number of stars
(per square parsec per magnitude) with present magnitude M,. Since the absolute magnitude of a star is a function
of both age r and mass M, ¢,,,(M,) contains contributions from stars in a range of mass as well as in age. {Note
that = and 7z are related by ¢ + = = T,.) If M, * is a specific value of the present absolute magnitude and M, (, log M)
symbolically denotes the (mass, age, absolute magnitude)-relation, then the most massive stars, with M, = M,*, have
mass M., defined by M,(» = 0,log M,,.) = M,*. The original absolute magnitude of these stars equals M,*. The
least massive stars with M, = M,* have mass M,,, defined by M, [t = T(Mup), log My ] = M,*; i.e., their
absolute magnitude brightens to M,* only at the end of their main-sequence lifetime 7j,.. To find ¢, (M,*), it
is necessary to integrate over all stars with M, = M, * intherange 0 < 7 < T, (M) and M, < M < Mpox.

The mass and age of a star with M, = M,* are uniquely related, allowing the problem to be reduced to one
independent variable. When the present absolute magnitude is fixed at some value M, *, the relation M, * =
M (7, log M) defines a unique relation between = and log M. With age as the independent variable, the mass of a
star with M, = M,* becomes a function of its age. In what follows, we understand mass to be a function of age
without explicitly writing M (7).
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log M

T
F1G. 13.—Neighborhood of an arbitrary point in (7, log M)-space used in the derivation of ¢uns(My)

To find the total number of stars per unit present absolute magnitude as a function of present absolute magnitude,
the general expression for the number of stars per unit absolute magnitude in the neighborhood of an arbitrary
point in (=, log M)-space must be found and then integrated over the above range in = and log M. Figure 13 shows
the neighborhood of some arbitrary point (r, log M). Points on the curve AB have M, = M,*, and the curve CD
is drawn so that points on this curve have M, = M * + 6M,, where the increment 6, is to be specified. Points
A and C lie at the same age, and likewise for points B and D. The total number of stars in ABCD is given by the
product of the creation function &(log M)b(¢)/T, and the area of ABCD. The number of stars per unit absolute
magnitude is then {é(log M)[b(¢)/T,](area of ABCD)}/8M,. The area and 8M, must be explicitly evaluated.

Point A has coordinates (7, log M). Point B is arbitrarily chosen to be at = + dr. Since B must lie on M, = M *,
the coordinates of this point are [ + dr, log M + (d log M/d7)dz], where we have used the relation

oM, oM, dlogM

or  dlogM dr

(A5)

which is derived by differentiating M,* = M (=, log M). Point C lies at age = and is arbitrarily chosen to have the
same mass as point B. Therefore, the absolute magnitude at point C is M, * — (9M,/07)d~. This fixes the value of
oM, as —(6M,/or)dr. Point D lies at age 7 + dr and is required to have M, = M,* + 8M,, so its coordinates
must be [r + dr, log M + 2(d log M/dr)d=]. The quadrilateral ABCD is therefore a parallelogram with area
(d log M|dr)(dr)?. The number of stars per unit present absolute magnitude in ABCD is

— &(log M)b(7)(d log M|dr)dr

To(oM,|0T) (A6)
The total number of stars per unit present absolute magnitude with M, = M,* is then given by
TmsMmin) __ £(log M)b(7)(d log M/dr)
*) —
b0, = | T dr. (A7)

We note that this equation is quite general and applies to any stellar property which is a function of mass and
age. The generalization to a stellar property which is a function of mass, age, and an additional property (e.g.,
metal abundance or rotation) is also apparent.

Having found expressions for ¢.,,.(M,°%) and ¢,,(M,), we can calculate the correction factor y as a function of
mass once a brightening law is adopted. The following form was chosen:

M7, log M) = M (log M) — 2.5log[1 + fi7/T(log M)]. (A8)

According to this prescription, the luminosity of a star increases linearly with time and brightens by a factor 1 + f;
in luminosity [the magnitude decreases by 2.5 log (1 + f;)] by the end of its main-sequence lifetime. The parameter
f1 is referred to as the brightening constant and has a value in the range 0.75-1.5. This formula is a satisfactory
representation of theoretical models of main-sequence evolution.

It is important to note that because the brightening depends on the main-sequence lifetime, which in turn depends
on mass, equation (A8) cannot be analytically solved for mass as a function of age. This complication is expected
to be true for any brightening formula since the rate at which a star brightens is expected to be related to its main-
sequence lifetime.
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T T T T T

X (log M)

log M

Fic. 14.—Main-sequence brightening correction factor y(log M). The solid lines correspond to a total brightening of 0.75 mag
(f1 = 1), for three birthrates: MI, C, and MD. The dashed lines are for a total brightening of 1.0 mag (f; = 1.5). For high masses,
x(log M) is independent of the birthrate and age of the Galaxy and depends primarily on f;. The dependence of x(log M) on the
age of the Galaxy is small at all masses and is not shown. The dot-dashed lines above and below the solid line at high masses show
the effect of altering the slope of the IMF at a given mass by +0.5 and —0.5, respectively.

For this reason equation (A7) and thus y(log M) must be evaluated by numerical techniques. In addition to
numerically integrating equation (A7), a simulation has been used to calculate y(log M). In this simulation N stars
are randomly distributed in mass according to ¢(log M) and in age according to 5(¢). The zero-age and present
absolute magnitudes are calculated for each star. Then the number of stars with M,° within a small range of M, *
are counted and compared to the number of stars with M, in the same range. For convenience, power laws were
used for the IMF, (mass, zero-age luminosity)- and (mass, main-sequence lifetime)-relations. These are sufficiently
accurate over the range of integration. We have verified that numerical integration of equation (A7) agrees with
the results of the simulation. : ‘

It is noted here that this is actually an iterative procedure: the true IMF must be known in order to calculate
x(tog M), whereas only the uncorrected IMF is known at first. As shown below, x(log M) depends only weakly
on the slope of the IMF. Since the correction factor depends only on the slope of the IMF, one interation is
sufficient.

Figure 14 shows x(log M) for a range in parameters. Below 0.8 M, the correction is near unity. As mass
increases from 0.8 to 2 My, the correction factor rapidly decreases from unity to about 0.45, with the exact value
of the correction factor depending on the birthrate history and the brightening constant f;. Above 2 Mg, the correc-
tion factor is independent of the birthrate since the range of integration in age is much smaller than the time scale
for a change in the birthrate for these massive, short-lived stars. In this mass range, the correction factor depends
primarily on the brightening constant f;. As shown in Figure 14, a change from f; = 1 to f; = 1.5 results in a
decrease of y(log M) from 0.48 to 0.38. This figure also demonstrates the lack of sensitivity of the correction factor
to the slope of the IMF. A large change in the slope (+0.5) results in a small change in y(log M). The dependence
of y(log M) on the age of the Galaxy is small at all masses and is not shown in Figure 14.

The behavior of x(log M) can be understood on the basis of the time scales involved. For M < 0.8 My, the main-
sequence lifetime 7p,,; exceeds the age of the Galaxy T,. These stars have not had sufficient time to brighten appre-
ciably; consequently, y(log M) is nearly unity. For high-mass stars (M > 2 M), T, < T,. For these masses, the
average star contributing to a particular absolute magnitude M,* has a mass less than that given by the (mass,
zero-age absolute magnitude)-relation because of main-sequence brightening. Since the IMF increases with
decreasing mass, there are more stars with M, = M, * than stars with M,° = M *. Additionally, Ty, increases
with decreasing mass, so that the average star with M, = M,* resides on the main sequence longer than a star
with M,° = M, *. Both of these effects increase the number of stars observed with M, = M,* over the number
with M,° = M,*; thus x(log M) < 1. Since the main-sequence lifetime rapidly decreases with increasing mass, the
transition region between the low- and high-mass regimes is relatively sharp, as seen in Figure 14.

To apply the brightening correction to the PDMF and IMFs of this paper, we have used a simple but accurate
approximation: the relation between mass and mean observed absolute magnitude has been used instead of the
relation between mass and zero-age absolute magnitude. For low-mass, long-lived stars, these two relations are
equal since these stars have not had time to brighten appreciably. As mass increases, the mean observed absolute
magnitude is less than the zero-age absolute magnitude since the lifetimes are much shorter than the age of the
Galaxy. As an illustration of the effect of using the (mass, mean absolute magnitude)-relation, consider some
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absolute magnitude M, *. Using the correction factor y(log M) explicitly, one would have converted the observed
present-day luminosity function ¢.,(M,*) to the PDMF ¢ .(log M*) by using the (mass, zero-age absolute
magnitude)-relation. Then ¢, (log M *) would be multiplied by y(log M *). Using the approximation, at magnitude
M,* we assigned ¢,(M,*) to some mass log M’ smaller than before. Thus at the mass log M*, we are using ¢
from an absolute magnitude smaller than M, *. Since ¢,,, decreases with decreasing M, a smaller value of ¢, is
assigned to log M*. The resulting change in log ¢ is

dlog ¢ (log M) dlog M

dlog M aM, AM,, (A9)

A lOg 96ms(10g M) =

where AM, is the difference between the (mass, mean absolute magnitude)- and (mass, zero-age absolute magnitude)-
relations. The quantity A log ¢, must therefore be nearly equal to the logarithm of the correction factor for this
approximation to be valid. To verify this, recall first the behavior of the correction factor. For M < 0.8 M, y can
be taken as unity (log y = 0) to good accuracy. From 0.8 to 2 M, x decreases sharply from | to about 0.45
(log x ~ 0 to —0.35) and maintains this value for larger masses. We now demonstrate the behavior of A log ¢.
For M < 0.8 My, AM, = 0, and thus A log ¢, = 0 as desired. For M > 2 M, AM, ~ 0.5, and calculating
dlog ¢./d log M and dlog M|dM, from data given in § II shows that A log ¢, & —0.35 for M > 1.5 M. This
approximation also gives the steep drop in the correction between 0.8 and 2 M., since AM, must go from 0 to 0.5
over this same range. In summary, the use of the (mass, mean absolute magnitude)-relation in the calculation of
the PDMF and IMF gives a good approximation to the IMF derived from the (mass, zero-age absolute magnitude)-
relation and the rigorous brightening correction.
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